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Basics
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Linear models
• Model the change in an observed dependent variable (y) as a function of one 

or more independent variables (x)


• Independent variables are also called predictors. Dependents are also called 
responses. 

• “Linear” refers to the fact that effects of predictors are summed together
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y = βx + α

learned 
coefficients

response predictor

slope intercept / 
bias

(y = mx + b)



Error minimization
• Model coefficients are selected to minimize the error between the predicted 

line and observed datapoints


• This is the residual error or R2 

• Yields the “best fit line” 

• Sometimes explicitly modeled:


• 


• where  is residual error

y = βx + α + ϵ

ϵ
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Multivariable regression
• Formula straightforwardly generalizes to multiple predictors


• 


• Matrix notation: 


• Can be solved in the same way 

• R code


• model = lm(y ~ variable) 

• model = lm(y ~ variable_1 + variable_2)

y = α + β1x1 + β2x2 + . . . + ϵ

Y = Xβ + ϵ
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Categorical variables
• A predictor x can be categorical, also known as a factor 

• e.g. which pond is a fish sampled from out of {pond_1, pond_2}


• Regression software usually converts this to a binary “dummy” variable


• Pond 1 : 


• Pond 2: 


• What is the result of this “dummy” encoding?

x = 0

x = 1
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Categorical variables
with 2 values
• Pond 1 case


• 


• Pond 2 case


• 


• With the dummy encoding,  is the mean of pond 1


• Implicitly assumes pond 1 is the “baseline/control” group 

•  is the difference between pond 1 and pond 2

y = β * x + α = β * 0 + α = α

y = β * x + α = β * 1 + α = β + α

α

β
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Categorical variables
with more than 2 values
• Pond 1 case


• 


• Pond 2 case


• 


• Pond 3 case


• 


• (  dummy variables used to represent  values)

y = β2 * 0 + β3 * 0 + α = α

y = β2 * 1 + β3 * 0 + α = α + β2

y = β2 * 0 + β3 * 1 + α = α + β3

n − 1 n

8



My data
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Experimental setup
• Need to assess the performance of a multilingual language model across 

several languages and tasks


• Want to know the effect of parameters used during training


• Number of training steps (how long the model trains)


• Size of vocabulary


• Language sampling rates during training


• Different languages have very different performance
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Variables
• Training steps: {100k, 200k, 400k}


• Vocab size: {16k, 32k, 64k}


• Alpha (sampling parameter): {0.1, 0.2, 0.3, 0.4}


• Lower alpha  low-resource langs upsampled, high-resource downsampled. Closer 
to uniform distribution


• Higher alpha  closer to actual distribution languages


• Task: {POS, UAS}


• Part-of-Speech tagging and Unlabeled Attachment Score (syntax)


• Language: {Hungarian, Finnish, Estonian, Russian, Erzya, Sami}

→

→
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Spreadsheet view
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Complication
Artificial variable correlation
• We only partially exhaust all combinations of input variables


• Because long training is expensive, we only tested two alpha values for 
longer-running experiments


• {100k, 200k, 400k} x {0.1, 0.2}


• For shortest experiments, we test more alpha values


• {100k} x {0.1, 0.2, 0.3, 0.4}


• Problem: this introduces artificial correlation between the two variables


• Low alpha is correlated with longer training
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Solution?
• Our solution to correlation so far is to break into two regressions


• Regression A: {100k, 200k, 400k} x {0.1, 0.2} x {16k, 32k, 64k}


• Regression B: {100k} x {0.1, 0.2, 0.3, 0.4} x {16k, 32k, 64k}


• This gets rid of artificial correlation betwen training steps and alpha


• However…


• It complicates the analysis/interpretation


• Reduces sample size


• Alpha can appear non-significant in case A (narrower range)
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Other choices
• We handle each task as a separate regression


• Results mostly mirror each other, so POS might be relegated to appendix


• Input variables are usually normalized 

• Makes the coefficients more interpretable


• We divide each variable by its minimum value


• e.g. {16k, 32k, 64k}  {1, 2, 4}


• Normally variables are normalized around 0, but I think this way works 
better for our scale?

