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Course calendar

week | date day topic text
1 10/1/15 | Thurs Intrpductmn, review of basics, radioactivity, units for radiation and Ch. 1, notes
dosimetry
2 10/6/15 | Tues |Radioactive sources; decay processes; Ch. 1, notes
3 10/13/15 | Tues | Photomultiplier tubes and scintillation counters; Counting statistics | Chs. 3, 8,9 (I-V)
3 10/15/15 | Thurs LAB: Room B248 Scope:s, fast pulses; PMTs and scintillation Chs. 4,9,16,17
counters; standard electronics modules
4 | 10/20/15 | Tues |Overview of charged particle detectors Ch.4
4 10122/15 Thurs | LAB: Room B248 Coincidence techniques; nanosec time Chs. 17,18
measurement, energy from pulse area
Interaction of charged particles and photons with matter; counting
. Chs. 2, 3;
10/27/15 | Tuesgsita asscasdetostons: Chs. 5. 6.7
Proposal for term paper must be emailed to JW by today I
6 11/3/15 | Tues |ionization chambers; solid-state detectors Chs. 11,12,13
7 11/10/15 | Tues | Detecting neutral particles; Data acquisition methods Ch. 14,15, 18
Cherenkov detectors; Case studies: neutrino detectors (IceCube),
8 | 11/17/15 | Tues atmospheric Cherenkov, triggering Cherenkov Ch. 19, notes
9 1124/15 | Tues Case s.tudless classic detectors (cloud and l.)ubble chambers, nuclear Ch. 19, notes
emulsion), high energy accelerators, Fermi LAT
10 | 12/1/15 | Tues |Finish case studies; begin student presentations Notes
11 12/8/15 | Tues | Student presentations -
11 | 12/10/15 | Thurs | Student presentations

) S




Announcements

* Send me your report proposal! topic, brief summary,
list of proposed resources/references

* Presentation dates: Tues Dec 1, Tues Dec 8, and
Thurs Dec 10

— See class web page for link to signup sheet

o [IE Schedule and siénup table for term proje;t pres;zntations. This is a Google spreadsheet in
the UW Google Docs filespace; log in with your UW NetID username and password (NOT

your personal Google username) for access. Sign in to the slot you want, then exit, and let me
know you did so by email.

— Volunteers needed for early slots (Dec 1)

— | will arbitrarily assign slots for those not signed up by
November 29

10/27/15



Cross sections and accceptance

e First: € = solid angle acceptance of detector:

Project an element of detector area as viewed from
source onto a 1m radius sphere:

e Total cross section 0 = Ngyens / (At Ny, Tpeor)

Lcam =( Npeary /At ) / AS for beam area AS larger than
target, particles/cm?/sec

N, = humber of target nuclei in beam area

(or number of electrons in beam, for Compton
scattering)

=(Navogodro Mgt /Atgt )Ztgt (Mtgt in moles)
o has dimensions of area, unit : barn = 1028 m?
e Can have various partial differential cross sections: o
e Vsenergy =do/dE
e Vsangle=do/do

detector

N scatter centres
per unit volume

o

e Vs several things at once: eg, d3c / dE dO dQ
= cross section at energy E (per unit E) and angle 0 (per
unit 0), per unit solid angle dQ2 centered on 0

e area under do/d(whatever) curve = o

total cross section for that process
10/27/15
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particle trajectory
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Partial differential cross sections
From 1988 Int. Conf. on HEP
(UA1 experiment reports)

Fig. 2 The invariant cross section for W
and direct photon production as a function
of transverse momentum. The theoretical
curves are from Altarelli et al. [7] and
Aurenche et al. [13].
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Figure 3: Momentum spectrum of p and A from B meson decays.




Attenuation length

Attenuation length:

dx

. 2 .
In terms of flux @ (particles per cm?in beam) vs depth, T st contros
d (I) per unit volume
= —nod
dz .

particle trajectory

Simple differential eqn. which has solution ¢ = ¢ e

n = number density of targets in 1/cm-3

z = thickness in g/cm?
ns = 1/A, attenuation length in cm

Attenuation coefficient:
_1de,
= —E dz y

— Sou=no=1/A

Mass attenuation coefficient:
i
pm .

