PHYS 575A/B/C Autumn 2015 Radiation and Radiation Detectors

Course home page:

http://depts.washington.edu/physcert/radcert/575website/

9: Case studies: Non-Cherenkov neutrino detectors; neutron detectors; accelerators

R. Jeffrey Wilkes Department of Physics B305 Physics-Astronomy Building

206-543-4232

wilkes@u.washington.edu

Course calendar (revised)

	week	date	day	topic	text	
	1	10/1/15	Thurs	Introduction, review of basics, radioactivity, units for radiation and dosimetry	Ch. 1, notes	
	2	10/6/15	Tues	Radioactive sources; decay processes;	Ch. 1, notes	
	3	10/13/15	Tues	Photomultiplier tubes and scintillation counters; Counting statistics	<u>Chs</u> . 3, 8, 9 (I-V)	
	3	10/15/15	Thurs	LAB: Room B248 Scopes, fast pulses; <u>PMTs</u> and scintillation counters; standard electronics modules	<u>Chs</u> . 4, 9, 16, 17	
	4	10/20/15	Tues	Overview of charged particle detectors	Ch. 4	
	4	10/22/15	Thurs	LAB: Room B248 Coincidence techniques; <u>nanosec</u> time measurement, energy from pulse area	<u>Chs</u> . 17, 18	
	5	10/27/15	Tues	Interaction of charged particles and photons with matter; counting statistics; gas detectors; Proposal for term paper must be emailed to JW by today	<u>Chs</u> . 2, 3; <u>Chs</u> . 5, 6, 7	
	6	11/3/15	Tues	ionization chambers; solid-state detectors	<u>Chs</u> . 11, 12, 13	
	7	11/10/15	Tues	Statistics for data analysis; Case studies: classic visual detectors (cloud and bubble chambers, nuclear emulsion, spark chambers)	Ch. 19, notes	
	8	11/17/15	Tues	Case studies: Cosmic ray detectors (Auger, Fermi gamma ray observatory); Cherenkov detectors: atmospheric <u>Cherenkov</u> , triggering <u>Cherenkov</u>	Ch. 19, notes	
Tonight	9	11/24/15	Tues	Case studies: neutrino detectors (IceCube, Daya Bay, Majorana), Detecting neutrons; high energy accelerators;	Ch. 19, notes Ch. 14, 15, 18	
	10	12/1/15	Tues	Finish case studies; begin student presentations	Notes	
	11	12/8/15	Tues	Student presentations	-	
	11	12/10/15	Thurs	Student presentations		2

Announcements

- Presentation dates: Tues Dec 1, Tues Dec 8, and Thurs Dec 10
 - You MUST send me your presentation (pdf or ppt) no later than 5:30 pm on the day of your talk
 - I will upload all slides for each session so online attendance is possible

PHYS 575 Au-15: Report Presentations			
Please send me yo	ur presentation pp	t/pdf (or URL) at least 1 hour b	pefore class on your date
Day	Time	Name	Торіс
12/1/2015	7:00 PM	Per Provencher	Low Background Laboratories
	7:20 PM	Rick McGann	Neutron Generation and Effects on Materials and Electronics
	7:40 PM	Chris Provencher	Bremsstrahlung
	8:00 PM	Charles Ko	Radiometric Dating
	8:20 PM		
12/8/2015	6:40 PM	Diana Thompson	NORM
	7:00 PM	Shawn Apodaca	Fast Neutron Time of Flight and Spectroscopy
	7:20 PM	Erin Board	Cosmic Radiation and Shielding
	7:40 PM	Louie Cueva	Thermal Neutron Detection
	8:00 PM	Xavier Garcia	Silicon PMTs
	8:20 PM	Padmaja Vrudhula	Dosimetry
12/10/2015	6:40 PM	Nathan Hicks	Methods of Radionuclide Production for Medical Isotope Usability: Meeting the Demand
	7:00 PM	Farrah Tan	QCD
	7:20 PM	Nicolas Michel-Hart	microXRF
	7:40 PM	Michael Esuabana	proton-Boron11 fusion
	8:00 PM	Kaifu Lam	Synchrotrons
	8:20 PM	Johnathan Slack	X-rays/Gamma rays of comets and asteroids

JPARC neutrino beam uses "off-axis" technique

T2K-I event statistics at SK: (Off axis-2.5 deg, 22.5 kt, <u>per year</u>)