→
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Setup so far

• POS accuracy  {100k, 200k, 400k} x {0.1, 0.2} x {16k, 32k, 64k} x language


• R: lm(pos_acc ~ steps + alpha + vocab_size + language)


• POS accuracy  {100k} x {0.1, 0.2, 0.3, 0.4} x {16k, 32k, 64k} x language


• R: lm(pos_acc ~ alpha + vocab_size + language)


• UAS accuracy  {100k, 200k, 400k} x {0.1, 0.2} x {16k, 32k, 64k} x language


• UAS accuracy  {100k} x {0.1, 0.2, 0.3, 0.4} x {16k, 32k, 64k} x language

←

←

←

←
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Problem
Different languages have different alpha slopes!
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Different languages have different alpha slopes!

• Alpha affects languages differently 
by design


• Meant to increase sampling of 
low-resource languages during 
training


• If used as a normal regression 
term (“main effect”), only one 
slope will be estimated


• How do we capture this language-
wise variation?


• Random effects (we think)

Problem
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Random effects
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• Simplest terms: get a separate 
intercept and/or slope for each 
value of a categorical variable


• Warning: my knowledge gets 
hazier from now on


• Check-in: which case is 
appropriate for language-wise 
effect of alpha?


• We think random intercept + 
random slope

Random effects
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R syntax
• Fixed effects:


• lm(y ~ x)


• Fixed slope, random intercept: 


• lmer(y ~ x + (1 | cat_var))


• Random slope, fixed intercept:


• lmer(y ~ x + (0 + x | cat_var))


• Random slope and intercept:


• lmer(y ~ x + (x | cat_var))
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When to use random effects
(according to others)
• When values of a categorical variable are non-exhaustive


• e.g. fixed effect if assuming binary sex, vs. random effect for sampling ponds


• “Given levels in a random effect are not separate and independent but really 
representative levels from a larger collection” [source]


• “The built-in safety is that if you have no real group-level information or random 
effects at play, the random effects estimates will essentially revert back to fixed 
effects estimates”


• “Random effect estimates are a function of the group level information as well 
as the overall (grand) mean of the random effect. Group levels with low sample 
size and/or poor information (i.e., no strong relationship) are more strongly 
influenced by the grand mean”
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https://bookdown.org/steve_midway/DAR/random-effects.html


• I don’t understand how a random 
intercept conditioned on a categorical 
variable is different from a fixed effect 
of a categorical variable 

• E.g. the difference between


• lm(x_continuous + x_categorical)


• lmer(x_continuous (1 | x_categorical))


• Both essentially define category-wise 
offsets from the global intercept 
(remember the pond example)

A confusion of mine
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Bringing it back
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Random effect for language
• We decide to handle language with random effects


• Random intercept conditioned on language


• Random slope for alpha, conditioned on language


• Fits the logic, since we don’t have an exhaustive set of languages


• R formulas


• A: lmer(accuracy ~ steps + vocab + alpha + (alpha | language))


• B: lmer(accuracy ~ vocab + alpha + (alpha | language))
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Model results
• As expected, this gets us a language-wise intercept and alpha slope


• (Steps and vocab size are fixed across languages)


• Significance value only given for fixed effects…


• What if the alpha slope is significant for some languages but not others?
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Points for feedback
• Should we have separate regressions for each task? Or should it be a 

categorical variable?


• Are we taking the right approach with “regression A” and “regression B”?


• Right now, this is the only way I see around our correlated input variables


• Is our normalization adequate? {16k, 32k, 64k} {1, 2, 4}


• Is our use of random effects appropriate? How do we tell if alpha is 
significant for only some languages? What significance test to use in 
general?


• Any other feedback? Things we should be doing differently?

→
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