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1 Lyapunov spectrum: stadium

Expected difficulty: 2

The Lyapunov spectrum of a classical dynamical system characterizes the rates of divergence
of neighboring trajectories. Let z(t; z0) denote the trajectory (in phase space, for Hamiltonian
systems) originating at the point z0 at time t = 0. If this is an N -dimensional dynamical
system, then z is an N -dimensional vector with components zi, i = 1, · · ·, N . The Jacobian
matrix

J(t) = ‖J(t)ij‖ ≡
∥∥∥∥∂z(t; z0)i

∂z0
j

∥∥∥∥
measures the sensitivity of the location at time t to infinitesimal changes in initial conditions
at time 0. The Lyapunov spectrum is defined as the set of eigenvalues of the matrix

Λ ≡ lim
t→∞

1

2t
ln(J(t)J(t)T ) .

Positive eigenvalues indicate exponential divergence (with time) of neighboring trajectories.
Systems with one or more positive Lyapunov exponents are called chaotic.

Problem: A point particle is confined to a stadium, defined as the region which is the union of
a square of size L plus two semicircular disks (of diameter L) which cap opposite sides of the
square. (So the boundary of the stadium has two straight segments and two semicircular arcs,
connected in a smooth continuous manner.) The particle moves freely (i.e., along straight
lines) inside the stadium, and reflects off the boundary of the stadium, with the angle of
reflection equal to the angle of incidence. For a variety of initial positions and directions of
motion, calculate (and visualize) trajectories and evaluate the Lyapunov spectrum. Does it
depend on the initial conditions? What is the maximal Lyapunov exponent? Is there more
than one positive exponent? What is the sum of all exponents? Is the system chaotic?

Suggestions: To evaluate the Lyapunov matrix Λ one must well-approximate both the long
time limit, and the infinitesimal variation implied by the derivative with respect to initial
conditions. If z(t; z0+ε) is the trajectory resulting from a small but finite displacement ε in
initial conditions, then the deviation ∆z(t) = z(t; z0+ε)− z(t; z0) may grow with time and
eventually no longer be (nearly) linear in ε. Which means that ∆z(t)i/εj no longer provides
a good approximation to J(t)ij. To avoid this breakdown, one needs to monitor the size of
∆z(t) as the time integration proceeds, and switch from a perturbed trajectory z(t; z0+ε) to
a nearby “parallel” but less perturbed trajectory z(t; z0+ε/s), for some s > 1, whenever the
deviation gets too big (all the while both remaining in the regime of linearized deviations,
and avoiding bad precision loss in the difference).



2 Quantum density of states: 1D quartic well

Expected difficulty: 3

A non-relativistic particle of mass m moves in one dimensions subject to a quartic potential,

V (x) ≡ λx4 ,

with λ > 0. Let N(E) denote the total number of eigenstates of the Hamiltonian with energy
less then or equal to E. This is the integrated density of states. At sufficiently high energies,
the integrated density N(E) should be well approximated by the quasi-classical result,

N(E)quasiclassical ≡
∫
dp dx

2πh̄
Θ(E − h(p, x)) ,

where Θ(z) is a unit step function and h(p, x) ≡ 1
2m
p2 + V (x) is the classical Hamiltonian.

The integral N(E)quasiclassical is the volume in phase space (divided by 2πh̄) in which the
classical energy is less than E.

Warm-up: Calculate N(E)quasiclassical. Explain why N(E) = f(m2/3λ−1/3E) (using units
where h̄ ≡ 1), with f some univariate function of the indicated argument.

Problem: Accurately compute N(E) from low energies up to sufficiently high energies to see
the approach to the quasiclassical result. Examine the difference N(E) − N(E)quasiclassical

and characterize how fast the quantum result converges to the quasiclassical approximation.
(I.e., what are subleading terms in the large E asymptotic behavior?) How accurately can
you extract the large E asymptotic form of N(E) from your data?