1.00E+05

- 1.00E+04

1.00E+03

NG —Tungdten (W) |
\ —Lead (Pb)
I\ — Copper (Cu)

1.00E+02

\\\\I\ Iron (Fe)
—Titanum (Ti)
— Silicon (Si)

1.00E+01

Linear Attenuation Coefficient, cm

1.00E+00

1.00E#

1.00E-01

Energy, keV




Collisions: impact parameter

Impact parameter b
Distance between target center and beam particle in individual collision

— Example: Rutherford scattering: he found do — b_|db
df} smO [dO

where O = (plane) scattering angle
b = distance of closest approach to nucleus = effective nuclear radius r

Classical physics says: b — 1 _ 2q1q3 for electrostatic force,
o dweg mu?

acting on projectile with charge q,, mass m and speed v, near charge q,.

So  do Z1Z:¢* \* (e)
— = —— | esc* [ —).
S 8menmud 2

Rutherford found b~ 3x10'* m for gold \\;,;:gm,.
(actually: reop~ 7x1015 m -- he used low energy alphas)  *4p

L=mvgh




Attenuation and shielding for gammas

 “Good geometry” arrangement
— Limited angular range for gammas from source

* Scattered gammas are not counted: only survivors w/o interaction
* Disappearance of gammas is simple sum of probabilities
(photoelectric absorption) + (compton) + pair production

* Can define linear attenuation coefficient u: 1 = 1, exp(- u t)

|, = source intensity, t = absorber thickness, u = attenuation coeff. (cm)
* Mass attenuation coeff = u/(absorber density p) = cm/g?
* For absorber = mixture of materials, use weighted sum of MAC’s

Source

-#— Collimeter

Collimator Absorber Detector

Dwg from http://www.nucleonica.net/wiki/
10/27/15



Example: rotating scanner for inspecting pipe wall uniformity

“good-geometry” setup

From: C. Melcher, Industrial
applications of scintillators

10/27/15



Electromagnetic cascade development

* Electron entering dense matter soon brems (mean free path ~X)

* Brem photon soon pair-produces (mfp ~ (7/9)X,)

— etc, etc: result is a cascade or shower of electrons and photons

L.

Ny
y nl
Ty suunnt®

— Number of particles builds up (and <E> per particle diminishes) until <E>~Egricar N """ = ve,

0.125

* Then brem losses become less important than ionization

0.100

0.075

0.050

(1/Ep)dE/dt

0.025

30 GeV electron
incident on iron

0.000 824
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5 10
t = depth in radiation lengths

15

20
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o2} o
o o

'
S
Number crossing plane

20

(Only particles
0 with E>1.5 MeV
are counted)

Notice brem/PP cascade
process does not dissipate
energy, just swaps it frome’s
to photons and back again

Main effect: divide energy up
among more and more
particles

Cascade growth stops when

average energy is too small to
convert (less than E()

Energy is lost to medium
(heating) only via ionization,
after e’ s drop below E.

10



Electromagnetic cascade process

Photo from MIT cosmic ray group 1938

10/27/15 11



EM showers in detector design

* EM “calorimetry”
— Basic way to measure energy of electrons or gammas

* Thick absorber interleaved with particle counters

* Number of particles vs depth and compare to calculations
— can estimate total E of incoming e or gamma energy to O(10%)

— ldeal = “Total absorption calorimeter” — nothing escapes
— Real = truncated shower measurement with “punch-thru”

— Tools
* GEANT = particle physics industry standard for detector simulation
* EGS = code developed at Stanford for cascade simulation

e Hadronic calorimeters

— Same idea, but for protons/nuclei: much more complicated
process! Much more depth needed.



