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Trend in Annual PRCP, 1979 to 2005
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Trends in Total Annual Precipitation
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Future climate
projections
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The projections are minimum, median, and maximum values from an
ensemble of simulations from16 general circulation models run for a
mid-high (SRES A2) emissions scenario. The original climate projections
were taken from the World Climate Research Programme's (WCRP's)
Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model
dataset. These projections were then downscaled by the Lawrence
Livermore National Laboratory (LLNL), Reclamation, and Santa Clara
University (SCU) and are stored and served at the LLNL Green Data
Oasis. The climate change analyses and maps were prepared by Dr.
Evan Girvetz (College of Forest Resources, University of Washington).
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Impacts



Photos: Northern Guardian News Paper
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Phenology



Earlier spring events




Earlier spring events

High-elevation species may
show advancement in spring
flowering due to warming
temperature

Low elevation plants may
exhibit delayed flowering due
to reduced precipitation and
lack of chilling.

Crimmins et al. 2010
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Larval emergence date

Dewar & Watt 1992




Shifts in distributions



Species moving up slope

Finger Rock Trail Phenology : 93 species (26%) show change
in flowering range with elevation with warmer summers
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12 species exhibited
flowering range shift
upslope

34 species exhibited
flowering range
expansion upslope

23 species exhibited
flowering range
contraction upslope




Species moving up slope
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: Spending winter | i
farther north <« 2005

34°F
As the temperature across the U.S. has gotten warmer 35
from 1966 to 2005, many bird species are spending
their winters farther north. 30
Change in winter destination, .
o 20 species with the most movement | 25 27 F
Marbied Murrelel Winter 1966-67 @ Winter 2005-06 .
a 20
variad Thrushe - 196670 B0 80 00 05
Ping 5'3"'" "Lower 48 states
@ Spruce Grouse
Boreal Chickades
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+ American Goldfinch
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Sources: Audubon Society; NOAA The Associated Prass



Northern Flying Squirrel (HADCM3 A1B)
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Northern Goshawk (HADCM3 A1B)
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Douglas Squirrel (HADCM3 A1B)
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Species turnover
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Protected Areas
mammals:

8.3% lost from plants and vertebrates: 58% wiill lose
parks protection

birds: 8% to 12% will lose protection

mammals: 85% will lose, on average, 46% protection
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Species Change in National Parks
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EXTINCTIONS

A message from the frogs

Andrew R. Blaustein and Andy Dobson

The harlequin frogs of tropical America are at the sharp end of climate change. About two-thirds of their species
have died out, and altered patterns of infection because of changes in temperature seem to be the cause.

One of the worries about global climate change
is that it will raise the transmission rates of
infectious diseases'. On page 161 of this issue,
Pounds and colleagues® provide compelling
evidence that anthropogenic climate change
has already altered transmission of a pathogen
that affects amphibians, leading to widespread
population declines and extinctions.
According to the Global Amphibian Assess-
ment (GAA)’, around a third of amphibian
species (1,856) are classified globally as
‘threatened. The tenuous hold these
animals have on life is especially evident
in tropical America, where, for example,
67% of the 110 species of harlequin frog
[ Atelopus; Fig. 1) endemic to the region
have died out in the past 20 years”. A
pathogenic chytrid fungus, Batracho
chytrium dendrobatidis, isimplicated as
the primary cause of Atelopus popula
tion crashes and species extinctions’,
Now, Pounds et al. offer a mechanistic
explanation of how climate change
encourages outbreaks of B. dendro
batidis in the mountainous regions of
Central and South America: night-time
temperatures in these areas are shifting
closer to the thermal optimum of
B, dendrobatidis, and increased daytime
cloudiness prevents frogs from finding
‘thermal refuges’ from the pathogen.
The authors defined an ‘extinction’ as

optimal growth of the pathogen. Mid-eleva

tion Afelopns communities are not only the
hardest hit by extinction, but they also harbour
the most species, so biodiversity in these areas
iz in double jeopardy. These results corrobo

rate the GAA findings’ for a broad array of
amphibians that the percentage of extinct or
threatened species is largest at middle eleva

tions. This is contrary to the expectation that
higher-elevation species would be more prone

Figure 1) Amphibian alarm call. The Panamanian golden frogis
one of roughly 110 species of harlequin frog (Atelopus), many of
which are dying out. Although this species still survives, its
numbers have fallen significantly.

change had been stymied by the so-called ‘cli
mate—chytrid paradox because the climatic
conditions favouring chytrid growth seemed
to be the very opposite of those created by
current climate trends.

Pounds and colleagues” work® is a break
through as it resolves the paradox and offers a
theory to explain the widespread ‘enigmatic’
declines of Atelopus and other amphibians’.
The authors combine two disparate approaches
inte one unifying theory, simulta
neously explaining how shifting tem- &
peratures are the ultimate trigger for
the expansion of a pathogenic fungus,
and that this infection is the direct
cause of Atelopus extinctions.

There may be a tragic irony here,
The oldest-known hosts of Batra

rtrinmm are African-clawed frogs
{Xenopus)', first recorded in South
Africa in 1938, Global trade in these
frogs burgeoned in the 1950s following
the development of pregnancy tests
that used Xemopus tissue™®, Museum
records suggest that the pathogen
achieved a worldwide distribution in
the 1960s. So it seems that the expan
sion in one frog species through
trade may have led to the extinction of
other amphibian species — a totally
unexpected, indirect consequence of
human ingenuity.







Human population
growth in region

Fized human infrastructure:
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Invasive Species




Vulnerabillity

Vulnerabillity = sensitivity x exposure / adaptabillity



Sensitivity Components

Physiological factors
Sensitive habitats

Dispersal abilities
Population growth rates
Interspecific dependencies

Relative location

Sensitive disturbance regimes



Adaptive capacity

Population growth rates
Genetic variability
Phenotypic plasticity
Behavioral plasticity

Dispersal abillities

Landscape permeabillity




Habitats



Brendan Rogers (2009), maps courtesy of Data Basin, CBI
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Community Level Impacts




No-analog communities
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Stralberg et al. 2009



Adaptation



larger reserves

BIOLOGICAL CONSERVATION 142 (2009) 14-32

) ) ) z BIOLOGICAL
available at www.sciencedirect.com CONSERVATION

-

“e,? ScienceDirect

journal homepage: www.elsevier.com/locate/biocon

Review

Biodiversity management in the face of climate change:
A review of 22 years of recommendations

Nicole E. Heller’, Erika S. Zavaleta

Environmental Studies Department, Umversity of Califonia, Santa Cruz, Santa Cruz, CA 95606, United States

iIntegrate cc Into planning

INncrease connectivity




Inherent species g : :
sensitivities Precipitation Population dynamics
Historic climate Ecosystem functioning

changes

Palececological records Species distributions
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Higher uncertainty




Uncertainty due to climate change

High

Low

Inherent uncertainty
(uncertainty in a static climate)

High



Anticipating the human response
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