Suggestions: Perform a (pretty big) finite basis calculation, using a good choice of basis
set (or spectral representation). Carefully study the stability of the resulting approximate
energy eigenvalues as the size of the basis set is increased and determine, for a given size
calculation, how many of the resulting eigenvalues are reliable (at a given level of precision),
and how many are numerical garbage.



3 Double well: ground state splitting

Expected difficulty: 3

A non-relativistic particle of mass m moves in one dimension subject to the potential

V (x) ≡ λ (x2 − a2)2 ,

with λ > 0. Only one (independent) dimensionless quantity may be constructed from the
parameters of the theory. Using units in which h̄ = 1, this may be chosen to be η ≡

√
mλa3.

Energy levels in this theory may be written in the form En = (λa2/m)1/2εn(η), where εn is
some univariate function. Justify these assertions.

Problem: Accurately calculate the functions ε0, ε1, and their difference δε ≡ ε1 − ε0, for a
wide range of values of η. Consider the asymptotic behavior of these functions for both large
and small values of η. One may show that

εn(η) ∼ c(0)
n η−1/3 + c(1)

n η1/3 + c(2)
n η + c(3)

n η5/3 + · · · ,

as η → 0. And
εn(η) ∼ b(0)

n + b(1)
n η−1 + b(2)

n η−2 + b(3)
n η−3 + · · · ,

as η →∞. But the difference δε vanishes faster than any inverse power of η as η →∞,

δε ∼ AηB e−Kη .

(Can you justify these asymptotic forms?) Using your numerical results, what are the best
estimates you can produce for the values of the coefficients in these asymptotic forms?

Suggestions: You will need highly accurate results, for widely varying values of η, to extract
good asymptotic forms. You will have to carefully study the stability of your extraction of
asymptotic coefficients, and make sure that inaccuracies in the computed energies are not
significantly corrupting your estimates of the asymptotic coefficients.

Related reading:

S. Coleman, The uses of instantons, in Aspects of Symmetry, Cambridge, 1985.

http://www.physics.mcgill.ca/~jcline/742/Coleman-Instantons.pdf


4 Anharmonic oscillator analyticity

Expected difficulty: 4

A non-relativistic particle of mass m moves in an oscillator potential with quartic anhar-
monicity,

V (x) ≡ 1
2
mΩ2x2 + λx4 .

Explain why the ground state energy must have the form E0 = Ω ε(λm−2Ω−3), for some
dimensionless function ε.

Standard Raleigh-Schrodinger perturbation theory shows that ε has an expansion of the form

ε(z) ∼ c(0) + c(1) z + c(2) z2 + c(3) z3 + · · · ,

but this expansion is only asymptotic, not convergent. Consequently, ε(z) is not analytic in
a neighborhood of the origin; in fact it has a branch point at z = 0 and (may be defined to
have) a branch cut running along the negative real axis. One may show that the large order
behavior of perturbation theory (i.e., the above expansion in powers of z) is related to the
behavior of the discontinuity of ε(z) across this branch cut for small negative values of z.

Warm-up: Consider the Schrodinger equation when λ is an arbitrary complex number with
−π < arg λ < π. Any solution must behave as

ψ(x) ∼ C+ exp(1
3

√
2λx3) + C− exp(−1

3

√
2λx3)

as x→ +∞, and as

ψ(x) ∼ C ′+ exp(1
3

√
2λx3) + C ′− exp(−1

3

√
2λx3)

as x → −∞, for some values of C± and C ′±. The solution is normalizable (i.e., does not
blow up as x→ ±∞) only if C+ = C ′− = 0. Only for discrete (complex) values of the energy
E will a solution exist which satisfies both asymptotic conditions. These are the analytic
continuations of the energies of the usual bound states with λ real and positive. When
arg λ → ±π, the potential V (x) becomes real but is not longer bounded below, and the
above-described solutions describe resonances with complex energies and purely outgoing
(or incoming) behavior at large distance. Justify these assertions.

Problem: Let λ = |λ| eiθ. Calculate, for a wide variety of values of |λ|, the ground state energy

as a function of θ, and extract the discontinuity ∆E0 = E0(|λ|eiθ)
∣∣θ=π
θ=−π. Characterize the

behavior of this discontinuity as |λ| → 0 and |λ| → ∞.

