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Abstract
Differences in pronunciation have been shown to underlie sig-
nificant talker-dependent intelligibility differences. There are
several dimensions of variability that are correlated with talker
intelligibility including pitch range, vowel-space expansion,
and rhythmic patterns. Prior work has shown that some of the
better predictors of individual intelligibility are based on the
talker’s F1 by F2 vowel space, but findings are based on hand-
corrected measurements on carefully balanced sets of vowels,
making large scale analysis impractical. This paper proposes a
novel method for automatic estimation of a talker’s vowel space
using sparse expanded vowel space representations, including
an approximate convex hull sampling, which are projected to
a low dimensional space for intelligibility scoring. Both su-
pervised and unsupervised mappings are used to generate an
intelligibility score. Automatic intelligibility rankings are as-
sessed in terms of correlation with an intelligibility score based
on human transcription accuracy. We find that including a larger
sample of vowels (beyond point vowels) leads to improved per-
formance, obtaining correlations of roughly 0.6 for this feature
alone, which is a strong result given that there are other factors
that may also contribute to a talker’s intelligibility in addition to
a talker’s vowel space area.
Index Terms: phonetic analysis, intelligibility, automatic esti-
mation, convex hull

1. Introduction
Talker-dependent differences in pronunciation have been shown
to underlie significant intelligibility differences. There are sev-
eral dimensions of variability that are correlated with talker in-
telligibility including pitch range, vowel-space expansion mea-
sured as the distance to the vowel space center, and rhythmic
patterns related to lexical stress [1] [2] [3]. Other factors that
are easily extracted, such as speech rate, mean pitch, or talker
gender are unreliable as predictors of intelligibility [1] [2]. In a
recent study, McCloy et al. [2] found that the convex hull of a
talker’s first formant (F1) by second formant (F2) vowel space
is a robust predictor of intelligibility differences in a gender-
balanced corpus of 20 talkers. The convex hull is also of in-
terest because the expansion or contraction of a talker’s vowel
space is indicative of within-talker variability related to clear
speech adjustments [3]. However, as the McCloy et al. study il-
lustrates, vowel space expansion and contraction estimates have
typically involved hand measurements and well balanced sets of
vowels, making them impractical for large scale or automated
data collection. In this study we estimate the convex hull based
on a relatively sparse sampling of a vowel space using auto-
matically extracted vowel formants on a corpus that has been
forced aligned. To test our estimated vowel-space measures, we
used them to predict the intelligibility of the set of talkers in the
corpus used in McCloy et al.’s intelligibility study [4].

The first phase of this study is establishing an efficient and
reliable method for automatically estimating a talker’s vowel
space. First, the F1 and F2 of each speaker’s vowel space are au-
tomatically extracted from a corpus of read-sentences that had
previously been automatically aligned but not hand corrected.
The F1 and F2 measures are then normalized using a vocal tract
length warping and plotted. A novel low-dimensional convex
hull estimation method is proposed and implemented, with a
sparse convex hull being reconstructed using the low dimen-
sional data. The resulting sparse convex hull is tested against
the original convex hull, resulting in a very close approxima-
tion. The relative contribution of the vowel categories was in-
vestigated and it was found that point vowels are the main con-
tributors to the convex hull. The second phase of this study is
evaluating utility of different transformations of the vowel space
representation for predicting intelligibility, evaluating both su-
pervised and unsupervised methods in terms of the correlation
of ranking with respect to human scores.

The reminder of the paper is organized as follows. In Sec-
tion 2, we give a brief review on McCloy et al.’s corpus and
the definition of intelligibility scores. In Section 3, we propose
the method to capture the convex hull of the vowel space us-
ing low dimensional features (sparse convex hull). The result
of average contribution of each vowel to the sparse convex hull
is also introduced. Then the proposed PCA and GLM methods
to model intelligibility are introduced in Section 4. The results
of experiments are described in Section 5. Finally, Section 6
draws overall conclusions and describes possible future work.

2. Speech materials and intelligibility scores
2.1. Speech material

McCloy et al.’s corpus is made up of recordings of 20 talkers:
5 male and 5 female talkers each from two dialect regions (the
West and Northern Cities) [6]. Each talker read the same subset
of 180 of the IEEE sentences [5] using a uniform reading style
[4]. The speech signal was force aligned using the reading ma-
terial for the sentences with the CMU dictionary pronunciations
(corrected for gross dialect differences) [8]. In our test we use
only the automatic alignments rather than the subset of hand-
corrected alignments used in McCloy et al.’s [4] study. This
gives us 180 read-sentences per talker as a basis for estimating
vowel space expansion.

