Thermal Neutron Detection
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Neutrons

1932 — Chadwick discovered the neutron

No charge, No Coulomb force, No Service!
* Interaction with detectors
* Interactions with nuclei

~10 min life time (free neutron)

Sources

* Nuclear Reactors, Spallation (accelerator based),
Fusion sources (D-T), Radioactive decay (?°2Cf, 25°Cm, 24°Pu)

Applications

* Nuclear, material science, imaging, medical physics
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Neutron Energy Ranges
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Interaction with Matter

Extremely weak electromagnetic interactions Radiation Protection
Penetration through matter Shielding is more
Nuclear interactions only, low probability at that el

Interaction is inversely proportional to energy It’s about probability,

not density

Electron

dloud Atypical materials:

paraffin, borated
materials (concrete,
water, polyethylene)

MNucleus

Travelling
neutron

UNIVERSITY of WASHINGTON



Neutron Cross Section

Cross section is measure of the probability for a reaction between
particles

« “Barn” has area dimensions (10-28 m?)

« Microscopic — probability of reaction between neutron and nucleus

* Macroscopic — probability of interaction between neutron and

-

Absorbtion Fission Scattering

material

Typical reactions
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Neutron Detection

Cross Section vs. Energy

» Cross section goes down as energy increases so slow neutrons (thermal)
have a vastly different detection scheme than fast neutrons

* Moderator material is used to slow neutrons down thereby generally
increasing detection efficiency (to an extent...)

» Fast Neutron spectroscopy allows for detection to quantify incoming
neutrons and deduction of incoming neutron energy.

« Thermal neutrons allow for greater chances of interaction, producing
secondary (charged) particles.
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Neutron Detection /

Nucleus
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Elastic Scattering \
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Max Energy Transfer o

H 1 1.0
’H 2 0.89
3He 3 0.75
“He 4 0.64
12C 12 0.28
160 16 0.22
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Neutron Detection

Capture / Absorption

Radiative capture — absorbs n, emits y.

Transmutation — absorbs n and emits p or.

Important for radiation protection and
reactor physics

Shielding/Attenuation/Moderation

 Material to slow
 Material to absorb

E.g. Boron, Cadmium, Gadolinium
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Why Thermal Neutrons?

Single Event Effects Testing

Cosmic and Atmospheric Neutrons

High Energy

Oxide Neutron * Primary radiation (100s of GeV for cosmic rays)

Imsulation

Gate
» Spacecraft and high energy accelerator

environments
« LANSCE/WNR & TRIUMF (800 MeV & 500 MeV)

Thermal to 14 MeV Neutrons
* Produced by fission, fusion, and weapons
» Borophosphosilicate glass (BPSG), SRAM FPGA
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Safety First

Radiation Protection

 People are excellent moderators!
« Regulatory limits & Q factors for absorbed dose
» Absorbed dose = equivalent dose =>effective dose

Type of Radiation Quality Factor (Wg)

X-ray, gamma, beta 1
Alpha 20
Thermal neutrons (0.025 eV) 2

Fast Neutrons (1 — 20 MeV) 11-6.5
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Thermal Neutron Detection

Spherical Cow

« Large cross section so the detector can be smaiui
« Target material should be abundant and cheap
« Discriminate gamma from neutron radiation

« High Q-value

« Reaction products captured by the detector
Recoil nucleus, proton, alpha particle, fission fragments

* Nice clean full-energy peak
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Thermal Neutron Detection
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* SLi(n,0) reaction
« 3He (n,p) reaction

* Neutron induced
fission reactions
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