- 2200 total v_{μ} events
- 1600 v_u CC
- $v_e \sim 0.4\%$ at v_u peak E

Target/Horn magnet – test setup Must handle pulses of 100s of kA

T2K Neutrino E spectra: broadband vs off-axis

Low-energy (reactor) neutrino oscillation experiments

- Nuclear reactors provide high fluxes of electron antineutrinos
 - Flux directly related to power output of nuclear plant
 - Baseline L can be shorter since energy is few MeV (recall: L/E ~ proper time for neutrino)
- Pure water detectors are not optimal small cross-section*
- Use liquid scintillator (fluors in mineral oil) or Cd compounds
 - * But: Doping water with gadolinium produces huge cross sections
 - GADZOOKS = plan to turn Super-K into a Gd detector for antinu
 - Neutrons captured by Gd, 90% capture efficiency for 1% Gd in water
 - Gd → Big fat 8 MeV gamma signal when it decays, easy to detect and identify

Illustrations in this section from presentations by K. Heeger, U. Wisc Y. Wang and J. Cao, ICHEP Beijing

Reactor Antineutrinos

Source

$\overline{v_e}$ from β -decays of n-rich fission products

Detection

inverse beta decay $v_{e}^{-} + p \rightarrow e^{+} + n$

mean energy of $\overline{v_e}$: 3.6 MeV

only disappearance experiments possible

> 99.9% of $\overline{v_e}$ are produced by fissions in 235 U, 238 U, 239 Pu, 241 Pu

Observation of Reactor $\overline{v_e}$ Disappearance

KamLAND 2003

Karsten Heeger, Univ. of Wisconsin

NIST, March 15, 2013

300 liters of liquid scintillator loaded with cadmium

Long history: Hanford Experiment (1953) F. Reines, C. Cowan

inverse beta decay $\nu_e + p \rightarrow n + e^+$ \downarrow annihilates promptly $n + {}^{108}Cd \rightarrow {}^{109m}Cd \rightarrow {}^{109}Cd + \gamma$

signal: delayed coincidence between positron and neutron capture on cadmium

0.41+/- 0.20 events/minute

high background (S/N \sim 1/20) made the Hanford experiment inconclusive

NIST, March 15, 2013

The Savannah River (version 2 of Reines) Detector

Improved design (1956), bigger reactor

tanks I, II, and III were filled with liquid scintillator and instrumented with 5" PMTs target tanks (blue) were filled with

water+cadmium chloride

inverse beta decay

 $\overline{v_e} + p \rightarrow e^+ + n$

inverse beta decay would produce prompt and delayed signal in neighboring tanks

low E anti-neutrino detection: Inverse-β reaction in liquid scintillator

$$\overline{v_e} + p \rightarrow e^+ + n$$

Illustrations in this section from presentations by Y. Wang, and J. Cao, ICHEP Beijing K. Heeger, U. Wisconsin

 $\tau \approx 180 \text{ or } 28 \ \mu \text{s}(0.1\% \text{ Gd})$

n + p
$$\rightarrow$$
 d + γ (2.2 MeV)
n + Gd \rightarrow Gd* + γ 's (8 MeV)

Neutrino Event: coincidence in time, space and energy

Neutrino energy:

$$E_{\overline{v}} \cong T_{e^+} + T_n + (M_n - M_p) + m_{e^+}$$

10-40 keV 1.8 MeV: Threshold

Y. Wang, ICHEP Beijing

The Daya Bay Experiment

- 6 reactor cores, 17.4 GW_{th}
- Relative measurement
 - 2 near sites, 1 far site
- Multiple detector modules
- Good cosmic shielding
 - 250 m.w.e @ near sites
 - 860 m.w.e @ far site
- Redundancy

The Daya Bay Detectors

- Multiple AD modules at each site to check uncorr. syst. err.
 Far: 4 modules, near: 2 modules
- Multiple muon detectors to reduce veto eff. uncertainties
 - Water Cherenkov: 2 layers
 - RPC: 4 layers at the top + telescopes

Daya Bay Detectors

Karsten Heeger, Univ. of Wisconsin

Tunnel and Underground Lab.

Antineutrino Detector

Muon System Installation

Liquid Scintillator Hall

Antineutrino Detector Installation - Near Hall

Hall 3: began 3 AD operation on Dec. 24, 2011

Hall 2: began 1 AD operation on Nov. 5, 2011

D2

Hall 1: began 2 AD operation on Sep. 23, 2011

Antineutrino Candidates (Inverse Beta Decay)

Double-beta decay, with and without neutrinos

- Ordinary double-beta decay:
 - Simultaneous decays of 2 neutrons in a nucleus

 $2\nu\beta\beta - (A,Z) \rightarrow (A,Z+2)+2e^{-}+2\overline{\nu}_{e}$ SM Allowed and observed in select even-even isotopes

- *Neutrinoless* double-beta decay:
 - Antineutrinos annihilate (requires antinu=nu !)

