PHYS 575A/C/D Autumn 2015 Radiation and Radiation Detectors

Course home page:

http://depts.washington.edu/physcert/radcert/575website/

2: Radioactivity; fundamental interactions

R. Jeffrey Wilkes Department of Physics B303 Physics-Astronomy Building 206-543-4232 wilkes@uw.edu

Course calendar

Course calendar						
week	date	day	topic	text		
1	10/1/15	Thurs	Introduction, review of basics, radioactivity, units for radiation and dosimetry	Ch. 1, notes		
2	10/6/15	Tues	Radioactive sources; decay processes;	Ch. 1, notes		
3	10/13/15	Tues	Photomultiplier tubes and scintillation counters; Counting statistics	Chs. 3, 8, 9 (I-V)		
3	10/15/15	Thurs	LAB: Room B248 Scopes, fast pulses; PMTs and scintillation counters; standard electronics modules	Chs. 4, 9, 16, 17		
4	10/20/15	Tues	Overview of charged particle detectors	Ch. 4		
4	10/22/15	Thurs	LAB: Room B248 Coincidence techniques; nanosec time measurement, energy from pulse area	Chs. 17, 18		
5	10/27/15	Tues	Interaction of charged particles and photons with matter	Ch. 2		
6	11/3/15	Tues	Other photodetectors; gas and solid-state detectors	Chs. 5, 6, 7 Chs. 11, 12, 13		
7	11/10/15	Tues	Detecting neutral particles; Data acquisition methods	Ch. 14, 15, 18		
8	11/17/15	Tues	Cherenkov detectors; Case studies: neutrino detectors (Super-K)	Ch. 19, Notes		
9	11/24/15	Tues	Case studies: classic detectors (cloud and bubble chambers, nuclear emulsion), high energy accelerators	Ch. 19		
10	0 12/1/15 Tues Case studies: contemporary leading-edge detectors (ATLAS, Auger)		Notes			
11	12/8/15	Tues	Student presentations	-		
11	12/10/15	Thurs	Student presentations			

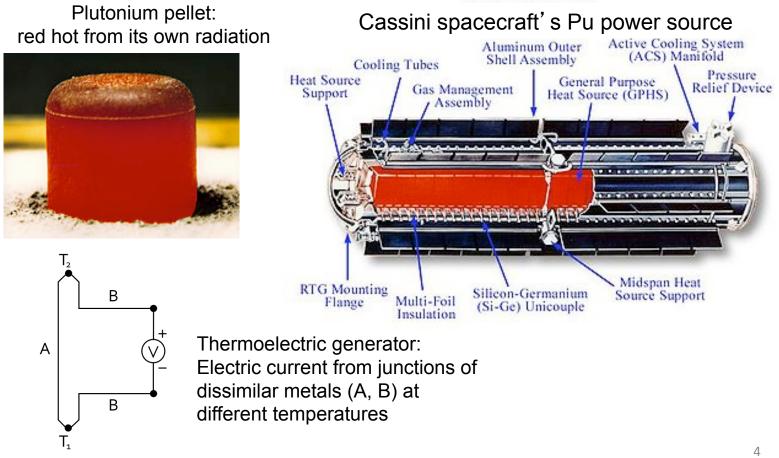
Last time:

Radioactive decay math

• Radioactive decay law represents the differential equation $dN/dt = -\lambda N$,

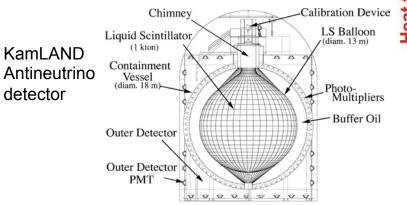
where $\lambda\,$ is the decay constant,

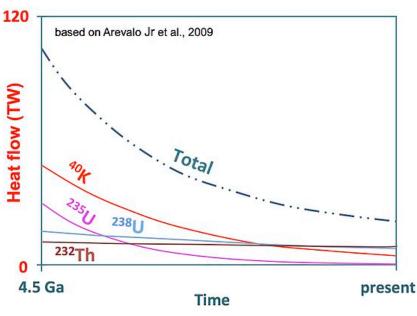
which has the solution


 $N(t) = N_0 exp(-\lambda t) = N_0 exp(-t/\tau)$

- Where $\tau = 1 / \lambda$ = Mean lifetime
- Half-life $T_{1/2}$ = time when N/N₀ = $\frac{1}{2} \rightarrow \frac{1}{2} = exp(-T_{1/2}/\tau)$
- So $T_{1/2} = (\ln 2)\tau = 0.693\tau$
- Units for decay rate:

One becquerel (Bq) = 1 nuclear disintegration per second One curie (Ci) = 3.7×10^{10} decays per second = 3.7×10^{10} Bq


"Hot" can mean hot!


- High SA can create significant thermal energy
 - Example: plutonium power sources for spacecraft

Heat from the earth's core

- Radioactivity in earth's core generates heat
- Total heat from earth is 43~49 TW (poorly known)
 - Primordial heat = remaining from earth's formation
 - Radiogenic heat = mainly U and Th in core
 - Little is known about mantle below 200 km, and core
- Geoneutrinos
 - From U and Th decays
 - Recent data from surface particle physics detectors
 - \rightarrow "x-ray the earth"

Example: Compare activity of radium and uranium

- The rate of *nuclear decays per second* = Activity
 λ N = |dN/dt| = *activity A* (*in Bq*)
- Specific Activity = activity per unit mass: SA = λ N /m where sample mass in grams m = (N M / N_{AV}), N=# molecules, M=grams /mole (~ atomic mass number), N_{AVOG}= Avogodro' s no. = nuclei / mole SA = λN_{AVOG}/M, for a pure sample (no other substances mixed)
 - So large SA for large λ = small half-life:

 $T_{1/2}$ /(ln2) = τ = 1 / λ ; λ = (ln2) / $T_{1/2}$

- How many grams of U-238 has the same activity as 1 gram of Ra-226?
 - Ra-226 has $T_{1/2} = 1.6 \times 10^3 \text{ y} = 49.6 \times 10^9 \text{ sec}$,

 $\lambda_{Ra} = 0.693 / T_{1/2} = 1.4 \times 10^{-11} / sec$

- SA(Ra) = $(1.4 \times 10^{-11} / \text{nucleus/sec})(6.02 \times 10^{23} \text{ nuclei/mole}) / (226 g/mole)$ = 3.7 x 10¹⁰ /g/sec (= 1 Bq - not surprising; that is the definition!)
- U-238 has $T_{1/2} = 4.5 \times 10^9 \text{ y} = 1.4 \times 10^{17} \text{ sec}$, $\lambda_{\text{U}} = 5 \times 10^{-18} \text{ /sec}$
- $SA(U) = (5 \times 10^{-18} / nucleus/sec)(6.02 \times 10^{23} nuclei/mole) / (238 g/mole)$