Related reading:

G. Parisi, Asymptotic estimates in perturbation theory , Phys. Lett. 67B:167 (1977).
R. de la Madrid, A pedestrian introduction to Gamow vectors.

https://ac.els-cdn.com/037026937790020X/1-s2.0-037026937790020X-main.pdf?_tid=b12c519e-a314-11e7-bdc8-00000aab0f02&acdnat=1506469673_f6d0cd30a8b1938b24444df9c1928f52
https://arxiv.org/pdf/quant-ph/0201091.pdf


5 Lyapunov spectrum: 2D x2y2 potential

Expected difficulty: 4

The Lyapunov spectrum of a classical dynamical system characterizes the rates of divergence
of neighboring trajectories. Let z(t; z0) denote the trajectory (in phase space, for Hamiltonian
systems) originating at the point z0 at time t = 0. If this is an N -dimensional dynamical
system, then z is an N -dimensional vector with components zi, i = 1, · · ·, N . The Jacobian
matrix

J(t) = ‖J(t)ij‖ ≡
∥∥∥∥∂z(t; z0)i

∂z0
j

∥∥∥∥
measures the sensitivity of the location at time t to infinitesimal changes in initial conditions
at time 0. The Lyapunov spectrum is defined as the set of eigenvalues of the matrix

Λ ≡ lim
t→∞

1

2t
ln(J(t)J(t)T ) .

Positive eigenvalues indicate exponential divergence (with time) of neighboring trajectories.
Systems with one or more positive Lyapunov exponents are called chaotic.

Problem: A point particle moves in two dimensions subject to the potential V (x) ≡ λx2y2.
For a variety of initial positions and velocities, calculate (and visualize) trajectories and
evaluate the Lyapunov spectrum. Does it depend on the initial conditions? What is the
maximal Lyapunov exponent? Is there more than one positive exponent? What is the sum
of all exponents? Is the system chaotic?

Suggestions: To evaluate the Lyapunov matrix Λ one must well-approximate both the long
time limit, and the infinitesimal variation implied by the derivative with respect to initial
conditions. If z(t; z0+ε) is the trajectory resulting from a small but finite displacement ε in
initial conditions, then the deviation ∆z(t) = z(t; z0+ε)− z(t; z0) may grow with time and
eventually no longer be (nearly) linear in ε. Which means that ∆z(t)i/εj no longer provides
a good approximation to J(t)ij. To avoid this breakdown, one needs to monitor the size of
∆z(t) as the time integration proceeds, and switch from a perturbed trajectory z(t; z0+ε) to
a nearby “parallel” but less perturbed trajectory z(t; z0+ε/s), for some s > 1, whenever the
deviation gets too big (all the while both remaining in the regime of linearized deviations,
and avoiding bad precision loss in the difference).



6 Particle in stadium

Expected difficulty: 5

A non-relativistic point particle of mass m is confined to a stadium, defined as the region
which is the union of a square of size L plus two semicircular disks (of diameter L) which
cap opposite sides of the square. (So the boundary of the stadium has two straight segments
and two semicircular arcs, connected in a smooth continuous manner.) The particle moves
in a potential which is zero inside the stadium and infinite outside.

Warmup: What is the dependence of energy levels on the parameters m and L?

Problem: Accurately calculate as many energy levels, and associated wavefunctions, as you
can. (A few hundred is a good goal.) Construct the distribution of spacings between adjacent
energy levels. How does it compare to the corresponding distribution of a particle confined
to a square region? Examine the spatial probability distributions for various energy levels,
and show than many (but not all) energy levels have probability distributions which reflect
the presence of periodic (but unstable) trajectories in the underlying classical system.

Suggestions: See, for example, this paper which uses finite difference approximations. Try
to do better using suitable spectral approximations. To visualize the spatial probability
distribution, one nice approach is to use the Metropolis Monte Carlo method to generate
hundreds to thousands of points drawn from the desired distribution, and then just plot the
positions of all of these points.

https://math.dartmouth.edu/archive/m53f09/public_html/proj/KyleDhrubo_writeup.pdf
http://xbeams.chem.yale.edu/~batista/vaa/node42.html


7 Quantum density of states: 2D x2y2 potential

Expected difficulty: 5

A non-relativistic particle of mass m moves in two dimensions subject to the potential

V (x) ≡ λx2 y2 .

