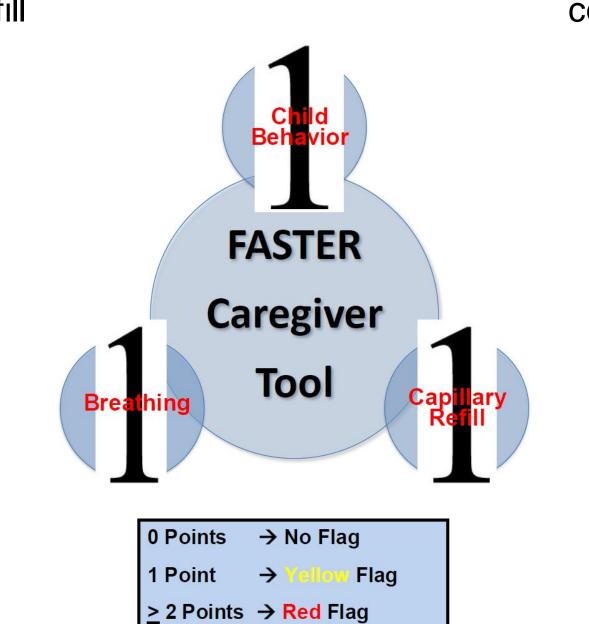


FAMILY-ASSISTED SEVERE FEBRILE ILLNESS THERAPY (FASTER) FOR CRITICALLY-ILL KENYAN CHILDREN: A PILOT STUDY

Kumar R.¹, von Saint Andre-von Arnim A², Oron A.P.³, Gove N.E.⁴, Nguyen Q.U.P.⁵, Mutonga D.M.¹, Mbogo L.M.⁶; Zimmerman J.J.², Walson J.L.⁷

¹University of Nairobi; ²Seattle Children's and University of Washington; ³Institute for Disease Modeling; ⁴Seattle Children's; ⁵Stanford University; ⁶University of Washington-GAP Kenya; ⁷University of Washington


UW SCHOOL OF MEDICINE

Background

- In sub-Saharan Africa, pediatric mortality remains unacceptably high, with many hospital deaths occurring within the first 24 hours of admission.
- Low healthcare provider-to-patient ratios may limit patient monitoring.
- Parent identification of clinical deterioration for their hospitalized child may facilitate faster intervention.
- We developed a simple parental tool to quantify clinical deterioration, and implemented it in pediatric wards at Kenyatta National Hospital (KNH), Nairobi.

Methods

The FASTER tool instructs parents to document chest retractions, capillary refill color-coded severity flags.

- Caregivers were recruited to an intervention or control arm on a biweekly schedule. Intervention group caregivers were taught the FASTER tool by research nurses via paper and video training materials.
- Frequency of nurse/physician patient assessments within the 24 hour monitoring period was recorded by all participating caregivers and compared between intervention and control groups.
- Pediatric Early Warning Scores (PEWS) quantified illness severity.
- ☐ Ethical approval was obtained at University of Nairobi/KNH and Seattle Children's.