Other cascade effects to consider

e Radial distribution of . C.Crannelletal, PRL 182:1432 (1969)
. r :
shower particles £, S s
c Ti * WITHOUT BACKSCATTERING
— Most particles in narrow core  1©0*}- 'y + WITH BACKSCATTERING
[ ] . b ) : A ?
* Transition effect: i y f/a
'. ’ . A
— Rapid change in relative T O
populations of e’s and w0 e,
gammas when Z changes 5|
- . . @ ol 1 oo 114
— Transition radiation=x-ray %' 2 &% & w1z WM
photons produced at g By
o i
interface 5[ 30 LPb,
. L 5 006 L. PLEXIGLAS
— Transition radiation detector & 0*F- s, * WITHOUT BACKSCATTERING
L - i 4 WITH BACKSCATTERING
(TRD) = 3 G
. 21 ..::A‘ r?)_
« exploit TR to measure " el R
cascade i ) / s
. 10' - et +
* Very thin layers of Pb and - o I
plastic, use x-ray detector ot o4aa 1
below many layers o e 4 & 8 0 & a4
RADIUS (cm)
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Graphite
Foam

g
I

Transition radiation/calorimeter
 Example: NOE’ detector (INFN/Naples, Italy)

Prop. tubes x
Prop. tubes v

-] with fibers in y direction

TRD 2.4 ktons
Calorimeter 4.3 ktons
Total mass 6.7 ktons

ﬁ extruded plastics
with fibers in % direction
Iron sheet

extruded plastics

6.4+2+6.4 mm




Example of calorimeter

* Total absorption calorimeter for protons
— Proton interacts with nucleus producing mesons

* Mesons interact again, or decay to electrons, photons, muons

— Count charged particles present, at intervals in absorber

* Area under plot of number vs depth = Estimate of total track length
of shower particles in absorber

» (Total track length)(energy loss per track per cm at critical energy)
- estimate of total energy deposited by incoming proton

Underestimates E; due to:

* “Punch-through” =
remnant of shower that
escapes through bottom

* Neutrons and neutrinos
are not observed

Use simulation studies to

estimate missed energy
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EQUIVALENT NUMBER OF MUONS

Individual showers and average showers

* Individual proton events show large fluctuations

overall hadron-electromagnetic cascade
* Average curves from many events + simulations can be used to calibrate

Area under curve - estimate of total track length T
Assume most tracks are around critical energy, then
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Counting experiments and statistics

e Coincidence measurements
— Simultaneous signals from two or more detectors (eg scintillators)
define events of interest
* Must define what we mean by “simultaneous” (window width)
» Must define “interesting” (coincidence pattern / logic)

— Coincidence circuits (= logical .AND.)
* Simple coincidence (channel 1 .AND. Ch 2. AND. Ch 3...)
« “Majority logic”: any n-fold subset of all inputs
— Eg, 2-fold for 3 inputs = (1 and 2) or (2 and 3) or (1 and 3)

* Include possibility of veto (.NOT. or logical inversion) for inputs (Ch 1.
AND. Ch 2 . AND.(.NOT.Ch 3))

— Must first convert raw PMT output to logic pulse: discriminator circtuit
(one-shot)
* Variety of analog pulses -> standardized logic signal
— Specify voltage level (threshold) to trigger discriminator

» Set output of the discriminator to a fixed height (choice of industry
standard: TTL, NIM, etc), and duration (width)

* Q: how do we know counts are meaningful?

10/277/15



Delays and timing diagrams

* Discriminator output = Timing
coincidence circuit input diagram |
) Counter relative delay
— Must set threshold, width S1 V_ (differences in location
: N and cable length)
e Must ensure signals from s | -
1 7 o
simultaneous” detections V
arrive at the coincidence circuit
at the same -L—ime < Discriminator delay
— Time differences arise from D2
» different transit times through
the scintillator/light pipes/PMT, TRG = Coincidence window
different cable lengths, etc
« discriminator response times ) Coincidence delay
(leading edge of output vs input) R
— “Latest” signal defines the timing ;?t:ide Coincidence t
diagram arrives signal sent
* Add delay (cables or modules) to at S1 to DAQ

earlier signals as needed

10/27/15



Deadtime and Accidental coincidences

Random signals from counters may fall within the coincidence time window
and create an accidental count

— Uncorrelated background particles happen to arrive simultaneously

— Random noise from PMT, or ambient electronic noise
To estimate the rate of accidental coincidences we need to know the
resolving time of the system: minimum time difference