Consider the integrated density of states N(E), defined as the total number of eigenstates
of the Hamiltonian with energy less then or equal to E.

Warm-up: What does dimensional analysis imply about the dependence of N(E) on m and
λ? Explain why one may, without loss of generality, set m = λ = 1. Make a picture of the
potential (a density or contour plot) which nicely illustrates the region in space in which the
potential is less than a given value. Notice that this region extends arbitrarily far away from
the origin. Consider the quasi-classical approximation to the integrated density,

N(E)quasiclassical ≡
∫
d2p d2x

(2πh̄)2
Θ(E − h(p,x)) ,

where Θ(z) is a unit step function and h(p,x) ≡ 1
2m

p2 + V (x) is the classical Hamiltonian.
This is the volume in phase space (divided by (2πh̄)2) in which the classical energy is less
than E. Compute N(E)quasiclassical and show that it diverges, N(E)quasiclassical = ∞ for all
E > 0. Nevertheless, the quantum theory has only normalizable bound states and discrete
energy levels. Can you explain why?

Problem: Accurately compute N(E) from low energies up to sufficiently high energies where
N(E)� 1. What are the values of the ground state energy and the first few excited states?
Show that some energy levels are doubly degenerate. Can you explain why? Characterize
the behavior of N(E) as E →∞. (In other words, based on your numerical results, attempt
to deduce the form of the appropriate large E asymptotic expansion.) Can you predict the
leading behavior without using numerics?

Suggestions: You will need to perform a pretty big finite basis diagonalizations using well-
chosen 2D basis sets (or spectral approximations). Carefully study the stability of the
resulting approximate energy eigenvalues as the size of the basis set is increased and deter-
mine, for a given size calculation, how many of the resulting eigenvalues are reliable (at a
given level of precision), and how many are numerical garbage. You will have to make sure
that inaccuracies in your computed energies do not significantly corrupt your estimation of
asymptotic behavior.



8 Quasinormal modes: charged black brane

Expected difficulty: 6

Reissner-Nordström (RN) black branes are static solutions of Einstein-Maxwell theory hav-
ing an unbounded planar event horizon. 5D asymptotically anti-de Sitter solutions are
related, via gauge/gravity duality, to finite temperature equilibrium states of 4D maximally
supersymmetric SU(N) Yang-Mill theory with a non-zero chemical potential. Small per-
turbations of the RN black brane geometry, with infalling boundary conditions, are directly
related to linear response of perturbations away from equilibrium in the dual field theory.
Perturbations with exponential time dependence are known as quasi-normal modes.

The 5D Einstein-Maxwell theory action S = 1
16πG5

∫
d5x
√
−g
(
R− 2Λ− L2FMNF

MN
)
, with

G5 ≡ π
2
L3/N2 the 5D Newton gravitational constant, Λ = −6/L2 the cosmological constant,

R the Ricci curvature scalar, g the determinant of the metric gMN , and L the AdS curvature
scale. Setting to zero the variation of the action with respect to the metric gives the Einstein
equation RKL + (Λ − 1

2
R)GKL = 2L2 (FKMFL

M − 1
4
GKLFMNF

MN), while varying the 5D
gauge field AM (with FMN ≡ ∇MAN −∇NAM) gives the Maxwell equation ∇KF

KL = 0.

In convenient infalling coordinates, the RN black brane metric may be written as

ds2 = 2dt(dr − A(r) dr) + (r2/L2)(dx2 + dy2 + dz2) ,

with A(r) = 1
2
r2/L2 − 1

2
mL2/r2 + 1

6
ρ2L10/r4. The only non-zero component of the Maxwell

field strength is a radial electric field, F0r = −ρL4/r3. The parameter m is related to the
energy density (or temperature), while ρ is the charge density in the dual field theory. The
charge density has a maximal value given by (ρmaxL

3)4 = 4
3
m3; is it convenient to write ρ

in terms of the fraction x of the maximal value, ρ = xρmax. The horizon radius rh is the
outermost positive root of A(r).