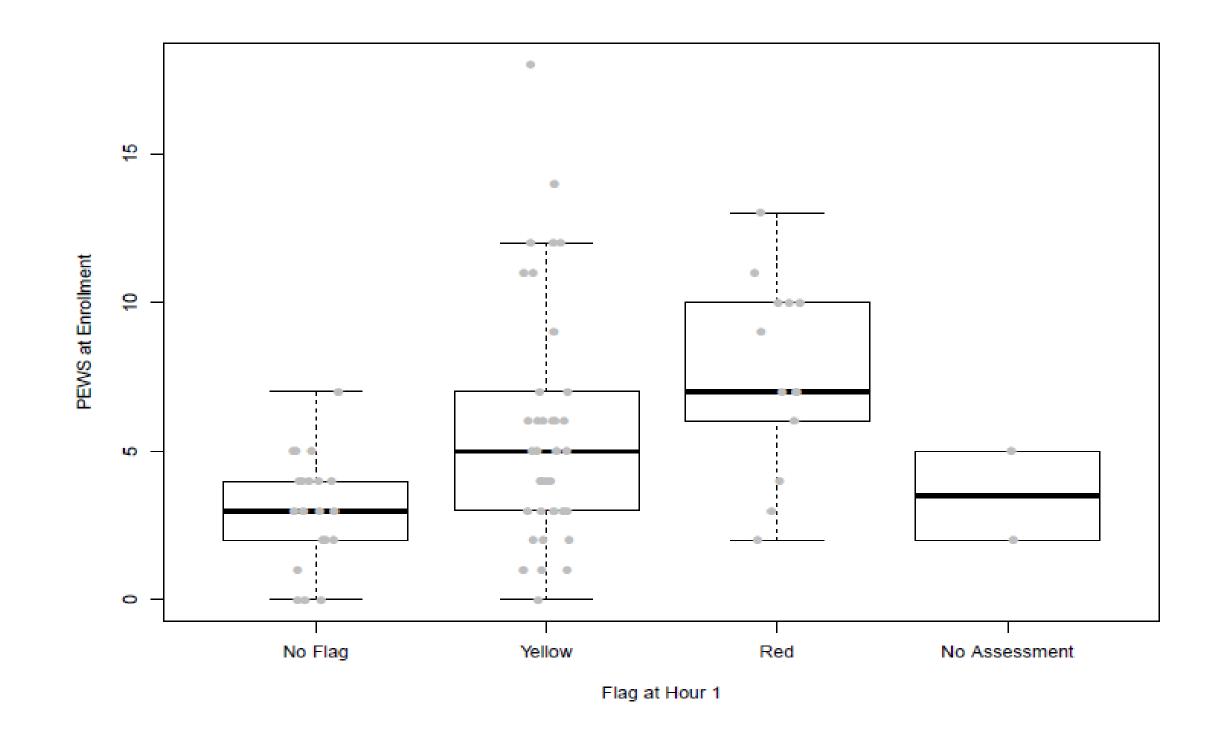

Results

Table 1: Demographics, patient and caregiver characteristics.

Characteristics	Control	Intervention
SAMPLE SIZE (total 146)		
	73 (50%)	73 (50%)
AGE (Years), median (range)		
	1.2 (0.212.2)	1.0 (0.210.8)
PEWS AT ENROLLMENT, median (range)		
	5.0 (0.016.0)	4.0 (0.018.0)
GENDER		
Female, n (%)	25 (34)	38 (52)
*PRIMARY DIAGNOSIS, n (%)		
Pneumonia	39 (53)	45 (62)
Meningitis	29 (40)	28 (38)
Malaria	21 (29)	13 (18)
Gastroenteritis	7 (10)	9 (12)
Sepsis	2 (3)	4 (5)
Septic Shock	2 (3)	1 (1)
Encephalitis	0 (0)	3 (4)
PARENT LEVEL OF EDUCATION, n (%)		
University	1 (1)	0 (0)
College Diploma	11 (15)	4 (5)
College certificate	5 (7)	7 (10)
Secondary school	28 (38)	42 (58)
Primary school	28 (38)	20 (27)
COMORBIDITIES, n (%)		
None	56 (77)	58 (79)
Sickle cell disease	7 (10)	1 (1)
Behavioral disorder/ developmental delay	3 (4)	3 (4)
Malnutrition (acute and chronic)	2 (3)	3 (4)
Seizure disorder	0 (0)	3 (4)
Retroviral disease	2 (3)	0 (0)
Other	1 (1)	4 (5)
Missing	1 (1)	1 (1)
*more than one primary diagnosis was possible		

- The effects of FASTER upon provider reassessment rate is still in analysis, but preliminary data suggests no difference between control versus intervention group.
- The incidence of highest severity, red flag patients was 5 x lower than forecast.
- Higher severity of illness FASTER assessments by parents correlated with higher PEWS (Figure 1).

Figure 1: Association of caregiver FASTER assessments with PEWS scores

- Proportional odds regression with 271 entries resulted in 94% accuracy, 97% sensitivity and 100% specificity between caregiver severity of illness assessments via FASTER tool and PEWS
- □ Each one point increase in PEWS score related with 0.54 more visits/24 hours (p=0.005) for patients in intervention and control group

Conclusions

- Caregiver assessment of illness severity may be a novel, practical tool to improve timely recognition of clinical deterioration among hospitalized children in low-resource settings.
- Although numbers of group reassessments did not differ, further exploration of specific patient subsets is warranted.
- Study limitations included changing doctors and nurses during healthcare strikes unfamiliar with the study, incomplete reassessment rate reporting by caregivers, study team patient assessments only available during daytime hours.