— Depends on width of pulses input to the coincidence circuits, and the singles rate
from each detector

— Resolving time is measured by delaying one signal with respect to the other and
plotting the coincidence counts per unit time (delay curve)

* Set delay between counters to where delay curve is max
If N, and N, are the singles rates and o, the resolving time, then the
accidental rate will be approximately N, = 6, N, N,
o, N, = time coincidence input 1 is on; N, = opportunities for an accidental
Other factors affecting coincidence efficiency
— Deadtime = time after detection when detector cannot generate a new signal
— litter (random fluctuation) in timing of counter signal relative to particle arrival



Counting statistics

* Generally, we need to estimate probability of interesting events from a
statistical sample of data:
Recall:

— Statistic = single number, derived from data alone, describing some feature of a
large data sample

— Probability distribution = relative likelihood of different sample values
Some sample variables are integers (eg, counts); others are real-valued.
For f(x) dx = Probability( x will be found in range {x—=x+dx} )
(with f(x) properly normalized to give [,,,f(x)dx = probability of any x =1)
* f(x) = Probability Density Function (PDF)
— “differential probability distribution” )
* F(x) =/ f(x)dx = Cumulative probability distribution
— “integral distribution”
F(- 0)=0 and F(+ «©)=1; Fis monotone increasing with x
* Estimate PDFs by making a histogram of experimental results (limited samples of x)
histogram = bar graph of number of occurrences vs x
N(AX) = Ny F(X) A — f(x) ~ N(AX)/(Nga) AX)



« PDF p(x)=probability of x in range x’ to x” +dx
p(x) 0.12
0.1 4

0.08 |

0.06 |

0.04 +

0.02 +

’ __3 9 1 0 '1' o 2' - '3 Normal (Gaussian) PDF

P(x)dx

p(x) = J;—” exp(-2-)

« “Probability distribution” P(x)=(cumulative or integral distribution)

=probability of x<x’ )
probability of X=X P(x) = fp(x)dx (where x,,, couldbe - o)

P(x) 1 Cumulative Standard Normal
0.75 // distribution
0.5 (erf(x)="error function”)
0.25 e
' / P(x)=l 1 +erf|—=
O T T T T T 2

N



Examples of distributions and histogram

 Table = list of data, binned in x
— Simulated sample of 1000 events
— Histogram = plot of table
e Curves = plots of underlying probability distributions
— Black = PDF used to generate data sample: Gaussian centered on x=3
— Pink = cumulative Gaussian probability (P(getting any value < x) )

X Frequency Cumulative % Gaussian, mean=3, sigma=2

j 8 82;: histo = 1000 samples

-3 1 0% 250 curve = exact - 100%
2 2 0% |

1 11 1%

0 5 70, 200 80%
1 95 16% .

2 156 32% 9150 60%
3 191 51% S

4 171 68% %100 40%
5 156 84% w

6 85 92%

7 61 98% 50 1 r 20%
8 13 99%

9 6 100% 0 - 0%
10 0 100% 6 o A




Descriptive parameters for PDFs

Commonly used statistics:

Measures of central location:
mean <x>= X x. /N (sample mean)
median = x at which F(x)=0.5

0.3

mode = x at which f(x)=maximum 0.25
for symmetrical distributions, mean=median || _ 02
Measures of width of distributions: £ 015
variance 0% ( o = standard deviation) 006;

o?= Z(x;-u; )*/N

but u, = mean of true PDF

we can only estimate w, with <x>
Best estimator for o? is

Central location

¢

7 Width \,

10

s2 = 3(x. - <x>)? / (N -1) = sample variance
Central moments:

deviation from mean d, = x; - <x>

<d "> = u, = nth central moment (average of d. ")

Wy =fa||x (x- uy )" f(x) dx

eg, n = 3 (skewness) gives measure of asymmetry, etc




Examples of central location
] S 1 N
Mean value (average): x = ﬁin

Median (center of sortedlist):  x,,, = x, in sort,({x,})
2

Mode (peak value): x, suchthat P(x,) = max P(x)