0vββ — (A,Z)→(A,Z+2)+2e⁻ ΔL = 2

Illustrations in this section from presentations by J. Detwiler, UW C. M. O'Shaughnessy,U.N.Carolina, June 2015

S. Elliott, LBNL

11/24/15

Majorana neutrinos

- 1937: Ettore Majorana proposed possibility of spin-1/2 particles (fermions) could be their own antiparticles
 - Neutral spin-1/2 particles are described by a real wave equation (Majorana equation)
 - So, identical to their antiparticle: wave functions of particle and antiparticle are complex conjugates
 - Creation and annihilation operators are identical
 - Standard Model assumes fermions are Dirac particles, with wavefunctions and creation/annihilation operators distinct
- All Standard-Model fermions except neutrinos are known to have distinct antiparticles
 - BUT: non-zero neutrino mass is non-SM
 - Hypothesized "sterile" neutrinos (not observed because they do not display weak interactions, only gravity) could be Majorana
 - In supersymmetry models, neutralinos (superpartners of gauge bosons and Higgs bosons) are Majorana.

Ettore Majorana 1906—1938 (?) Majorana disappeared from a ferryboat in 1938. Friends presumed suicide. Conspiracy theorists believe he may have hidden in Argentina or Italy and lived until 1959.

Why are neutrino masses so much smaller than everybody else?

- Do they relate to Supersymmetry?
- Are they Majorana fermions?
- Could this be connected to matter/antimatter asymmetry in the Universe (do neutrinos exhibit CP violation) ?

0vββ Discovery Considerations

- Need large, highly efficient source mass
- Desire extremely low (near-zero) backgrounds in the 0vββ peak region

 - ⇒ Signal background 1:1 or better ⇒ Best possible resolution, ΔE , to minimize region of interest
- Want best possible energy resolution and/or kinematical method to discriminate $0\nu\beta\beta$ from $2\nu\beta\beta$

Tonne scale experiments require backgrounds of ≤1 cts / ROI-t-y

> **Need independent** observations from different isotopes

One approach: Use ultra-pure Germanium detectors Source = Detector

Intrinsically high purity, elemental Ge

Demonstrated ability to enrich to 86% ⁷⁶Ge

0.16% energy resolution at 2039 keV

Well-understood technologies

• Commercial Ge diodes

Majorana Experiment design:

Modules of 57 close-packed, 1.1 kg, segmented n-type HPGe detectors enriched to 86% ⁷⁶Ge

Independent cryostats made of ultra-clean electroformed Cu

Low background passive lead + electroformed Cu shield and 4π active veto

Located deep underground (4500-6000 mwe)

Deep underground site: Homestake Gold Mine \rightarrow Sanford **Underground Research Facility**

- Located in Lead, South Dakota •
- Site for Ray Davis solar neutrino • experiment
- Deepest facility in USA

From gold mine to science laboratory

Work crews are restoring a former gold mine in Lead, S.D., to house a detector to catch what scientists call dark matter, thought to make up nearly a quarter of the universe's mass.

Majorana Experiment (US-Canada-Russia-Japan)

Module Ge detectors in \bullet 10 cm Cu liner 40 cm Pb bulk shield super-low BG site (Davis campus in 30 cm Polyethylene n moderator SURF, 4850 ft deep) 4π active veto (not shown) 3-module string Amp Front-Ends Dewar Cu Cap. Cart Monolith Cu Support Tube 57-crystal module Natural Ge (0.007" thick) Vacuum Jacket enriched to 86% enriched 86% ⁷⁶Ge HPGe crystal Cu Cold Plate I.I kg (62 mm x 70 mm) **Thermal Shroud** Contact Ring Tray -Cu Cold Finger (plastic, Si, etc.) Modular – expand to 1 ton total Ge