2.2. Intelligibility scores

The intelligibility scores for each talker were based on McCloy
et al.’s data. In their study, the sentences were presented in quiet
and in speech shaped noise (+6 and +2 dB SNR) to 28 listeners,
15 from the West and 13 from the Northern Cities. The masker
in the noise conditions was Gaussian noise filtered to match the
long-term spectral average of the corpus. To ensure target au-



dibility, the level of the speech was held constant at 68 dB SPL
(dB RMS in a 6 cc coupler) and different levels of masker noise
were digitally added to the speech to achieve the desired SNRs.
The listeners repeated the sentences that they heard and were
instructed to guess when they were unsure. Their responses
were recorded and scored as 0-5 keywords correct. To avoid
repetition effects, each listener heard each sentence only once.
For our intelligibility ranking we use the +2 dB SNR condition,
which was the only level that avoided ceiling effects for all talk-
ers. This gives us a speaker intelligibility ranking that is based
on 28 data points (utterance scores) per talker.

3. Vowel space characterization
A goal of this work is to develop an automatic approximation
of the careful acoustic measurements used in the McCloy et al.
study that extends to unrestricted speech. Key differences in the
methods used here include:
• Heuristics are developed to automate selection of the

measurement point in the syllable, and outliers are ex-
cluded to minimize the impact of formant extraction er-
rors.

• McCloy et al. measured only the full vowels in target
words used in the intellibility study. Here, measurements
are included for all full vowels in lexically stressed sylla-
bles, as well as contrasting measurements for unstressed
vowels. In addition, all 180 sentences recorded by the
speaker were used here, whereas only a subset were used
by McCloy et al.

• Speaker variation associated with vocal tract length dif-
ferences is accounted for here using standard full spec-
trum normalization methods from speech recognition.

• For purposes of developing a fixed-dimension represen-
tation, a sparse sampling of the space is introduced.

Further details are described in this section. Experiments as-
sess the utility of including different subsets of vowels in the
representation.

3.1. F1 F2 extraction

The vowel space characterization was based on a measurement
of the first and second formants (F1 and F2) of all the vowels in
each sentence. Energy, F1 and F2 contours were automatically
extracted at a 10ms frame rate using Praat [7], specifically using
the Linear Predictive Coding (LPC) based formant tracker with
a window length of 25 ms and a dynamic range of 30 dB. For
vowels that were 80 ms long or greater, formant values were
measured intensity peak of the vowel, which was determined
using a second-order polynomial regression fit to the time se-
quence of (linear) intensity values. When there was not a clear
peak (correlation curvature a > −500) or for vowels that were
less than 80 ms, the measure was made at the temporal midpoint
to extract F1 and F2. Based on pilot data results, we used a set-
ting of 5 formants in the 0-5500 Hz range for females, and for
males either a 5 or a 6 formant setting was used based on the one
that resulted in fewer outliers in a two-sigma ellipse. A sigma
ellipse was calculated for each vowel for each talker and out-
liers were discarded. The function to calculate the sigma ellipse
is as follows:

(cos(α)(F1− F̄1) + sin(α)(F2− F̄2))2

a2
+

(sin(α)(F1− F̄1) + cos(α)(F2− F̄2))2

b2
≤ 1

(1)

where a = s
√
λ2 and b = s

√
λ1. λ1 and λ2 are the smallest

and largest eigenvectors of the feature covariance matrix, and s
is the number of standard deviations (s = 2 here). To reduce
the impact of formant tracking errors, the points outside of the
2-sigma ellipse are discarded (corresponding to roughly 12% of
the vowels). Eliminating data is not a big problem in this appli-
cation, though it may be problematic for working wiht shorter
speech segments.