= 1.25 x 10⁴ /g/sec : 1 gram of Ra = 3 million grams of U, for activity (or: just take ratio of $(T_{1/2} M)_U / (T_{1/2} M)_{Ra}$ Radioactive decay: daughter products

• Suppose we have a decay chain

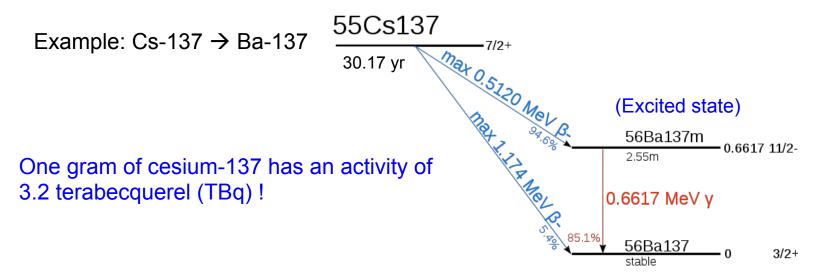
$$\begin{array}{c}
1 \\
(parent nuclide)
\end{array} \xrightarrow{2} \\
(daughter nuclide)
\end{array} \xrightarrow{3} \\
(grand-daughter)$$

• Nuclides 1, 2, 3 decay with *decay constants* λ_1 , λ_2 , λ_3

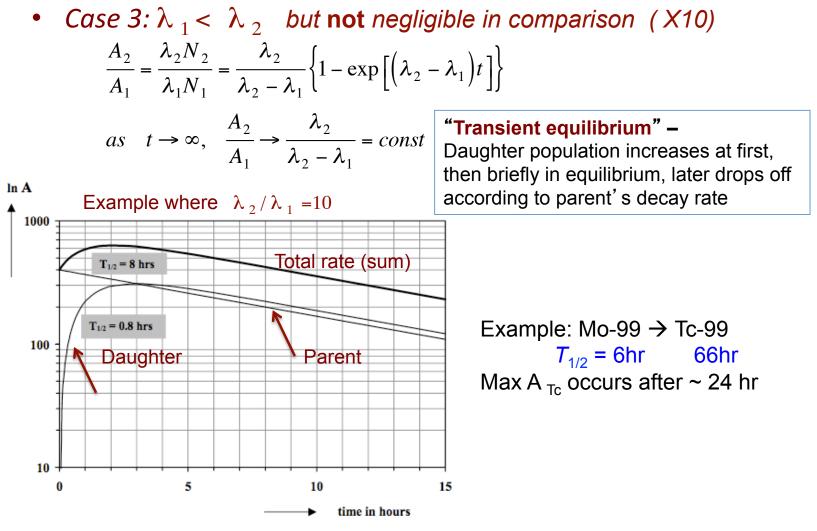
so $dN_1/dt = -\lambda_1 N_1$,

but $dN_2/dt = +\lambda_1 N_1 - \lambda_2 N_2$, (parent *adds to* N_2)

For initial conditions $N_1 = N_0$, $N_2 = N_3 = 0$ (only parent at t=0) Solutions for N_i(t) are: $N_1(t) = N_0 \exp(-\lambda_1 t)$ $N_2(t) = N_0 \{ \lambda_1 / (\lambda_2 - \lambda_1) \} \{ \exp(-\lambda_1 t) - \exp(-\lambda_2 t) \}$ Consider 4 scenarios:

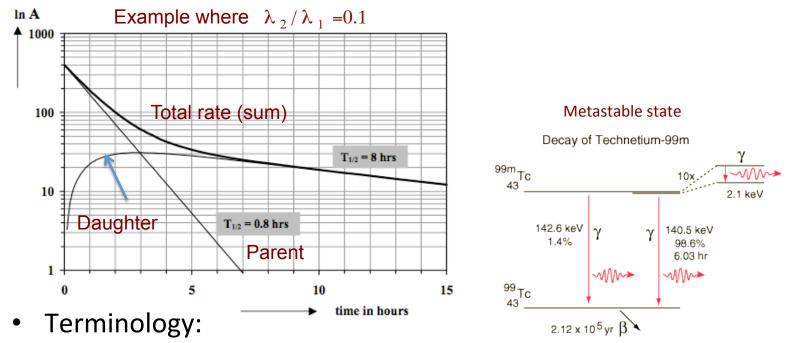

• Case 1: nuclide 2 is relatively stable, $\lambda_2 \sim 0$

then $N_2(t) = N_0 \{ 1 - exp(-\lambda_1 t) \}$

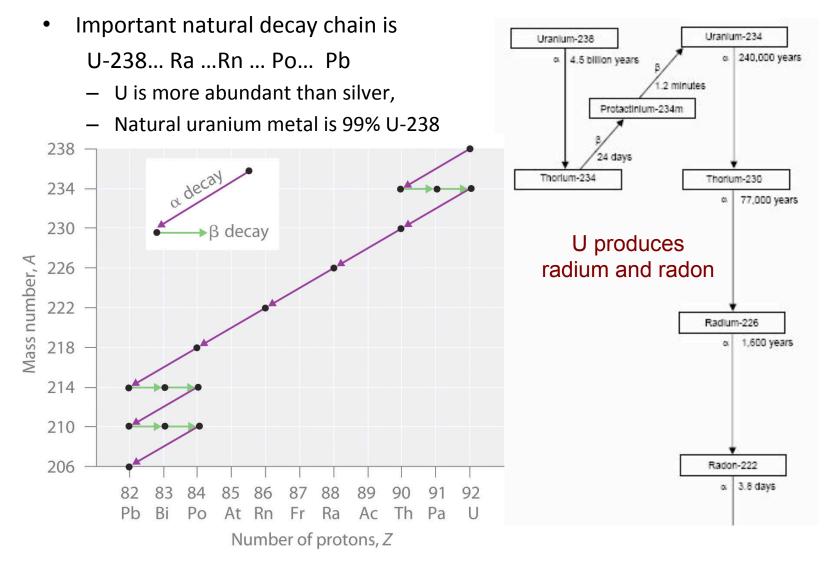

Radioactive decay chains

Case 2: nuclide 2 has <u>much shorter half-life than nuclide 1</u>, λ₂ >> λ₁ → exp(-λ₁t) ~ 1 N₂(t) = N₀ (λ₁/λ₂) { 1 - exp(-λ₂t) }
Then at large t, N₂λ₂ ~ N₀ λ₁ (recall: λ N = /dN/dt/ = activity A) - "Secular equilibrium" - nuclide 2 decays at same rate as