Warm-up:

Verify that the above metric and field strength give a solution of Einstein-Maxwell theory.
Consider perturbations to the solution with exponential dependence on t, x, y, and z; with-
out loss of generality one may fix the direction of the wavevector and take perturbations
proportional to e−iωt+qz. Assume that q is real, but ω may be complex. Perturbations may
be decomposed into symmetry channels with definite helicity under rotations about the z
axis. The easiest case to consider is helicity ±2, for which it is sufficient to only perturb the
metric component gxy = gyx. Derive the linearized equations of motion satisfied by infinites-
imal perturbations of this form. Find the local behavior of solutions at the horizon, r = rh,
and at the boundary, r =∞. How do these change precisely at ρ = ρmax?

Problem: Compute the spectrum of (low-lying) helicity ±2 quasinormal mode frequencies
by solving the linearized perturbation equation, on the domain outside the horizon, with
boundary conditions that perturbations be regular at the horizon and vanish at r = ∞.
Study how the spectrum changes as the background charge density increases. Can you reach
the maximal value ρmax? Can you do a separate calculation precisely at ρmax?

Suggestions: Learn how to use the EDCRGTC Mathematica package for analytic work.



9 Wannier-Stark resonances

Expected difficulty: 7

Consider a particle in a one-dimensional periodic potential, with Hamiltonian

H =
p2

2m
+ U cos(x/a) .

Warm-up: Show that a single (independent) dimensionless quantity can be constructed
from the parameters of the theory. Using units in which h̄ ≡ 1, this may be chosen to be
η ≡ mUa2. The periodicity of the potential implies that eigenstates |k;n〉 may be labeled
by a continuous crystal wavevector k ∈ [−π/a, π/a] together an integer band index n = 1,
2, 3,... and the corresponding energy eigenvalue may be written εn(k) = U fn(ka, η) where
fn is some dimensionless function of the indicated arguments. The state |k;n〉 and its
energy εn(k) are periodic functions of the wavevector k with periodicity 2π/a. Justify these
assertions. Calculate, numerically, ε1(k) for a bunch of different values of η ranging from
quite small η � 1, to quite large, η � 1. What accuracy can you achieve? Judge this both
by examining the internal consistency of your numerics as you improve your approximation,
and by comparison with the exact answer involving Mathieu functions.

Problem: Now add to the theory a constant electric field E, assuming that the particle has
electric charge q, so that H → H − qEx. Suppose E > 0. Sketch the resulting combined
potential V (x) in which the particle moves. Show that two different dimensionless quantities
can now be constructed from the parameters of the theory. Any non-zero field E significantly
changes the spectral properties of the theory, producing resonances which have complex
energies and wavefunctions with purely outgoing behavior.

Consider solutions of the (time-independent) Schrodinger equation having some complex
energy ε. What are the possible asymptotic forms of the wavefunction as x → ±∞? For a
discrete set of complex energies εn solutions exist which have exponential decay as x→ −∞
together with purely outgoing behavior as x → +∞. Solve for the resonance energies for
various representative values of the dimensionless parameters of the theory. What can you
deduce about the behavior of the resonance energies in the limit of small, or large, electric
field? (What does small or large field mean — compared to what?)

Related reading:

R. de la Madrid, A pedestrian introduction to Gamow vectors.
J. Avron, Model calculation of Stark ladder resonacnes, PRL 37, 1568 (1976).

https://arxiv.org/pdf/quant-ph/0201091.pdf
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.37.1568


10 Quantum time evolution

Expected difficulty: 7

Consider a one-dimensional quartic oscillator with Hamiltonian

H =
p2

2m
+
λ

4
x4 .

With no loss of generality, one may choose units in which h̄ = m = λ = 1. (Justify this.)