Table 1: Acoustic GMM model condition
GMM mixture 256
Warp Scales α [0.90, 1.10] every 0.01 step

Feature MFCC E D A
Sample Rate 41000

Warp low cut frequency 100
Warp high cut frequency 16000

In order to reduce variation due to speaker differences, vo-
cal tract length normalization is implemented before the vowel
space analysis. In order to maintain the interpretation in for-
mant space, we chose to use frequency warping (i.e. F1’=αF1,
F2’=αF2) rather than mean normalization. The warping factor
α̂ is estimated using a popular technique in speech recognition
that chooses the warping factor from a fixed set of possibili-
ties determined by maximizing the likelihood of all utterances
of a speaker with respect to a given Gaussian Mixture Model
(GMM) built using data from all the speakers [9]. The condi-
tions for training the GMM model are given in Table 1; training
data includes all utterances (unwarped) from all speakers in Mc-
Cloy’s corpus. To determine the warping factor for a speaker,
the set of utterances from the speaker are processed for a range
of warping factors α ∈ [0.9, 1.1] with step size .01. Let Xα

i de-
note the cepstrum domain (MFCC) observation vectors for a set
of utterances from speaker i warped by α. The optimal warping
factor for speaker i is given by:

α̂i = argmax
α

Pr(Xα
i |G) (2)

where G denotes the common GMM model. In pilot experi-
ments with the TIMIT corpus, we found that cross-speaker vari-
ability (as measured by scatter matrices of the vowel means)
was minimized using this warping method compared to the
parametric approach in [10], and that the method is effective
for normalizing across genders.

3.2. Convex hull estimation

Let Os
vk be the two-dimensional normalized (F1, F2) measure-

ment for the k-th instance of vowel v from speaker s. We cal-
culate the mean from all the instances for vowel v:

µv =
1∑

s

∑
k 1

∑
s

∑
k

Os
vk (3)

to obtain the universal mean for all vowels:

c =
1

V

∑
v

µv (4)

A fixed-dimension sparse representation of the size of the vowel
space of speaker s is constructed by selecting two instances Os

vk

of each vowel v distant from c in different directions (F1 vs. F2)
towards the convex hull. Specifically for F1, choose the point
that is maximally different from c in F1, with ties broken by



Figure 1: Worst case example of sparse convex hull

Table 2: Most and least frequent full vowel categories
Frequency = 0 AH, EH, ER, EY, IH, OW, OY, UH

Frequency ∈ [0.1, 0.45] AO, AW
Frequency ∈ [0.6, 1] AA, AE, AY, IY, UW

maximizing the total squared distance. The F2 point is chosen
similarly.

This sparse representation tends to include a good sampling
of the points that are included in the convex hull of the full set
of observations, such that the convex hull of the sparse repre-
sentation is typically quite close to that of the full set. Figure
1 gives the worst case of the convex hull reconstruction for this
data set. The worst case misses a few corners of the convex hull,
but the overall volume is not changed substantially.

The sparse vowel space representation was used to find con-
vex hulls for each of the 20 speakers in the corpus, from which
we calculated the relative frequency that each of the 2V sam-
ple points is used in the hull. As expected, only a subset of the
vowels are frequently used, specifically the set of point vowels
(AA, AE, IY, UW) and the diphthong (AY) were used. Table 2
groups the full vowels according to their relative frequency of
usage in defining the sparse convex hull.

Unstressed vowels are not often used in vowel space charac-
terization because they can be highly variable. However, we hy-
pothesized that differences in the stressed and unstressed vowel
space sizes might be related to intelligibility, so samples of these
vowels were also included in an additional experiment.

3.3. PCA Projection

The sparse representation is still high dimensional, depend-
ing on the number of vowels included, so it is projected to a
lower dimension using principal components analysis (PCA).
The vectors for speaker s are stacked into matrix X ∈ R2V×S ,
where S is the total number of speakers and V is the total cat-
egories of vowels. Then the covariance matrix M is defined
as

M =
1

S
(X − X̄)(X − X̄)> (5)

where X̄ is the vector mean. Let U = [u>1 ,u
>
2 , ...u

>
i ], where

u1 to ui are the eigenvectors that give the first i largest eigen-
values of M . The projected low dimension matrix W is ob-

tained by
W = U>(X − X̄) (6)

When working with a small number of sentences, some of
the speakers may lack examples of some vowels, in which case
the feature vector will not be complete. In this case, we use
Probabilistic Principle Component Analysis (PPCA) [11] to fill
in the blanks in the feature vector.

4. Modeling intelligibility
Two approaches are investigated for automatically predicting
intelligibility: i) an unsupervised approach that approximates
the volume of the vowel space in terms of the magnitude of the
projected vector, and ii) a supervised learning approach using
a generalized linear model (GLM) on the projected space, as
described below.

