Thermal Neutron Detection

Louie Cueva December 8, 2015 PHYS 575

Neutrons

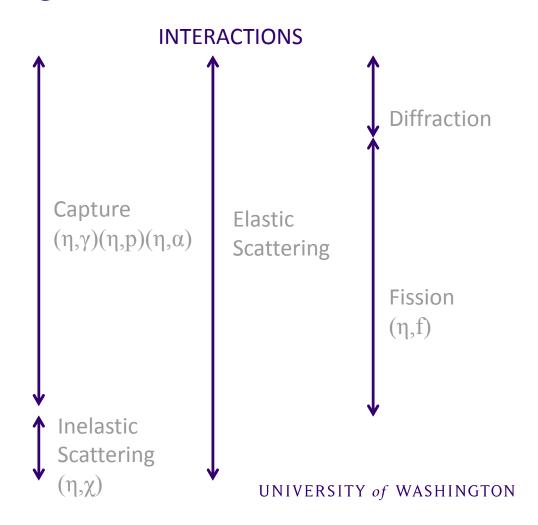

- 1932 Chadwick discovered the neutron
- No charge, No Coulomb force, No Service!
 - Interaction with detectors
 - Interactions with nuclei
- ~10 min life time (free neutron)
- Sources
 - Nuclear Reactors, Spallation (accelerator based),
 Fusion sources (D-T), Radioactive decay (252Cf, 250Cm, 240Pu)
- Applications
 - Nuclear, material science, imaging, medical physics

Fig 1. Chadwick (nobelprize.org)

Neutron Energy Ranges

	<u></u>
< 0.005 eV	Cold
0.025 eV	Thermal
0.02 eV	Epithermal
1 – 10 eV	Slow
300 eV - 1 MeV	Intermediate
1 – 20 MeV	Fast
> 20 MeV	Ultra Fast

Interaction with Matter

Extremely weak electromagnetic interactions
Penetration through matter

Nuclear interactions only, low probability at that Interaction is inversely proportional to energy

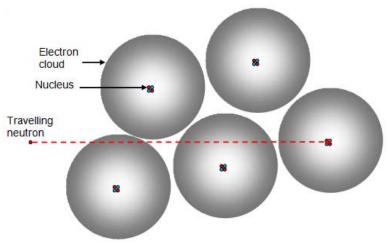


Fig 2. Neutron Interaction (explorcuriosity.org)

Radiation Protection

- Shielding is more complicated
- It's about probability, not density
- Atypical materials: paraffin, borated materials (concrete, water, polyethylene)

Neutron Cross Section

- Cross section is measure of the probability for a reaction between particles
 - "Barn" has area dimensions (10⁻²⁸ m²)
 - Microscopic probability of reaction between neutron and nucleus
 - Macroscopic probability of interaction between neutron and material
- Typical reactions

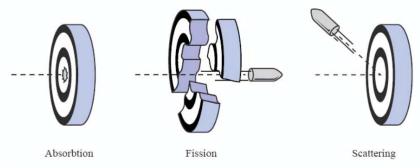
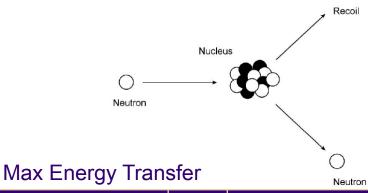


Fig 3. neutron reactions (nucleonica.net)

Neutron Detection

Cross Section vs. Energy


- Cross section goes down as energy increases so slow neutrons (thermal)
 have a vastly different detection scheme than fast neutrons
- Moderator material is used to slow neutrons down thereby generally increasing detection efficiency (to an extent...)
- Fast Neutron spectroscopy allows for detection to quantify incoming neutrons <u>and</u> deduction of incoming neutron energy.
- Thermal neutrons allow for greater chances of interaction, producing secondary (charged) particles.