Problem: Accurately compute the time evolution of an initial state whose wavefunction
is a Gaussian wavepacket with mean energy large compared to the ground state energy
(comparable or larger than, say, the thirtieth energy level) and a width which is small
compared to the size of the classically allowed region at this energy. Evolve this state though
a time which is large compared to the classical oscillation period (at the mean energy).
Evaluate and examine the time dependence of the position expectation value x̄(t) ≡ 〈x(t)〉
and its rms deviation ∆x(t) ≡ [〈x(t)2〉 − 〈x(t)〉2]

1/2
. Is there a time beyond which the

wavefunction no longer resembles a wavepacket whose mean position and momentum follow
the classical evolution? Is there a time beyond which the mean position remains small
(compared to the initial position, or to the size of the allowed region), throughout a classical
period? Is there a time beyond which the rms deviation is comparable to the size of the
allowed region? Is there a time beyond which your calculation loses accuracy? How do the
answers to these questions depend on the energy and width of the initial state?

Suggestions: One approach is to time evolve in the basis of energy eigenstates. For this
approach, you will need to compute highly accurate stationary state energies and eigenfunc-
tions from the ground state up to energies which are substantially larger than your mean
energy, project the initial state onto these eigenstates, and then time evolve in this basis:
|ψ(t)〉 =

∑
n e
−iEnt/h̄|n〉〈n|ψ(0)〉. The challenge will be to control the errors in this highly

oscillatory sum.

Alternatively, one may work directly with the position space wavefunction and view this
as a 2D PDE problem: ih̄ d

dt
Ψ(x, t) = (− 1

2m
d2

dx2
+ λ

4
x2)Ψ(x, t). Discretize space and use

spectral methods to approximate the spatial derivative, thereby converting the PDE to a
system of coupled ODEs. Use a good time integration scheme (RK4, predictor-corrector, or
“symplectic” integrators) to solve these ODEs. Carefully study dependence of your results
on the spatial discretization and time step.



11 Infalling geodesic congruence

Expected difficulty: 8

The metric

ds2 = r2
[
−dt2 + dx2 + dy2 + dz2

]
+ r−2

[
dr2 + h(z−t) (dz − dt)2

]
describes a colliding planar shock propagating in asymptotically anti-de Sitter (AdS) space-
time, with h(z) an arbitrary function characterizing the longitudinal profile of the shock.
Here, r is a radial variable which runs from 0 to ∞, which is the boundary of the space-
time. The other coordinates (t, x, y, z) may be regarded as ordinary Minkowski coordinates
and label events on the AdS boundary. The above coordinates (called Fefferman-Graham
coordinates) are very inconvenient for performing numerical calculations of collisions of pla-
nar shocks. For the later purpose, infalling (or Eddington-Finkelstein) coordinates in which
the metric has the general form ds2 = r̃2gµν(x̃, r̃) dx̃

µ dx̃ν + 2dr̃ dx̃0, (with µ, ν = 0, · · ·, 3)
are far superior. To transform the geometry into infalling coordinates, one must solve for
the infalling radial null geodesic congruence. Events on the null (future directed) geodesic
which begins on the AdS boundary at boundary coordinates x̃µ may be labeled by an affine
parameter r̃. Consider “radial” geodesics whose tangents, at the boundary, lie in the t-r
plane. Let Y (r̃)M ≡ {t(r̃), x(r̃), y(r̃), z(r̃), r(r̃)} denote the Fefferman-Graham coordinates

of events along this geodesic; the infalling coordinates of these events are X̃N ≡ {x̃, r̃}.
In other words, the infalling coordinates of an event specify the boundary position of the
geodesic on which the event lies, together with the affine parameter labeling position along
the geodesic.

Warm-up: Evaluate the (Fefferman-Graham) Christoffel symbols ΓMPQ in the above given
geometry. To transform the above geometry into infalling coordinates, it is sufficient to
compute, explicitly, only those geodesics which begin on the boundary at t = x = y = 0,
and some arbitrary value of z. Why is this?