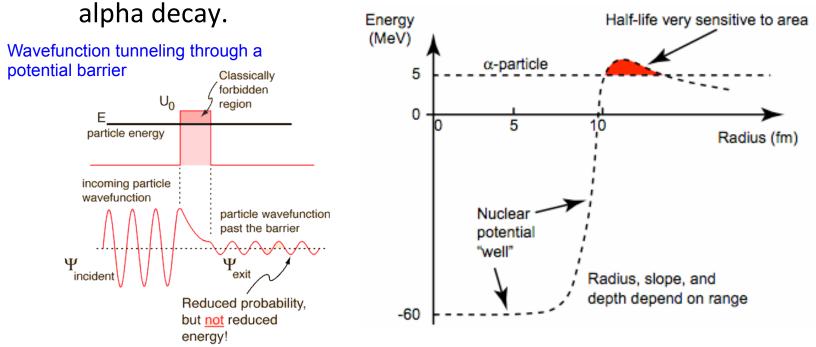
it gets made: N_2 = constant


Radioactive decay chains

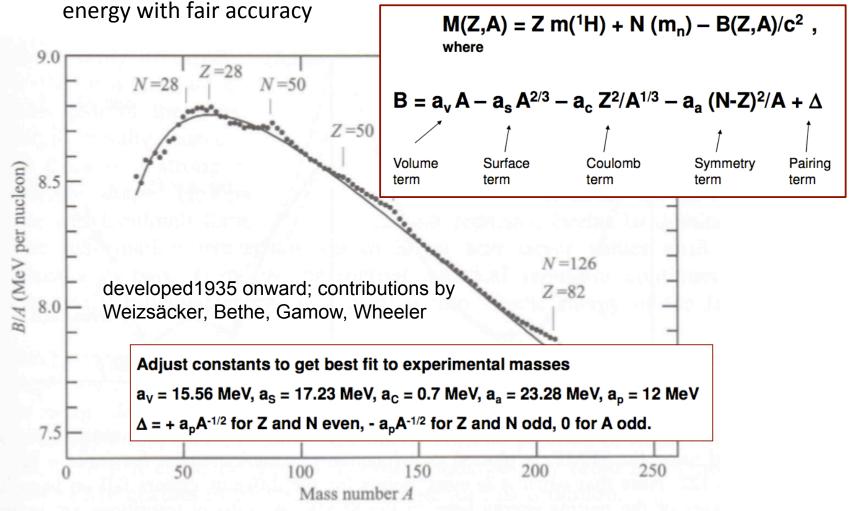
Graph: www-naweb.iaea.org/napc/ih/documents/global_cycle/Environmental Isotopes in the Hydrological Cycle Vol 1.pdf


Radioactive decay chains

- *Case 4:* $\lambda_1 > \lambda_2$ (no equilibrium)
 - Parent decays away quickly
 - Daughter activity rises, then falls according to its own decay rate


- Isobaric decay: Atomic number is constant (beta decay or e capture)
- Metastable state: intermediate nuclear state with relatively long lifetime (example: Tc^{99m})

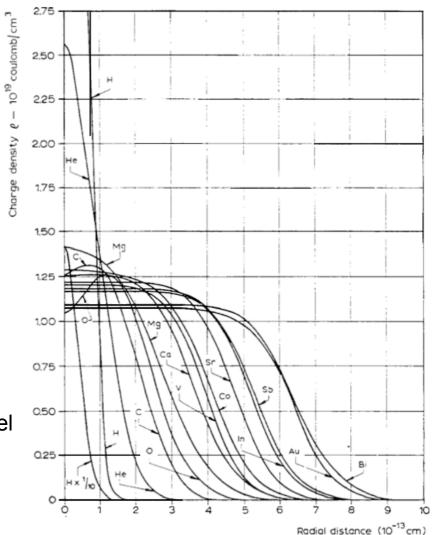
A famous decay chain: Ra (or U) series


Nuclear structure and binding energy

- Nuclear potential energy vs range, and alpha-decay
 - Alpha (He nucleus) is very stable, relatively light "cluster" of nucleons
 - Quantum tunneling concept applied by George Gamow, Ronald Gurney and Edward Condon (1928) to explain

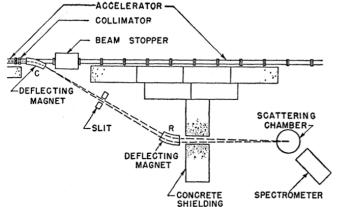
Nuclear structure and binding energy

• Semi-empirical mass formula - Estimates nuclear mass and binding

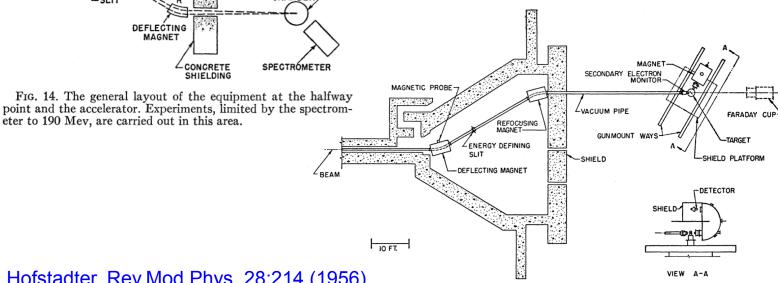

Nuclear radii

 Scattering experiments (from Rutherford 1911 onward!) show

 $R_A = r_0 A^{1/3}$, with nucleon 'size'


r₀ =1.25 fm

From R. Hofstadter, 1961 Nobel Prize lecture



Robert Hofstadter

Father of Douglas Hofstadter (Godel-Escher-Bach author)

- Pioneering electron-beam experiments at Stanford (SLAC) in 1950s and early 1960s
- Nobel prize 1961

eter to 190 Mev, are carried out in this area.

Hofstadter, Rev.Mod.Phys. 28:214 (1956)

FIG. 18. The experimental installation of the 550-Mev spectrometer.