Neutron Detection

Elastic Scattering

- Light nuclei scattering is most common method for fast neutron detection.
- Collision results in a recoil nucleus that (in the case of H) can transfer between 0-100% of incident neutron energy
- Recoil nucleus behaves like a proton or alpha particle for detection purposes

Fig 4. elastic scattering (www.hep.umn.edu)

Target Nucleus	Α	E _R /E _N
¹ H	1	1.0
² H	2	0.89
³ He	3	0.75
⁴ He	4	0.64
¹² C	12	0.28
¹⁶ O	16	0.22

Neutron Detection

Capture / Absorption

- Important for radiation protection and reactor physics
- Shielding/Attenuation/Moderation
 - Material to slow
 - Material to absorb
- E.g. Boron, Cadmium, Gadolinium

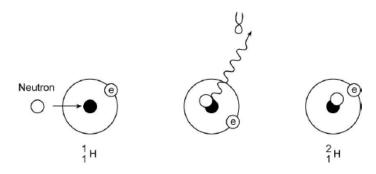


Fig 5. radiative capture (www.hep.umn.edu)

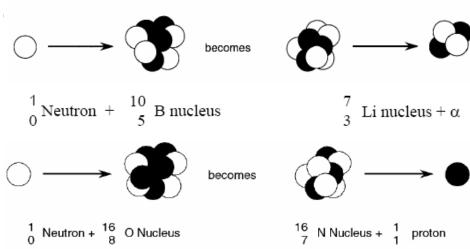


Fig 6. transmutation (www.hep.umn.edu)

Why Thermal Neutrons?

Fig 7. neutron induced upset (eetimes.com)

Single Event Effects Testing

- Cosmic and Atmospheric Neutrons
 - Primary radiation (100s of GeV for cosmic rays)
 - Spacecraft and high energy accelerator environments
 - LANSCE/WNR & TRIUMF (800 MeV & 500 MeV)
- Thermal to 14 MeV Neutrons
 - Produced by fission, fusion, and weapons
 - Borophosphosilicate glass (BPSG), SRAM FPGA

Safety First

Radiation Protection

- People are excellent moderators!
 - Regulatory limits & Q factors for absorbed dose
 - Absorbed dose → equivalent dose → effective dose

Type of Radiation	Quality Factor (W _R)
X-ray, gamma, beta	1
Alpha	20
Thermal neutrons (0.025 eV)	2
Fast Neutrons (1 – 20 MeV)	11-6.5

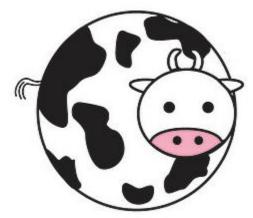


Fig 8. neutron meters (ludlums.com)

Thermal Neutron Detection

Spherical Cow

- Large cross section so the detector can be small
- Target material should be abundant and cheap
- Discriminate gamma from neutron radiation
- High Q-value
- Reaction products captured by the detector
 - Recoil nucleus, proton, alpha particle, fission fragments
- Nice clean full-energy peak

Thermal Neutron Detection

Reality

- 10 B (η,α) reaction
- 6 Li (η,α) reaction
- ³He (η,p) reaction
- Neutron induced fission reactions

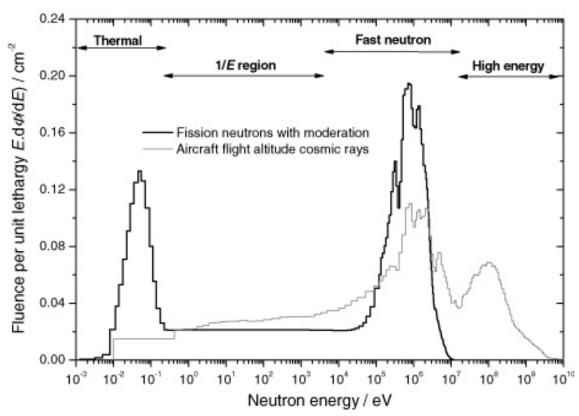


Fig 9. neutron energy (iopscience.iop.org)

References

- [1] Dyer, C., Hands, A., Ford, K., Frydland, A., & Truscott, P.(2006). Neutron-Induced Single Event Effects Testing Across a Wide Range of Energies and Facilities and Implications for Standards. *IEEE Transactions on Nuclear Science*, 53(6), 3596-3601. doi:0.1109/TNS.2006.88627
- [2] Knoll, G. (2010). Radiation Detection and Measurement (4th ed.). New York: Wiley.
- [3] Shleien, B., Slaback, Jr., L., & Birky, B. K. (1998). *Handbook of Health Physics and Radiological Health* (3rd ed.). Maryland: Lippencott Williams & Wilkins
- [4] Hamilton, D. (2006). Neutron Interactions with Matter. *European Commission Institute for Transuranium Elements*. Sept. 14, 2006