Problem: Choose a Gaussian profile function, h(z) ≡ µ3(2πw2)−1/2e−frac12z2/w2
, with some

width w. Here µ is a characteristic energy scale (which by a suitable choice of units may

be sent to unity). Solve the geodesic equation d2YM

ds2
+ ΓMPQ

dY P

ds
dY Q

ds
= 0 for infalling null

geodesics which begin on the AdS boundary at t = x = y = 0 and all values of z (i.e., a
fine grid). Do this for as small a width w as possible (try to get to down to w = 0.1 or

less). Evaluate the derivatives ∂Y M/∂X̃P (these are what is needed to transform the metric
components) and examine how far down into the geometry you can integrate (i.e., to how
small a value of r) before clear numerical artifacts appear in these derivatives.

Suggestions: Learn how to use the EDCRGTC Mathematica package for analytic work.
Change to inverted radial variables s = 1/r and u = 1/r̃, to move the starting point of
geodesics to a finite coordinate location. Use spectral methods, combined with Newton
iteration, to handle the singularity at u = 0 and solve the geodesic equation in an interval
near the u = 0 boundary, and then switch to an adaptive ODE integrator to move deeper
into the geometry. Resample onto a spectral grid and use spectral methods to evaluate
∂Y M/∂X̃P . Carefully monitor errors.



12 Two dimensional turbulence

Expected difficulty: 8

Fluid flow is described by the Navier-Stokes equation,

∂

∂t
v + (v ·∇)v − ν∇2v =

1

ρ
(f −∇p) ,

where v is the fluid velocity, p is the pressure, ρ is the mass density, f is an external force
density, and ν is the kinematic viscosity. The vorticity is the curl of the velocity, ω ≡∇×v.
For an incompressible fluid, ρ = ρ0 = const., and ∇ · v = 0. Taking the curl of the Navier-
Stokes equation, assuming incompressibility plus the absence of external forces, eliminates
the pressure gradient and produces the vorticity equation,

∂

∂t
ω + (v ·∇)ω − (ω ·∇)v − ν∇2ω = 0 .

For incompressible flow in two dimensions (relevant for thin fluid films), one may write the
flow velocity as the curl of a scalar stream function, v = ∇×ψ. (That is, vi = εij ∂j ψ, with
εij the 2D antisymmetric symbol, or explicitly vx = ∂y ψ and vy = −∂x ψ.) The vorticity
has a single component, ω = ω ẑ, with ω = −∇2ψ. Hence, for 2D impressible flow without
external forces, the Navier-Stokes equations reduce to a single (non-linear) scalar equation,

− ∂

∂t
∇2ψ + εij (∂iψ)∇2(∂jψ) + ν (∇2)2ψ = 0 .

This may also be written as an equation for the vorticity,

∂

∂t
ω − εij (∂iψ)(∂jω)− ν∇2ω = 0 ,

with the stream function viewed as the solution of a Laplace equation, ψ ≡ (−∇2)−1ω.

Problem: Study turbulent, freely decaying solutions of 2D incompressible fluid flow. For
convenience, impose periodic boundary conditions (in space) with some period L. Choose
initial data in which the vorticity has sinusoidal variation with ≈ 10 wavelengths across the
box of size L, plus small random perturbations. The viscosity should be sufficiently small, so
that the Reynolds number Re ≡ vmaxL/ν is large — at least several thousand. Examine how
the vorticity evolves. (Make nice movies.) Do large eddies break up into smaller eddies? Do
small eddies merge and form larger eddies? Do eddies with opposite circulation annihilate?
How does the kinetic energy K ≡ 1

2
ρ0

∫
d2x v2 evolve with time? How does the enstrophy

E ≡ 1
2

∫
d2x ω2 evolve with time? How accurate are your results? How do inviscid (ν = 0)

results differ from results with non-zero viscosity?

Suggestions: Working in real space, with Fourier basis spectral differential matrices, or work-
ing directly in momentum (Fourier) space and using FFTs to transform back and forth, are
both reasonable approaches. You’ll want to pick one or the other.