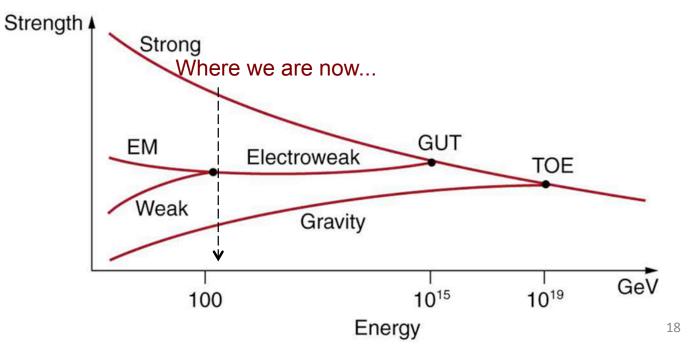
Explore for further info: Nuclear/particle data websites

- LBNL Isotopes Project http://ie.lbl.gov/toi.html
- Periodic Table linked to decay data for known isotopes of each element http://ie.lbl.gov/toi/perchart.htm
- Particle Data Group (LBL): http://pdg.lbl.gov/

Fundamental forces

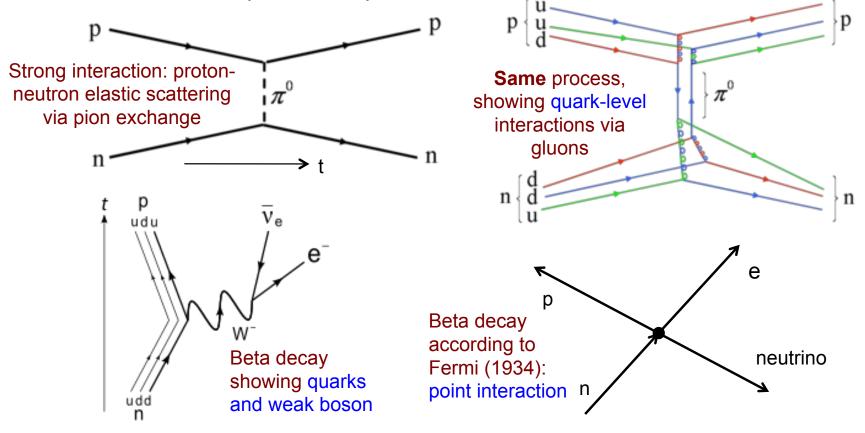
• In practice, we leave string theory and Grand Unified Theory* to the theorists, and still talk about 4 fundamental forces:

Force	Carrier / mass	Range	Theory
Gravity	Graviton / 0	infinite	Newton, Einstein
Electromagnetic	Photon / 0	infinite	QED (Feynman)
Weak nuclear	Point interaction W⁺, W⁻ / 80 GeV, Z ⁰ / 91 GeV	0 0.001 fm	Fermi Theory (1934) Electroweak (Glashow, Salam, Weinberg)
Strong nuclear	Quark scale: Gluon / 0 Nuclear scale: Pion / 140 MeV	< 1 fm O(1 fm)	QCD (Gell-Mann et al) Yukawa et al


- Electroweak theory unified QED and weak interactions
- * Holy grail: unify strong, electroweak, and gravity = GUT

GUT and TOE

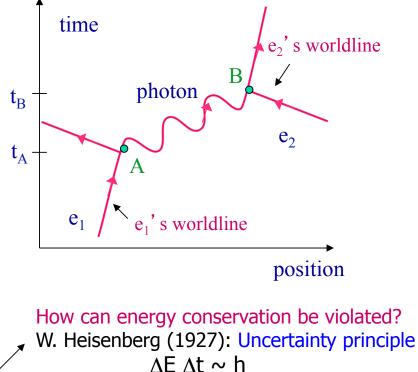
 Electromagnetic and weak force have already been unified by Glashow, Weinberg and Salam

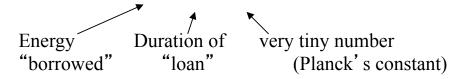

see www.nobelprize.org/nobel_prizes/physics/laureates/1979/

- Relative strength of strong and electro-weak forces (scale parameters) appear to intersect at a GUT energy scale around 10²⁵ eV
- Perhaps we can then unify GUT with gravity (estimated scale: 10²⁸ eV) to get a Theory of Everything (TOE)

Picturing fundamental interactions

- Feynman diagrams (c. 1948)
- *Space-time diagrams,* with each component connected to an element in the probability calculation

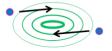

More about Feynman's space-time diagrams


• Feynman's diagrams of a fundamental particle interactions seem simple, but have a lot of content!

Feynman Diagram: electron 1 emits a photon, which hits electron 2.

Case 1: energy of photon = energy lost by electron 1 (so energy is conserved at spacetime event A) Photon is "real" and delivers its energy to electron 2 (spacetime event B).

Case 2: energy is not conserved at A: photon may carry **more** energy than e_1 gave up! Photon is "virtual", because it carries "borrowed energy". When it interacts with e_2 at B it must settle its energy accounts! During the time t_A to t_B , energy conservation is temporarily violated.



Terminology: Real/virtual – on-shell/off-shell

- Special Relativity tells us the energy/momentum relation for particle with mass m: $E^2 |\vec{p}|^2 c^2 = m^2 c^4$
- Values of E and p that satisfy this equation form a 4D hypersurface ("mass shell") in energy-momentum space
 - Real particles are "on-shell" (or, "on the mass shell")
 - Virtual particles are "off-shell"
- So what is the difference?
 - Real particle has a worldline, and can be located in space and time (within uncertainty principle limits) until it is destroyed
 - "Virtual particle" is just shorthand for "a disturbance in the field" (E-M field for photon, gravity field gravitons, etc) which dies away after some time
 - Required by mathematics of QM but not really subject to our intuitive understanding!

Virtual photon exchange (Matt Strassler, 2011)

Example of strong force in action: Fission reactions / chain reactions

- Two isotopes of U (element 92) are involved:
 - 99.3 % of natural U metal is U-238, only 0.7% is U-235
 - These are isotopes of the same element: *chemically identical,* cannot be separated by methods of chemistry