Mode :
Mean=median=mode for Median Mode, median and mean
symmetrical distributions 0.05 Mean
Median is more robust than o. o4 I
mean for skewed PDFs ' TN '
— Mean is sensitive to outliers X 0.03 / X ;
(few values far from central) < 0.02 / \\
— Median is sensitive only to /ong 0.01
tails (significant population far 0 L/« | | \\
from central value) 3 D 1 0 1 5 3
Mode = most likely value for a x

single sample



Measures of central location

World Per Capita Annual Income 1993
Mode = $400

0.1 :
s Median = $1044
= 0.08
= Mean = $3600
g 0.06
Q. v
S .04 A
£ \/\
Q J v
© 0.02
o \,-\
o

0 T T T T
0 1000 2000 3000 4000 5000
US$

Example of an asymmetrical distribution:
World per capita income distribution (for 1993)
— A small percentage of people have very large incomes, relatively
— Mean = poor estimate of central value for highly skewed PDF
* Long tail “pulls” the average value up



Measures of distribution width

0.045 +d
- 0.04 5
. Varlance' 0.035 7
1 0.03 7 AV
o’ = (x _x) x 0.025 FWHM HWHM
N-1 4 2 0.02 7Z< >
) 0.015 < 5
this is sample variance - 0.01 //
a
Use N -1because we used 0'008 [ —* |
the same data set to find x 3 2 1 0 1 2

— Population variance: Use N if we somehow know the mean value a priori
— Note that mean and variance are 1st and 2nd moments of PDF
— Variance has special significance in statistics (more later)
e Standard deviation: o=V 0?2
— Most commonly used measure of width
. . 1 N
* Mean absolute deviation: , _ 1
— Not often useful N

* Full- or Half-Width at half maximum (FWHM/HWHM)
— Commonly used in engineering




Famous probability distributions

e Uniform distribution
— Only PDF generator available on all computer systems

e Can construct all others from this (more later)

1 1
PO gy ==Y P(/<X)/
x (x-a)
(<= [P == o
y 1
y={xp(x)dx=5(a+b) 0 . M "
o

0" = [l plard - é(b _a)’

e.g., forrange0-1: u=0.5 o’ = é (small!) skewness =0, kurtosis =-1.2



Binomial (Bernoulli) distribution
— Describes experiments with binary outcome

* Coin flips, win/lose lottery, detect/don’ t detect particle...

event X = success, X ("notx") = failure

are the only possible outcomes
n = number of trials

p = probability of success per trial

pp(r;n,p) = (Z)pr(l -p)"

= probability of r successes inn trials

—

n n!

r) ) rl(n-r)!

# of combinations of n things
taken r at a time (order of the r

successes within the n trials

is immaterial)

P(N)

0.3
0.25
0.2
0.15
0.1
0.05

Binomial distribution for 10 flips of
a coin, with probability 0.5 of
getting heads on each flip.

N = number of heads observed in 10

flips

mean = 5
mode =5
Width =+1.6




Applications of binomial distribution

Contents of a single bin in a histogram (n total entries)

x =inside bin, x = outside p = probability of x

r

From the data, we estimate p =—, r = contents of bin
" 100
A r
sog=(1-p)=1-— 807
n < 601
a2 . . 7 z 40 A
o =npq=n'p'(1—p)=r(1—;) 20 -
0+ rr=_ee
7 1 6 11 16 21 26 31 36
Uxto=r= r(l—;) .

here: r=67, n=1000, so p=.066, c=7.9
Note : Event counts are /ntegers, but efficiencies are rea/ numbers

Change variable to re/ative frequency : r — r
n
u(py(r;n,p)) np _ 2 O (py(r;n,p) _npq _ p(l-p)
— = =p, O — 3 = =

n n n n n

U

Common assumption: Poisson limit (for small p: more on this later) o

Jr



pr(r;1)

pr(r; 1)

0.8 1y

0.6

0.4

0.2 1

0.4

0.3

0.2

0.1

O m=1
—| B m=2
u~1: peak
appears

01 2 3 4 5 6 7 8

r

Py\Isn,p)=—> pp\l'; U) = ;Mre‘

mean value=u, o =u — 0=\/;

