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Fuels and ecosystem pattern
influence climate ~ fire relatlonshlps

e Different fuel types respond
differently to climate

e Two mechanisms: drying of fuels
and production of fuels

e Fuel (moisture) - limited systems:
fire is facilitated by increased
water = fine fuels

e Climate (energy) - limited
systems: plenty of fuel, sensitive
to drought, water deficit, Tmax

e Ignition - limited systems
Littell et al. 2009, Ecological Applicaitons Photos Balley 1 995 |
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Temperature Precipitation
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Climate projections: Battisti & Tebaldi for 1C global temperature increase



Littell et al., forthcoming

From Stabilization Targets for
Atmospheric Greenhouse Gas
Concentrations (BASC, 2010)

» Statistical fire-area regression
models from temp and precip

e CMIP 3 models normalized to
TCR, ensemble projection of
sub-regional climate expected
with +1C and % change in
precipitation.

* Forested / mountain
ecosystems increase much
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Changes in fire area probability
by fire-climate sensitivity
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Area burned under +1C global warming (over 1950-2000) increases most in
forest systems; in hybrid systems, depends on precipitation; less change
in decrease in deserts. Decrease in variability could be statistical or climatic



The role of increased evapotranspiration
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Water balance deficit is the
Difference (or ratio) between
potential evapotranspiration an
actual evapotranspiration

PET — AET = deficit




Water balance and disturbance

« Water balance deficit :

Potential — actual
evapoftranspiration

* We use the VIC hydrologic model
to estimate water balance from
climate and site characteristics

 Captures atmospheric water
demand, soil water supply,
radiation, wind, vegetation effects
on moisture

PET - AET
 +Deficit = more drought . +450 mm
* - Deficit = surplus [T

Littell et al. 2011. Ensemble of 10 GCMs, VIC hydrologic modeling - 225 mm
Map: Rob Norheim




Fire Area Burned and Summer Climate:
A Non-linear Relationship in the 20% Century
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Fire — water balance ad PET regressions optimized for 1980-2006 fire in
Bailey’s ecosections in the Columbia Basin
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Statistical fire models vary in skill: mean R?~0.6 DR
Most skill in best models is from JJAS PET




Future area burned in ecosections
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» Is the future area burned distributed the
same across fire sizes and severity as
current fires?

Based on statistical fire models and future climate derived from 20 GCMs and the VIC hydrologic model. Best models [/ (
include: summer precip + summer temp OR summer water balance deficit. Littell et al. 2010 Climatic Change



f‘iuzﬁcil:mmglw -%usss“\ Bias Corrected and Downscaled WCRP
s &9 I ) cMIP3 Climate and Hydrology Projections

| SCRIPPS INSTITUTION OF OCEANOGRAPHY )
http://gdo-dcp.uclinl.org/downscaled_cmip3_projections/

1) Bias corrected, empirically downscaled temperature and precipitation:
up to 39 realizations of GCMs for B1, A1B, A2

2) For each: VIC hydrological model forced by temperature and
precipitation projections to get PET, AET, snowpack etc. at ~12km

3) Variables used in statistical fire models
September PET (natural veg), Echam 5.1, A1B, VIC
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Ensemble response in different fuel types:

Hybrid models decrease,
Forest models increase
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Ensemble median response
ACross emissions scenarios:

Where fire is driven by precip. facilitation, scenarios similar.
Where flre IS drlven by PET or PET-AET, scenarios different.
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Limits of statistical
fire modeling

Rate of area burned suggests vegetation will be dynamic;
regression models assume range of observed variability.

Extreme events projected outside envelope of observed
values more uncertain.

Some fire models are too sensitive, others not sensitive
enough — limits of regression

Ecology and local constraints or facilitating effects




Dynamic Vegetation Models

Simulated Area Burned under 3 GCM runs with
the A2 SRES emission scenario (2070-2099 mode)
using the MC1 dynamic global vegetation model
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Map: R. Norheim, after Rogers et al. 2011



What does all this mean for fire on real landscapes,
and what do we do about it?

e |s it more fires like the
ones we have
experience with?

* Is it more larger fires?
How severe are they?

e |s it simply just alonger
fire season full of more Biscuit fire, image: NASA
of the same?
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What we do about it may actually be informed by experience }\ﬁ

as much as science.....we manage our expectations and risk
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