 235 U + neutron \rightarrow 2 or more neutrons + ~ 200 MeV energy (+ debris)

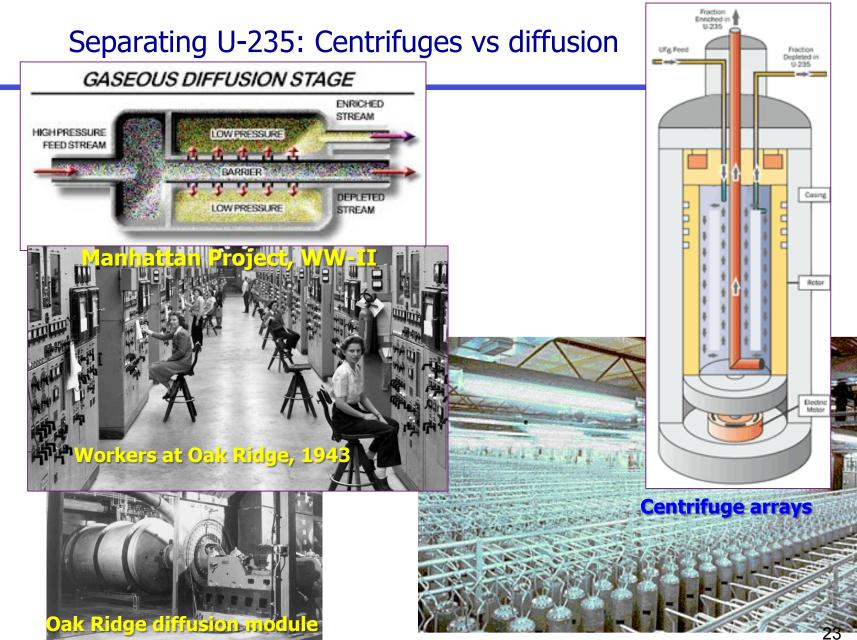
How to get "fissionable material" from ordinary uranium metal?

Method 1: separate U-235 (=fissionable material) from natural U

Hard: have to use physics instead of chemical engineering!

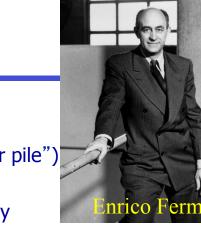
- a) vaporize uranium, ionize it, then bend ion paths in magnetic field (slow and inefficient)
- b) Run U vapor through a series of *filters*: diffusion rate depends upon atomic mass, but only a 1% difference! Takes thousands of diffusion steps. (WW-II method, Oak Ridge Nat'l Lab)
- c) Run vapor through *centrifuges* to separate a tiny amount a a time (Iranian method!)

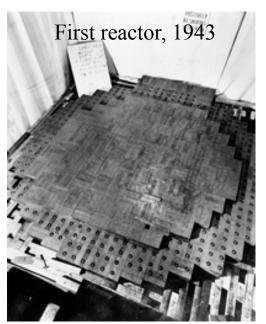
Another idea: use U to make another element that is fissionable


 238 U + neutron \rightarrow 239 U \rightarrow 239 Pu (plutonium, new element not found in nature)

²³⁹Pu has good characteristics for fission too, so

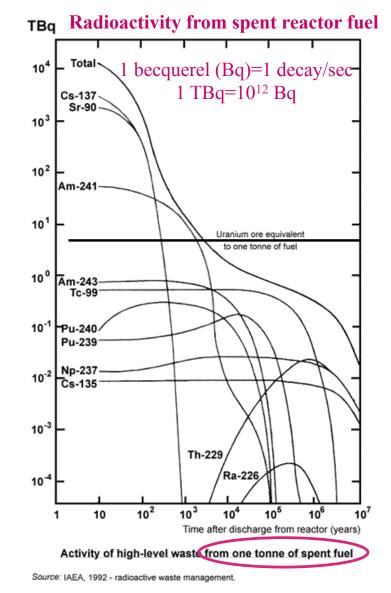
Method 2: build a nuclear reactor and generate Pu-239 (which can then be extracted by well-developed industrial chemical engineering methods)


Also difficult: Pu is extremely poisonous (chemically), and mixed in with highly radioactive residues in reactor fuel rods


Neutrons must be **slowed down** to cause fission efficiently, so U fuel blocks were surrounded by carbon as a *moderator* in the 1942 U. Chicago experimental reactor

Nuclear power

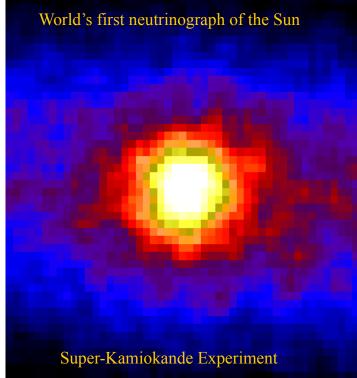
- First nuclear reactor was built in December, 1942 (under football stands at U. of Chicago!)
 - Pile of uranium and carbon blocks (obsolete term: "nuclear pile")
 - Historical context
 - 1938: nuclear fission reaction is discovered in Germany
 - 1940: Enrico Fermi theorizes it may be possible to create a "self-sustaining fission reaction"



- Each fission produces neutrons which trigger others: chain reaction
- Might be possible to get fast reaction = explosion (10⁶ X chemical E)
- 1941: Leo Szilard persuades Einstein (among others) to write President Roosevelt pointing out danger if Germany develops this first
- 1942: Manhattan District of US Army Corps of Engineers is assigned to conduct R&D and if possible develop nuclear weapons ("Manhattan Project")
 - Labs built at Los Alamos, NM (physics research), Oak Ridge, TN (industrial-scale separation of U-238 from natural U) and Hanford, WA (reactors for Pu production)
 - These all still exist as "national laboratories" belonging to US Dept of Energy: LANL, ORNL, PNNL

Safety issues

- Radioactive waste
 - Fuel elements from fission reactors are highly dangerous
 - No firm plan in place for storing them long-term in USA!
 - Most (40,000 tons) high-level waste now stored in water tanks on reactor sites
 - Significant problem from leakage of WW-II era waste containers at Hanford, WA –
 - USA just put off settling this, problem, once again...
 - Need long-term storage (10⁴ yr!)
 - Fuel rods can be processed to extract
 Pu and other isotopes
 - Nuclear security / proliferation concern !



Weak force

- Force responsible for radioactive decays
 - Very short range, due to high mass of W, Z force carriers
- Also involved in nuclear fusion processes

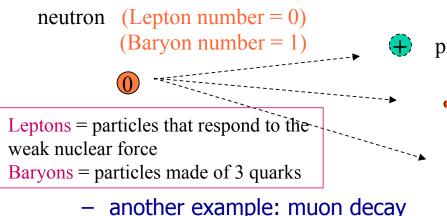
 Study of neutrinos is intimately connected with our understanding of weak interactions

- We can study neutrinos from several sources:
 - Man-made (particle accelerators, or reactors)
 - The Sun (fusion reactions)
 - Earth's atmosphere (cosmic ray interactions)
 - Distant astrophysical objects like Active Galactic Nuclei
 - Not yet observed
 - Super-Novae

So: What are neutrinos?