Unsupervised approach. The unsupervised approach uses the
magnitude of the PCA projection as the machine score for in-
telligibility. This is a rough measure of estimating the volume
of the convex hull, motivated by the results of McCloy et al.
Specifically, given the D-dimensional projected vector ws for
speaker s, the intelligibility score vector gs is obtained by

gs = w>s ws (7)

Supervised approach. Since gs is only a rough estimate of
the vowel space, we also investigated the use of an automat-
ically learned regression function mapping from the projected
space to intelligibility. Given that there are very few speaker
samples in this data set, we used a very simple GLM regres-
sion mapping trained using leave-one-out cross validation. As
before, the sparse speaker vowel samples are projected to the
D-dimensional vector ws. Let ys be the intelligibility score for
speaker s and b be the parameter vector. The GLM learns a
mapping

F−1(ys) = w>s b (8)

where F−1 is the inverse Continuous Density Function of a nor-
mal distribution, chosen since ys ∈ [0, 1].

5. Experimental Results
We conducted two sets of experiments to answer the following
questions:

• Which vowels are useful for characterizing vowel space
expansion for predicting intelligibility?

• How much can be gained by directly learning a function
to predict intelligibility over the simple measure of vowel
space volume?

The correlation of the machine score and human score is cal-
culated by Spearman’s rank correlation, which uses the rank of
the scores instead of the absolute score to do correlation.

We expected that the sparse convex hull vowels would be
most useful, based on previous results. In addition, we hypoth-
esized that the unstressed vowels would only be useful if treated
differently than the stressed vowels, assuming that greater dif-
ferences between stressed and unstressed vowels would lead to
greater intelligibility. As shown in figure 2, comparing the most
and least intelligible speakers shows a bigger difference in the
convex hulls of stressed vs. unstressed vowels for more intelli-
gible speakers.

The experiments on different vowel measurements com-
pared low-dimensional projections of three different sparse



(a) Stressed convex hull(red) v.s. unstressed convex hull
(blue) of the most intelligible speaker

(b) Stressed convex hull(red) v.s. unstressed convex hull
(blue) of the least intelligible speaker

Figure 2: Stressed and unstressed convex hull of the most and least intelligible speaker.

Table 3: Correlation between unsupervised machine and human
intelligibility scores for different vowel space representations

Vowel Subset PCA dim corr
Stressed 3 0.524

Hull 3 0.264
All 2 0.220

Table 4: Correlation between GLM and human intelligibility
scores for different vowel space representatIons

Vowel Subset PCA dim corr
Stressed 6 0.590

Hull 6 0.324
All 4 0.719

samplings: the set of 2 samples each from 15 full vowels mea-
sured in stressed syllables (60 dimensions), the set of 2 samples
each from 5 frequent convex hull vowels (20 dimensions), and
2 samples each from the combination of the 15 stressed vowels
and the 6 full vowels on the unstressed convex hull (84 dimen-
sions). Table 3 shows the results with for the best case dimen-
sion using the unsupervised volume estimate. Using the full
set of stressed vowels (with sparse measurements) gives bet-
ter results than the vowels on the sparse convex hull. While
the interior vowels are not used in finding the full vowel space,
including them may provide a more robust estimate of vowel
space expansion when reduced to a lower dimension. Adding
the unstressed vowels hurts performance, as expected, since in
this case they are treated the same as stressed vowels.

Table 4 gives the results for the same starting set of features
but using a GLM, again optimizing for the best reduced dimen-
sion. For the stressed vowel features, there is only a small gain
from supervised learning with double the dimensions, so we
conclude that the projected vector magnitude is a good approx-
imation of volume. For the unstressed vowels, the use of only
a 2-dimensional projection leads to improved prediction per-
formance, presumably because the difference between stressed
and unstressed vowels can be captured. This leads to the best
case correlaton of 0.72. The associated correlation scatter plot
is given in Fig. 3.

Figure 3: Correlation plot of all speakers

6. Conclusions
In this paper, we propose a novel automatic estimation of
talkers’ vowel spaces using sparse convex hull representations
from automatic formant extraction. The resulting estimates
were used to realize a fully automatic estimation of talker-
intelligibility. Both supervised and unsupervised mappings are
used to generate intelligibility scores. The automatic intelli-
gibility rankings are assessed in terms of correlations with an
intelligibility score derived from human recognition accuracy.
We find that including a larger sample of stressed vowels (be-
yond point vowels) leads to improved performance, obtaining
a correlation of roughly 0.6 for this feature alone. We obtain
a better result using both stressed and unstressed vowel con-
vex hull representations with a correlation of 0.72. We consider
these correlations to be strong results given that there are several
other factors that may also contribute to a talker’s intelligibility
in addition to a talker’s vowel space area.
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