11/24/15

Individual Ge crystal in Cu mounting

For now: demonstrator project with 44 kg Ge

- **Goals:** Demonstrate backgrounds low enough to justify building a tonne scale experiment.
 - Establish feasibility to construct & field modular arrays of Ge detectors.
 - Searches for additional physics beyond the standard model.
- Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV) 3 counts/ROI/t/y (after analysis cuts) Assay U.L. currently ≤ 3.5 scales to 1 count/ROI/t/y for a tonne experiment
- 44 kg of Ge detectors
 - -29 kg of 87% enriched ⁷⁶Ge crystals
 - 15 kg of ^{nat}Ge
 - Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 20 kg of detectors per cryostat
 - naturally scalable
- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto

String with 3 ^{Enr}Ge PPCs and 1 ^{Nat}Ge BEGe

Ultra-low-BG high-purity electroformed Cu mountings for Ge crystals

• Up to 5 detectors are mounted in 'strings'

- Semiconductor-grade acids, recrystallized CuSO₄, high-purity copper stock
- Baths circulated with microfiltration, barium scavenge; cover gas
- Active plating manipulation, surface machining, cleaning, and passivation

- 232 Th < I μ Bq/kg
- Recently improved bath chemistry: requires less surface finishing
- Improved starting stock quality and handling

Event selection for background rejection

- Main BGs:
 - High energy gammas
 - Neutrinos
 - Muon interactions
 - Spallation products

Simultaneous hits in >1 detector cannot be $0\nu\beta\beta$

Effective for:

- High energy external γ's, e.g. ²⁰⁸Tl and ²¹⁴Bi (2x-5x reduction)
- Some neutrons
- Muons (10x)

Simultaneous hits in >1 segment cannot be $0\nu\beta\beta$

- Rejects multi-site events distributed in z and ϕ
- Effective against internal γ's (2x-5x reduction)
- Requires additional electronics and small parts

Shielding against neutrons and gammas

Background Rate (c/ROI-t-y)

Majorana goals: milli-eV neutrino mass determination, as well as Majorana/Dirac determination

Nuclear materials emit neutrons from 3 different processes:

Neutron detectors

11/24/15

Illustrations in this section from: Neutron Detection Systems, Robert Runkle, PNNL Radiation Detection for Nuclear Security Summer School 2014

fast neutrons

1 keV

1 MeV

- Neutron detectors use nuclides that capture n and emit charged particles
- Reactions used include (σ 's below are for thermal n's)
 - − 10B(n, α) [σ ~4000 b] \rightarrow 2.31 and 2.79 MeV Q values \rightarrow ~1.5 MeV alphas
 - − 6Li(n,α) [σ ~1000 b] → 4.78 MeV Q → ~2 MeV alphas
 - − 3He(n,p) [σ ~5000 b] → 0.76 MeV Q → ~0.6 MeV protons
 - 157Gd (many reactions, to gammas and e's) [σ ~250,000 b !]
- Boron (BF₃ gas, or B-coated) proportional tubes
 - Inner surface of ionization chamber is covered with a thin coat of boron, or BF3 gas is used to fill the PC
 - Neutron is captured by a boron atom and an energetic alpha particle is emitted ${}_{5}^{10}B + {}_{0}^{1}n \rightarrow {}_{3}^{7}Li^{+++} + {}_{2}^{4}He^{++} + 5e^{-}$
 - Alpha particle and e's cause ionization within the chamber

www.centronic.co.uk

232Th and 238U chains in the NCD walls, along with 210Po surface activity, produce α 's that underlie the neutron capture peak. These events can be rejected by event by event analysis of digitized pulses.

(see "Event Identification by Pulse Shape Analysis")

• Electrons and Gammas

betas and gammas from the 232Th and 238U chains only deposit 764 keV through extensive multiple scattering. Less than 2x10-4 fall into the neutron window.

11/24/15

Sudbury Neutrino Observatory

SNO Neutral Current Detection Array

NCD Array:

³He proportional counters detect the neutrons liberated from deuterium by neutrinos.

Total Length:398 mVertical Strings:40n capture efficiency: $\epsilon_n \sim 21\%$

n aâa p u d u

u d

 V_{11}, V_{7}

 $V_{\theta}, V_{\mu}, V_{\tau}$

Charged current reaction, electron neutrinos only.

 $V_{\Theta}, V_{\mu}, V_{\tau}$ Interacts with any quark, so six ways to do this. Neutral current real

 $V_{\mu}, V_{\mu}, V_{\tau}$

Neutral current reaction, all neutrinos.