- Neutrinos = subatomic particles with:
 - zero electric charge
 - (almost) zero mass

Symbol: υ (Greek letter nu)


- They only interact with matter via weak nuclear force
 - Makes them very hard to observe: hardly ever interact, and most particle detectors respond only to charged particles

That doesn't sound very interesting! But...

- neutrinos are created in (almost) every radioactive decay
- neutrinos are as abundant as photons in the Universe
 - Several hundred per cm³ everywhere in the Universe
 - even though they are nearly massless, they make up a noticeable (but not significant) fraction of the mass in the Universe!
 - <u>You</u> are emitting ~ 4,000 neutrinos/sec right now
 - Your blood ~ seawater contains radioactive potassium-40
 - Neutrinos can penetrate the entire Earth (or Sun) without interacting
 - maybe we can study earth's core with neutrinos? (UW Prof. N. Tolich)
 - astronomical window into places we can't observe with light (me)

Other kinds of "charge": *quantum numbers* (subatomic properties that have no "macro world" analogues)

- Radioactive decays = weak nuclear force in action
 - Example: *beta decay* of neutron
 Charge, B, and L must balance before and after:

 μ^{-} (lepton number = +1)

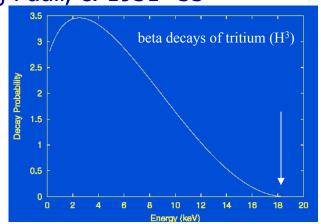
• ••

Newton: can't decay into only 1 particle!

lepton number L is a conserved property (like a new kind of 'charge') that only leptons have. Baryon number B: ditto, for protons and neutrons.

- proton (Lepton number = 0) (Baryon number = 1)
 - Electron(-) (lepton number = +1)
 needed to balance electric charge
 - anti-v (lepton number = -1) needed to balance lepton number (must be *anti* to balance lepton #)

Electron(-) (lepton number = +1)


 υ (lepton number = +1) needed to balance energy and momentum

> • anti-v (lepton number = -1) (must be *anti* to balance lepton #)

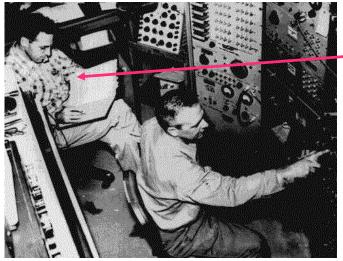
Neutrinos: Who said we need them?

• Wolfgang Pauli, c. 1931~33

Electron energies observed in decays. Nuclear energy released is 18 keV. But usually the electron carries away much less!!

Pauli (with Heisenberg and Fermi)

- Beta decay of nuclei produced only 1 detectable* particle (electron), and seemed to violate conservation of energy and momentum!
 - Observed electrons can have *any* energy up to maximum allowed by conservation of energy ($E_{MAX} = [parent mass - daughter mass]*c^2$)
 - There must be a neutral, almost massless, extra particle emitted


* Only charged particles are easily observed

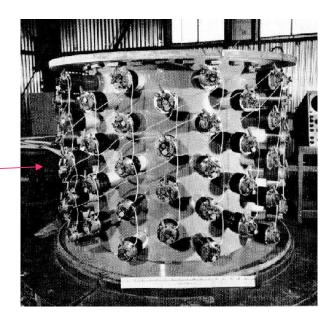
- Pauli called it a *neutron*, not realizing Chadwick had used that name!
- Fermi suggested the name 'neutrino' = "little neutral one"

"I've done a terrible thing - I've invented a particle that can't be detected!" - Pauli

Neutrinos: How were they first 'seen'?

- Fred Reines and Clyde Cowan, 1956
 - υ source: Nuclear reactor in Hanford, WA (later they moved to even more powerful Savannah River reactor in South Carolina)

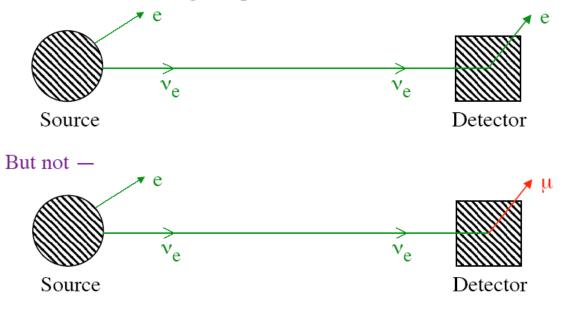
- ())


Nobel Prize in Physics 1995

Awarded to Fred Reines "for pioneering experimental contributions to lepton physics"

Detector: water with chlorine salts, viewed by many *photomultiplier tubes*

- *inverse* beta decay: $\overline{v} + p \rightarrow n + e^+$


e⁺ quickly hits meets atomic e⁻ and they annihilate Reines & Cowan looked for light flashes from e⁺ e⁻ annihilation, followed by later decay of neutron

Q: how do we tell a neutrino' s *flavor*?

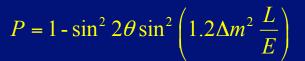
- We detect and identify neutrinos by observing the *charged leptons* they produce when they interact:
 - ν_e + proton \rightarrow e + other stuff
 - ν_{μ} + proton $\rightarrow \mu$ + other stuff
- The states $|v_{\tau}\rangle$, $|v_{\mu}\rangle$, $|v_{e}\rangle$ are called neutrino "flavor" states.

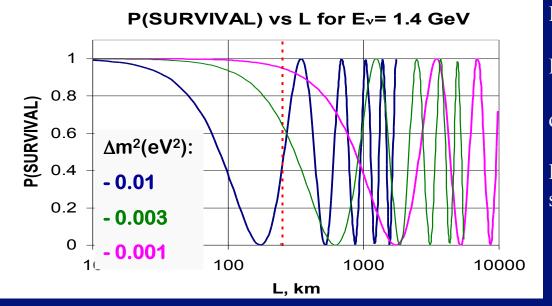
The neutrino and charged lepton flavors match:

Do neutrinos have mass? Applied Quantum Mechanics

You too can be a quantum mechanic ! Basic ideas:

- 1. Particles also behave like waves (*Wave-Particle Duality*)
 - Wavelength depends on *momentum* (deBroglie, 1924)
- 2. All information about a particle is contained in its *wave* (*state*) *function* $\Psi(x,t)$
- 3. Probability of finding particle at position x at time t is $|\Psi(x,t)|^2$
 - Wave function itself is *not* a measurable physical quantity
- 4. Quantum states *evolve* with time: $\Psi(x,t) = \Psi(x,0) \cdot e^{-iEt/\hbar}$
- 5. Quantum states can be described as a mixture of other states


$$\Psi_{FLAVOR}(x,t) = \Psi_{MASS-1}(x,t) + \Psi_{MASS-2}(x,t) + \Psi_{MASS-3}(x,t)$$
Neutrino flavor state
is a mixture
(and vice-versa)


 $E = energy = mc^2$

Q: What are neutrino "oscillations"?