~ Symmetrical (— normal distribution) for large u;

Use p, toapproximate p, forlargen:u =np

0.2

0.15

0.1

pr(r;K)

0.05

1

p — 0 and n — o such that (np) ~ constant

Poisson distribution

Limiting case for binomial distribution with p
small and n large

u>>1: shape @ m=5
approaches Em=10
Gaussian Om=20

00 N(20,4.5)

1
skewness = — —

Ju

25

tail always to the right

IJNMMMm

30



Applications of Poisson distribution

* Notice ppgs(r) is limited to r = integer only
— Value of u (not necessarily integer) should be “small”
— Range of ris bounded on the left (by r=0)
— Approaches normal dist. for u “large” (far from 0)
— Has only one parameter: u
* Applications
— Radioactive decay counting data: w = mean counts/sec LA
Then prob. of r counts/secis p,(r; u) = i'ure‘”
Example: suppose u = 20 counts/sec "
Then prob of 30 counts in any one sec period is about 1% (~ same for 10 counts)
— Bubbles in a bubble chamber track: u = mean bubbles/cm: ee e e e oo
(or hits in any ionization tracking detector: ionization is proportional to Q?)
Then prob. of getting r bubbles/cm is given by Poisson distribution
Example: suppose proton (Q=1) tracks have 9 bubbles/cm on average
Searching 1000 pictures, a track is found with 1 bubble/cm -- a quark (Q=1/3)?

Prob that this is just a random fluctuation of a proton track? p, (20;9)=0.0011
so expect to see this with odds ~1:1000...

Not unlikely enough! ("Discovery Threshold" is currently around P~10%)



Poisson assumptions

* Physical situations where Poisson Assumptions are valid lead to behavior
reflecting the exponential and Poisson distributions:
1. p(1 event) ininterval dx is proportional to Ox: p=g Ox
2. Occurrence of an event in some interval 6xj is independent of events (or
absence of events) in any other non-overlapping interval 0x,
3. For sufficiently small 8x, there can be at most 1 event in 0x
— Examples: ionization in a gas, goals scored in a soccer match, requests for documents

on a web server, radioactive decays

* From these we can derive the exponential and Poisson distributions:

Prob of 1 bubble in dx: p,(6x) = géx (from #1) Prob of exactly r bubbles in x + d.x :

Prob of 0 bubbles in 6x: p,(6x)=1-p, =1-géx (from#3)| |p.(x+3x)=p.(x)® p,(0x)+ p,_(x)* p,(dx) (from #3)
(x+0x)=p,(x)* p,(0x)=p,(x)A - gdx) (from#2) (x+0x)-p,(x dp,

Po Po(x)® Py P 8 Jr A )-p,(x) __dp —ep. (1) +gp, ()

dx

(x+0x) - p,(x) ) Ox
R Pt gy ()= Lo - g
ox dx

1 _
Solution: p (x)= —'(gx)r ¢~ 8% = Poisson (u=gx)
r!

Solution:  p,(x) = e 8%

So exponential distribution = gap length distribution p,(x) between eventsin a
Poisson process (gaps in a bubble chamber track or ionization trail)

U2
\S)



Exponential distribution

Special case of frequent interest: probability of getting exactly one event

under Poisson case:

pr(l )= u'e™”

Example:
radioactive particle
has mean life A

Probability that
particle decays
within any time
window of length t
is given by
cumulative
exponential
distribution
(integral
distribution)

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.1
oV

M_

0

0.5

1 1.5 2 2.5

3

3.5

1 _
PDF: p(54)=—e "

Cumulative: P(<t;A)=1- %e—t/ﬁ,




Gaussian (“Normal”) probability density fn (PDF)

Gaussian = famous “bell-shaped curve”

— Describes 1Q scores, number of ants in a colony of a given species, wear

profile on old stone stairs...
All these are cases where:

— deviation from norm is equally probable in either direction
— Variable is continuous (or large enough integer to look continuous - far from

the “wall” at n = zero)
Real-valued PDF: f(x) = -0 <x<+
n(x;u,0)= (1/sqrt[2no?]) exp[-(x-u)%/20% ]

2 independent parameters: u, o (central location and width)

Properties:
Symmetrical, mode at u, median=mean=mode
Inflection points at o
Standard normalized form:
scale x by o, shift origin to u
n(x;0,1) = (1/sqrt[27]) exp[-x?]
Cumulative distribution:
N(x)=f_* n(x;0,1)dx = erf(x)
Area within (prob. of observing event within)
+10=0.683 =erf(1)-erf(-1)
+20=0.955 =erf(2)-erf(-2)
+30=0997 =erf(3)-erf(-3)

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

N(0,1), N(0,2), N(0,3)
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Binomial, Poisson, Normal
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Shown above:
¢ Binomial for 100 trials, p=0.01, 0.05, 0.10, 0.25 (solid)
e Poisson for u =1, 5, 10, 25 (dashed line)

Poisson is broader and has peak slightly below u
Both become similar to Gaussian N(u, o=vVu) as mean value gets larger
(Gaussian for u=25, 0=5 is indistinguishable from Poisson on this scale)



Significance of normal distribution
Central Limit Theorem:

“Given N independent random variables x,, each with
w, and o, specified (but not details of individual
PDF’s), the random variable z = X x, has mean value
w =2 w,and variance o? = 2 0,2 and for large

statistics, its PDF will be Gaussian, ie L
Application examples:

2 _ . »”
(= X~ Z W) / sart[2 0" 1=n(x0,1) * Random walk of 100 steps. Each
Applies to: any situation with real-valued result where | step is independent of others, any

several independent processes add: additive errors. probability distribution for
direction and length of each step
(but u, 0> known).

Parameters u,o are independent (and converse: if a

random variable has u,o independent, it is normal). _ _
* To make a simple Gaussian

Given N random numbers x, from a normal random number generator, just

distribution, take sum of 12 uniformly
the sample mean u = (1/N)Z x, distributed numbers on [0,1):
and sample variance s? = 2 5,2 / (N-1) X=2 (u, - 6); x will be

distributed ~ n(x;0,1)
(recall: uniform(0;1) has
u= 0.5, 02= 1/12 )

are independent statistics




IPPS pulses

Examples of normal distributions

Gain distribution for 11,000 photomultiplier tubes which are supposed to be
~identical (from Super-K neutrino experiment)

— Gain depends on many independent factors (tube manufacture batch, geometry,
power supply stability, cable characteristics...)

< 1400
= [
= L
51200
£ : Ggain =7.0%
) = 1000
TrueTime 1PPS ws. Motorola 1PPS [yesterda E 3
188888 ¢ T T T T T g soo:
1o000 - £
=
1666 _ _ Z 600
188 B 400
18 | E .
! i 200
1 F . L
8.1 L 1 1 1 1 1 ] ROMNTININNNRY I N
12 14 16 18 2
—4006 -Zoo 9 =aa ol Relative PMT Gain
nanosec

GPS clock times (again from Super-K, yesterday's data)

— Time fit depends on many indep. factors (exact antenna location, software design,
receiver characteristics...)



Special physics PDFs: Landau distribution
* Landau described the distribution of energy losses for particles passing
through a thin layer of absorber

* Long tail on the right, cut off sharply on the left -> most losses near
average, but big losses possible, and less infrequent than for Gaussian

* Related to the Cauchy (Breit-Wigner) and Gaussian distributions

o 1 20 —tlog t—xt . ) ) Pulse height , arbitrary units
])(‘;l?}:—/ e ' ° sin(7t) dt. A e e B o o
?T ~. 0 60— N
 Landau is a member of N 50— 1
the Stable Distribution < i
. . . & B -
family, which includes & ol Yavilov theory
. o === Symon eory -1
Gaussian, Cauchy and s | Experimental points __| 700
. > —
Delta functions g 30l—
} —
= | i
See math.uah.edu/stat/special/ Z 20— 7
Stable.html g L '
&
< 10— .
s | i
0 o | J I 0