13 Helium in any dimension

Expected difficulty: 9

A non-relativistic Helium atom, in the limit of infinite nuclear mass, is described by the
Hamiltonian

H =
p2

1

2m
+

p2
2

2m
− 2e2

|x1|
− 2e2

|x2|
+

e2

|x1−x2|
,

(in a unit system in which 4πε0 ≡ 1). For the real world, the spatial vectors p1, x1, etc.
are, of course, three-dimensional. But it is interesting to consider this theory in an arbitrary
number D of spatial dimensions. The expectation value of the energy in a (normalized) state
with wavefunction Ψ(x1,x2) is given by the integral

〈H〉 =

∫
dDx1 d

Dx2

[
h̄2

2m
|∇1Ψ|2 + h̄2

2m
|∇2Ψ|2 + e2

(
1

|x1−x2| −
2
|x1| −

2
|x2|

)
|Ψ|2

]
,

where ∇1 denotes the gradient with respect to x1, etc.

Warm-up: The ground state wavefunction is rotationally invariant, and hence can only
depend on three scalar variables: the radial positions of the two electrons, r1 ≡ |x1| and
r2 ≡ |x2|, and the angle θ between x1 and x2, defined by x1 · x2 = r1r2 cos θ. Justify this
assertion, and then reexpress 〈H〉 as a three-dimensional integral over r1, r2, and θ.

Problem: Accurately determine the ground state energy (as a function of D) by minimizing
〈H〉 subject to the constraint that Ψ be normalized. Find the most accurate D = 3 result you
can in the literature; how close is your best answer? Generate numerical results spanning a
wide interval in D and study how the ground state energy varies as D increases or decreases
from 3. Extract from your results the best estimate you can generate for the large D
asymptotic behavior of the ground state energy.

Related reading:

L. Yaffe, Large-N quantum mechanics and classical limits, Physics Today, Aug. 1983.

http://physicstoday.scitation.org/doi/abs/10.1063/1.2915799


14 Squeezed baryons

Expected difficulty: 9

One may study QCD (the theory of strong interactions) in a hypothetical world in which
one spatial dimension is made compact and periodic with a circumference L which is tiny
compared to the normal size of hadrons. In this regime (when using certain cleverly chosen
boundary conditions in the periodic dimension), one may show that mesons and baryons
continue to exist, and their properties become easier to calculate. In particular, the lightest
baryons, composed of three equal mass quarks, are described by the non-relativistic Hamil-
tonian

H =
3∑
i=1

p2
i

2m
+ η

3∑
i〈j=1

ln(µ|xi−xj|) ,

where η ≡ g2/(6πL) (with g2 the QCD coupling evaluated as the scale of 1/L), and µ an
arbitrary inverse spatial scale. Here, the position and momentum of each quark, xi and pi
for i = 1, 2, 3, are two-component spatial vectors in the uncompactified dimensions. The
expectation value of the energy in a (normalized) state with wavefunction Ψ(x1,x2,x3) is
given by the 6D integral

〈H〉 =

∫
d2x1 d

2x2 d
2x3

[ 3∑
i=1

h̄2

2m
|∇iΨ|2 + η

3∑
i〈j=1

ln(µ|xi−xj|)|Ψ|2
]
,

where ∇i denotes the gradient with respect to xi.

Warm-up: One may, without loss of generality, choose units in which m = η = h̄ = 1. The
ground state wavefunction is rotationally invariant and may be written as the product of
a constant center-of-mass wavefunction (i.e., having zero total momentum) and a relative
motion wavefunction which only depends on the quark positions relative to the center of
mass. This implies that the ground state wavefunction depends on three scalar variables
which may be chosen to be the radial positions of the two of the quarks, r1 and r2, and the
angle θ between these two quarks, all relative to the center of mass. Justify these assertions,
and then reexpress 〈H〉 as a three-dimensional integral over r1, r2, and θ.

Problem: Accurately determine the ground state baryon energy by minimizing 〈H〉 subject
to the constraint that Ψ be normalized.

Related reading:

Aitken, Cherman, Poppitz & Yaffe, QCD on a small circle, section 6.3.3.

https://arxiv.org/pdf/1707.08971.pdf
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