- If neutrinos can change flavor, they must also have mass states
 - Flavor changes are observed
- If we start out with a given flavor = mixture of mass states,
 - Probability that a neutrino is detected as the same flavor *oscillates*
 - The relative proportion of each *flavor* will change with time
 - t = *time* on neutrino's clock ~ distance travelled from production point

Fraction of muon neutrinos *remaining* vs distance from production point

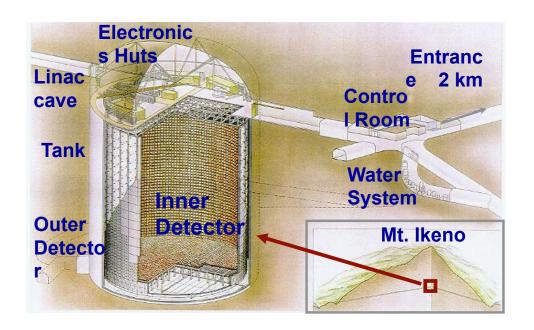
L = distance traveled (in km)

$$E =$$
 neutrino energy in GeV

$$dm^2 = (m2 - m1)^2$$

P = probability of remaining same flavor

Neutrino experiments we work on here: Super-Kamiokande and T2K

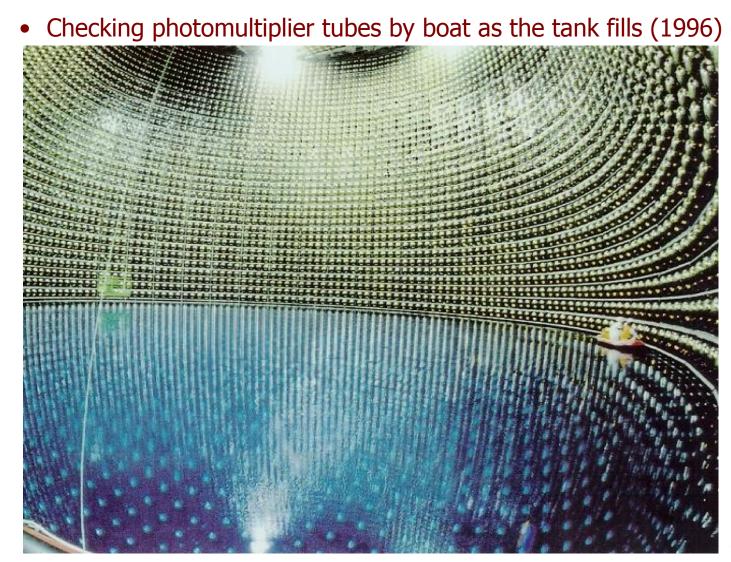

Super-Kamiokande Underground Neutrino Observatory

- In Mozumi mine of Kamioka Mining Co, near Toyama City
- Detects natural (solar, atmospheric) and artificial (K2K) neutrinos

T2K (Tokai to Kamiokande) long baseline experiment

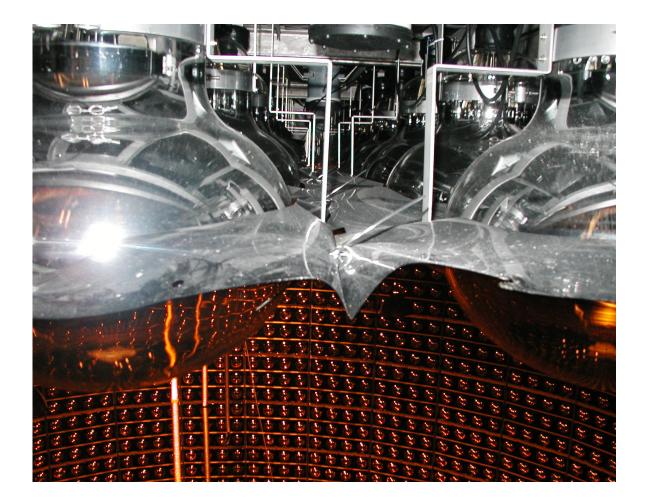
- Neutrino beam is generated and sampled at Tokai (particle physics lab, near Tokyo)
- Beam goes through the earth to Super-K, 300 km away

Super-Kamiokande

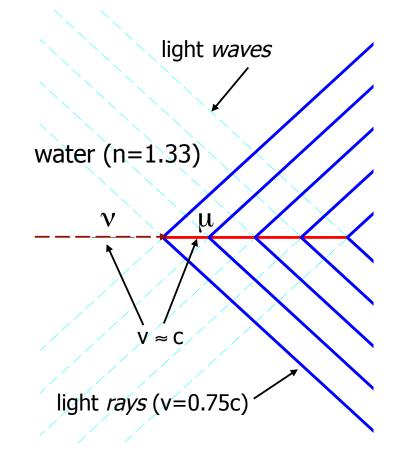


- US-Japan collaboration
- (~100 physicists)
- 1000 m of rock overhead to block cosmic ray particles
- 50,000 ton ring-imaging water Cherenkov detector
- Inner Detector: 11,146 phototubes*, 20" diameter
- Outer Detector: 1,885 phototubes, 8" diameter

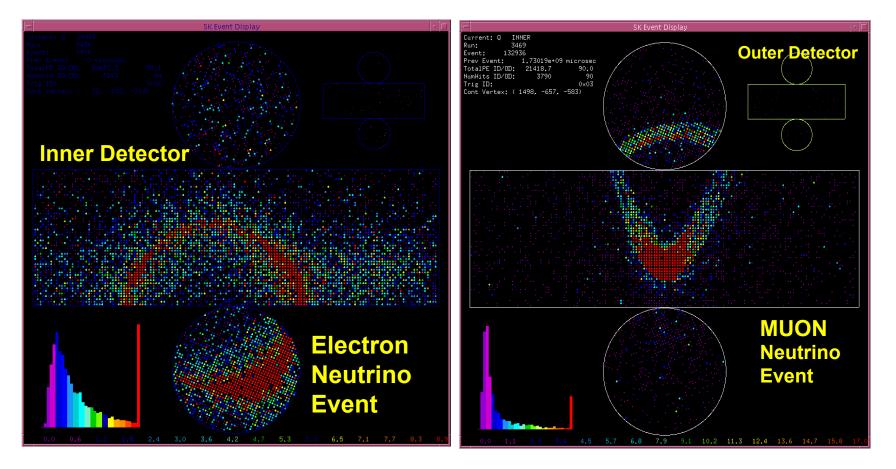
- Began operation in April, 1996
- Published first evidence for neutrino mass in June, 1998
- Typically records about 15 neutrino events per second


See website for more info: http://www.phys.washington.edu/~superk/

Just how big is Super-K?