10 20 30 40 50 60 70 80 90 100
Energy loss [KeV]

10/27/15 38

Counts per pulse height interval



Breit-Wigner distribution

B-W distribution describes distribution of energy seen in decays of very

short-lived states (resonances) . k
In particle physics units, whereh =c=1: HE) = (E? — M? ) + MeT2
E = center-of-mass energy of the decay products, -
M is the mass of the resonance (peak location), k= 2\,'-2311“7
[is the resonance width, and mean lifetime t = 1/T. TV M* +
8000/ v = \,.-""ﬂ[ 2 (M2 +17?).
‘o 7000 ﬁ
> E
< 6000 ! Example from CERN LHCb
0 50002— experiment, showing Upsilon
P 4000 meson (= b-anti-b quark pair) and
2 sonok- , 2 excited states, decaying
=B \M) promptly to muons.
2 20001 P B-W shapes are fitted to excess
1) C :
O 1000 i ' over smooth random background
- RSP LW 1) 7.5 counts in each bin

&000 8500 9000 9500 10000 10500 11000 11500 12000

s Ihcb-public.web.cern.ch
M(uu*) (MeV/c)
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Application of statistics: hypothesis testing
. Given
—  2datasamples: {x_; n} {X21 m} OR
— data sample {x,_; n}and model f(x;0)
«  We want to test the “Null Hypothesis™:
Ho @ {xi.; n}and {x_; \}are drawn from the same population distribution
[ alternatively: {x,_, \}is drawn from f(x;0) ]

—  “non-parametric tests” = no assumptions made about the underlying
population distribution

Chi-squared test (Pearson’ s test)
—  Histogram the {x;} to estimate differential dist.
— n,=number of entries in bin i (x,< x < x+3x), 0x=histogram bin width

—  To test f(x): 2 X+
: i] where m, = ff(x)dx

y xafn —m
X = 2( T
(m, is not necessarily integer)

Note : must exclude empty bins ( +/0 in denominator)
Denominator is Poisson estimate of aj»

Central limit theorem — 4 is correct for large », or large Ngjs



Chi-squared

Sampling distributions describe statistics of data samples as a whole

. . . . | — 2
Chi-squared distribution =Y (x, ZM)

N

-1 O

p(x*;v) ()" exp(=x* /2)

T 2"’I(v/2)
= %’ PDF for v degrees of freedom

v = number of independent variables in sum
For example: if wis unknown a priori, we must use average x as estimator for u:

N (x, - X)°
X = 2#*19(%2;1/ =N-1)
&4 o
N
Also, note that E(xi ~%)* =(n-1)s’
i=1

(n-1)s’
0,2
with PDF given by p(x*;v = N -1)
If u,,u,..u,, are y* variables with different v,, then
M M

w = Zui is a x* variable following p(x*;v = Zvi)

SO z= is also a y” variable,

summed deviations squared, in units of o’

41



Chi-squared distribution

< (X, — )
2 _ i
X _Z 02

p(x V)=

2 )V/2—1

(x exp(—x°/2)

1

2"*T(v/2)
= x° PDF for v degrees of freedom
v = number of independent variables in sum

Example: if we average N data points to estimate u, v=N-1
e Chisqg distribution is

— Monotone decreasing for v<2
Peaks at v-2 for v> 2

— Has mean=v, 0%=2v and = N(v,2v) for v -> o0

Integral distribution: P(x>;Vv)= fp(x Wdy =1-a

So x*> > x2 occurs with probability =
Use to test for N(u,0*) behavior:
Example: test hypothesis that {x,} come from N(u,0?)

(.Xl- - )_C)z

N
Then we should have y* = E <x.(v=N-1)

0_2
to have confidence level «a in our hypothesis
2

X

— L =
v

Rule of thumb: for v=10, x. =v 1 is 50% probable

, sum of deviations squared, in units of o’

0.3 \
0.25 \ )Z=1
_ 0.2 \//, 2
X 0.15
= X 5
0.1 / \\ 10
0.05
O /|<|\\\|\h‘*l T T T T
0 246 81012141618
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