Elastic scattering with any neutrino.

z⁰

²⁴⁴Cm

Neutron Detectors for Security Monitors

"Significant Nuclear Material (SNM)" = Plutonium and highly enriched Uranium

Neutrons are not emitted with

significant intensity from natural sources

Spontaneous fission

- Even numbered plutonium isot
- 238j

numbered plutonium	
opes	S
J (very low intensity)	

spontaneous fission isotope	neutrons/g-s
²³⁸ U	0.011
²³⁸ Pu	2,500
²⁴⁰ Pu	1,020
²⁴² Pu	1,700

[Source: Nuclear Safeguards, Security, and Nonproliferation, JE Doyle]

11,000,000

SNM	Mass	Emissions from sphere	Neutron Flux @ 3 m	
Pu	8 kg	2 x 10 ⁶ n/s	2 n/(s⋅cm²)	
HEU	25 kg	100 n/s	10 ⁻⁴ n /(s·cm²)	

"SIGNIFICANT QUANTITIES" IAEA

[Source: Kouzes et al, doi:10.1016/j.nima.2007.10.026]

• Why not use widely available, highly efficient gamma-ray detectors?

	Gamma-rays	Neutrons
Sources	Essentially all radioactive materials, even beta emitters yield bremsstrahlung	Restricted to transuranic actinidesplutoniumcalifornium
	Can detect trace quantities of material, e.g. fission products	
Background	Originates from radionuclides in the environmental	Originates from cosmic-ray spallation events
	Highly variable over small distances	Highly variable over altitude, to a lesser extent latitude
	Dependent on local terra & anthropogenic	
	structures	Dependent on amount of surrounding high-Z material (ship effect)
	Weather variability due to radon	
Radiation Clutter	A serious problem	Manageable
Attenuation	Most effective with high-Z materials	Most effective with hydrogenous materials
	Typical attenuation lengths are O(cm)	Typical attenuation lengths are O(10 cm)

- Gamma spectroscopy (counting + precise energy spectrum) is useful when
 - Isotopic composition is measurement desired, or
 - Broad range of materials may be of interest, or
 - Source may be shielded by water or hydrogenous materials
- Neutron detectors (counting) are better when
 - Material mass is quantity of interest
 - Plutonium is source
 - Source may be shielded by high-Z materials

Goal: detect presence of a elevated neutron emissions with respect to background

- Neutron Detectors for Security Monitors It sounds easy but ...
 - acquisition times are limited
 - what constitutes an alarm?
 - backgrounds change during continuous acquisition
 - some gamma-ray sources are huge
 - innocent sources exist in commerce, albeit rarely

- 3He Neutron Detectors for Homeland Security Radiation Portal Monitors Contemporary counters rely on ³He for thermal neutron detection
 - hydrogenous moderator surrounds sample
 - tubes embedded in moderator

Current demands for ³He are greater than supply

- only current source from tritium decay
- tritium stocks dwindling
- recent supply has been ~60 kL/year from stockpile

National security demand (was) rising

GE-Reuter Stokes projects ~65 kL/year

- Liquid scintillator detectors have much faster response but low efficiency compared to 3He
 - For high-intensity sources (>10⁴ n/sec not a problem
 - Can use correlations (multi-neutron emission) to identify fission sources: n counts are not Poisson-distributed: larger variance

[Source: L. Nakae, LLNL]

IAEA and Nuclear Non-Proliferation

- IAEA Interest:
 - Improved knowledge of input plutonium mass at reprocessing facility or repository – currently no better than 5-10%
 - Research reactor power monitoring
 currently uses intrusive tech.
 - Verification of bilateral agreements
 maybe future role for agency
 - Detection with minimal overburden
 - allows widespread deployment

Atoms for Pear

Ad Hoc Working Group on Safeguards Applications of Antineutrino Detectors, 14 September 2011, Vienna, Austria

Karsten Heeger, Univ. of Wisconsin

Examples of monitoring detectors under development

CORMORAD: Gd/Plastic segments, no shield/veto

Rnd. Bkg x10² Rx On/Off Exp. signal/Obs.bkg ~1/100

LLNL/SNL: Gd-Water Cerenkov, poly shield/veto

Exp.signal/Obs.bkg ~1/100 Karsten Heeger, Univ. of Wisconsin PANDA36: Gd/Plastic segments, no shield/veto

SNL/LLNL: LiZnS/Plastic, poly shield/veto

Neutron capture PSD gives >10² bkg rejection

Careful assessment of cosmogenic and reactor background required Detectors with high selectivity of e+ and/or

Nucifer: GdLS, lead/poly/

veto, 7m from RR

neutron capture required

Ref: Bowden, LLNL

)ff