View into Super-K from tank top

• Each photomultiplier tube is 20 inches in diameter!

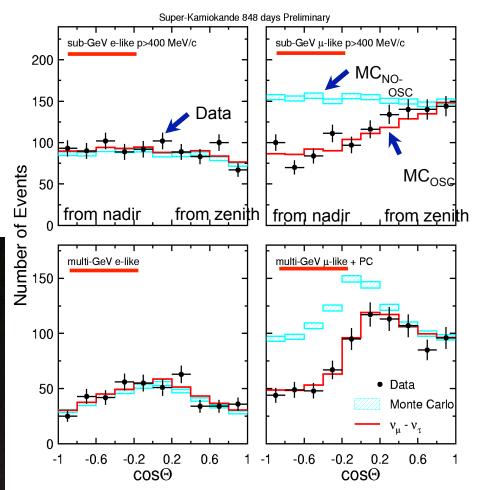

Cherenkov light in water

- Neutrino interacts in a nucleus in the water (oxygen or hydrogen)
- Produces a charged muon or electron, which carries an electromagnetic field
 - Tau neutrinos produce a tau which immediately decays into muons and e's
 - Super-K can't identify tau neutrinos
- Muon is going faster than its field can travel in water: "shock wave" builds up
- Cherenkov light is emitted in characteristic 42° rings around the particle direction
- Cherenkov 'rings' are fuzzy for electrons and sharp for muons
 - electrons scatter in the water
 - heavier muons travel in straight paths until very nearly stopped

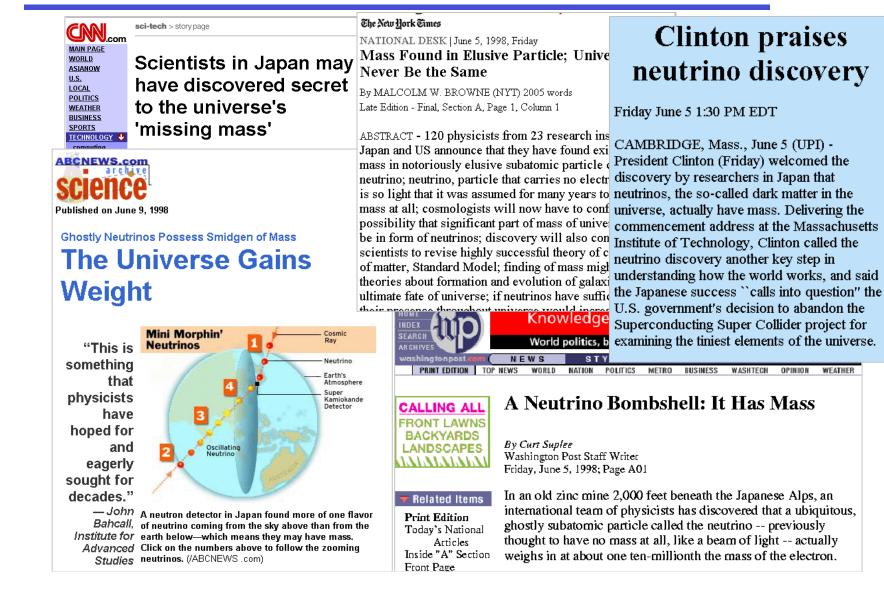
Neutrino "events": $\nu_e\,$ and ν_μ

Electrons scatter in water and produce fuzzy Cherenkov rings; Muons travel in straight lines and produce sharp rings

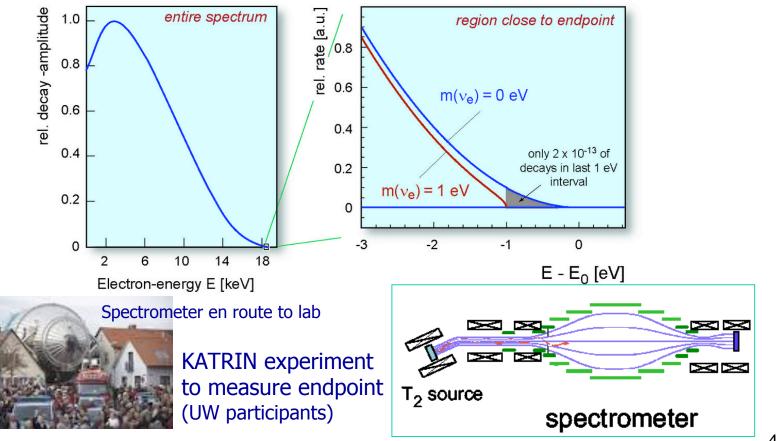
UW participation


- 1994: Ken Young and J. Wilkes join Super-K collaboration (200 people in USA and Japan), with our 3 grad students
- 1996: first operation of Super-K detector runs continuously (up and collecting data about 90% of the time) thereafter
- UW group joins "atmospheric neutrino analysis group"
 - Separate, competing groups on US and Japanese sides (blind until done)
 - Compare results only when done: nice check for errors or biases
- Focus: "atmospheric neutrino puzzle": should be 2x as many muon as electron neutrinos, but we see about equal numbers overall
 - What don't we understand about weak force / radioactive decay?
- By early 1998 we have a clear indication that
 - Downward going neutrinos (traveled ~15 km from production) have correct proportion of muon neutrino flavors
 - Upward going neutrinos (traveled 13,000 km through the Earth after production) have a deficit of muon-flavored
 - Only explanation that experimental conditions allow: neutrinos change flavor given sufficient time: flavor oscillations → neutrinos must have mass > 0
- Both US and Japan working groups agree within estimated uncertainties

Neutrino 1998 conference


- Ready to present atm-nu results before a critical audience of experts
- Takaaki Kajita (leader of Japanese atm analysis subgroup) is chosen to make the presentation (everyone helps)

Kajita-san at the podium, June 1998



June 5, 1998: Press clippings...

β spectrum endpoint \rightarrow neutrino mass

- Direct measurement of electron neutrino mass by decay kinematics
- Endpoint observation is very difficult!
 Only one decay in 10¹³ is near the endpoint

