Silicon Photomultiplier Tubes

Fig. 1. Picture of a 4x4 r*nrn2 SiPM die. The
SiPM consists of a matrix of micro-cells all
connected in parallel. Each micro-cell is a GM-
APD and it represents the basic sensitive
element of the SiPM.
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Fig. 2. The parallel arrangement of GM-APDs with
series guenching resistor in a SiPM.
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Fig. 3. The equivalent circuit of a GM-APD
with series quenching resistor and external
bias. The switch models the turn-on
{photon absarption or dark event) and
turn-off (quenching) probabilities.

http://advansid.com/attachment/get/up_89_1411030571.pdf
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Vladimir Zworykin — Inventor of
first Multidynode PMT
http://russiapedia.rt.com/

prominent-russians/science-and-
technology/vladimir-zworykin/
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* Large voltage
* Photocathode
 Multidynode

* |Internal vs External

Gain
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e Quantum Efficiencies
QE = 21240 % 100%

S = radiant sensitivity in A/W
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Schematic of a photomultiplier tube.
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Photon Detection

Efficiency:

Blue 20% 50% 20% 12%
Green-yellow A few % 60-70% A few % 15%

Red <1% 80% <1% 15%

Gain 10° - 107 100-200 103 106
Voltage Level 1-2 kV 100-500 V 20 kV 25V
Operation in H-field  Problematic OK OK OK
Threshhold 1 ph.e. ~10 ph.e. 1 ph.e. 1 ph.e.
Sensitivity

S/N >>1

Timing/10, ph.e. ~100 ps A few ns ~100 ps 30 ps
Dynamic Range ~10° Large Large ~103/mm?
Complexity High Medium Very high (hybrid Relatively

(vacuum, HV) (low noise technology, very low
electronics) HV)
http://www.slac.stanford.edu/pubs/icfa/fall01/paper3/paper3.pdf



Semiconductor Industry

Old Technology = BAD
Semiconductor Technology = GOOD

A semiconductor based PMT needed to have
limited external gain, while having very high
internal gain

Bipolar and Unipolar Transistors have limited
bandwidth, while photoconductors are not
suitable for internal gain of 10°— 10’

Solution discovered in late 60s




APD

e Avalanche Photodiode
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http://www.olympusmicro.com/primer/
digitalimaging/concepts/avalanche.html



* With positive feedback
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Optimum Gain determined
by ratio of electron to hole
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Material with optimum
natural path length turns
out to be Silicon with a
Gain of ~100. Even
artificial materials are
time consuming, difficult
to make and the overall
results are barely better
than that of Silicon.

ADP still not ideal...
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SPAD (Single Photon
Avalanche Detector)

* Geiger Mode — One or more

Single height

photons hit the photodiode, dark count
which produces a current count (from Crosstalk)
sufficient to short this circuit.

Double-height dark

The circuit then h Therefore two important differences exist
€ circul €n has a recovery between the SPAD and the traditional PMT:

time proportional to the time 1. Dead Time — whereby the circuit must
constant of the RC circuit. Thus recharge before more detections are
this method of detection is made.
very analogous to that of a 2. Photon-at-a-time Counting — could be
Geiger counter one photon could be millions the
iy voltage produced will always be the
) same.
? R Dark currents also provide a problem; due to
| the charge/discharge times the maximum
H ’\ [\ k [\ frequency of detection  fmax = 1/T,, while
\\_X C | R | due to dark currents the minimum frequency
V5 R, t fmin =J A /e, means that we must keep the
total area of the detector low in order to

= adequately detect low frequency signals.



T Vout Vi < Vio

linear mode
——V ' tme  (APD)

Vout
R, Vip > Vo

” H ’ ‘ Geiger mode
time  (SPAD)

light signal in

In the linear mode of operation (APD) the
output signal waveform is a

replica of the input, whereas in the Geiger
mode of operation the SPAD supplies

a series of pulses, all equal in waveform,
whose rate is proportional to the input
light power.
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The early APDs (top left) featured a reach-through
structure with a deep depletion layer for absorption,
required high bias voltage and had long transit time,
whereas the first SPADs (top right) used a much thinner
absorption layer that reduces bias voltage and improves
response time and dark current, at the expense of an
earlier red A-cutoff. Recent improvements (bottom), use
a deep p-guard ring to control edge breakdown and n-
trench to reduce diffusion and dark current, in an SPAD
structure which is CMOS compatible.



Solid State Photomultiplier Tube
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NOVEMBER/DECEMBER 2014
In an SSPM, the device is arrayed into a large number of
individual pixels, each with an SPAD. Output currents are all
summed up in a common load R; . If three photons are
received simultaneously, because of statistics they will hit
separate pixels and trigger different SPADs, thus injecting
into load R, a current three times the single-pixel current. To
allow separate quenching of each individual SPAD of the
array, each pixel has its own ballast resistance.

Make a tight array of, for
example 400 SPADs of area
50 X 50 um? with all currents
from individuals added
together to produce a single
output signal.

http://www.sensl.com/downloads/ds/TN%20-%20Intro%20t0%20SPM
%20Tech.pdf



Reliance on Statistics

* |f you make the individual area of a pixel small
enough, and increase the density of pixels, then
the likelihood of problematic photon-at-a-time
counting is limited

* Aslong as number of pixels is larger than the
product of recovery time and photon rate, each
pixel should have enough time to recover before
another photon would come. In this way dead
time is mitigated

* Densities of up to 4000/mm? are common
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e SiPMTs are able to
produce smaller jitter
because of the ability to
place processing
equipment directly
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- oy * Power required is ¥25V
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- use of photodiodes and
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photodiode.

http://www.hamamatsu.com/us/en/community/optical_sensors/tutorials/guide_to_detector_selection/index.html



PIN APD PMT SPM
Gain 107 10° 105
Operational Bias | ow High High | ow™
Temp. Sensitivity | High Low L
g:gﬂ;‘t'::gi High Medium Low High
‘:‘;’;t;':l'::;,'fht OK OK NO OK
spectral range Red Red Blue/UV Green
Readout / Electronics Complex Complex Simple Simple
Form factor Compact Compact Bulky Mpa
Large area available? Mo Mo Yes Yes
?glr:f;t?we to magnetic Yes™ Yes™ Yes Mo
Moise L ow Medium High
Rise time Medium Slow Fast Fast

* Due to the requirement for the external electronics fo be located close fo the defector
** SPM from SenslL, having an operational bias of 30V, meet the requirements of the Extra Low Voltage directive

http://www.sensl.com/downloads/ds/TN%20-%20Intro%20t0%20SPM%20Tech.pdf



THE END
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