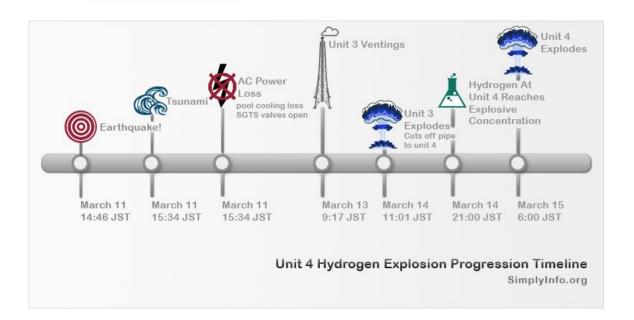

Town of Miharu's Response to Fukushima: An Application of Dosimetry

OUTLINE

Торіс
Fukushima Disaster
Timeline of Events
Town's Response
Radionuclide Impact on Human Biology
Radionuclides as the Solution
Optically Stimulated Luminescence
Physics of OSL Badges
Measuring the Impact of the Radiation
Legacy of the Misho Project

Fukushima Disaster



- > A tsunami as a result of a 9.0 earthquake disabled the power supply and cooling of three Fukushima Daiichi reactors,
- > Accident on March 11, 2011; three cores largely melted in the first three days.
- After two weeks, the three reactors (units 1-3) were stable with water addition
- No deaths or cases of radiation sickness from the nuclear accident
- > Over 100,000 people were evacuated with a resulting 1000 deaths from this activity

Timeline of Events

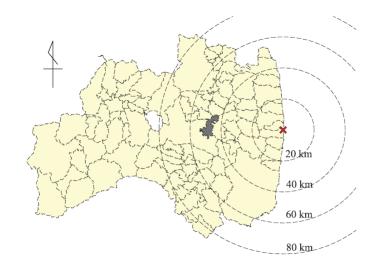


Figure 1. Map of Fukushima Prefecture. Miharu town is coloured black. The location of FDNPP is marked X. Miharu is located \approx 45 km west of FDNPP.

- > Miharu is only 45KM from FDNPP
- > By March 15 concerns about radiation reached town
- > Government only commented on evacuation
- > Mayor and Townspeople decided that "Civil Disobedience" was the choice

Town's Response

Radionuclide Impact on Human Biology

Key considerations is the difference between an accumulated dose vs. an ingested dose. An iodide prophylaxis is proven to be effective in blocking accumulation of radioactive iodine in the thyroid.

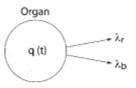


Fig. 9-1 Radionuclide consisting of N atoms with activity $q(t) = \lambda N$ is assumed to be distributed uniformly in an organ mass from which radioactive atoms are cleared by both radioactive transformation (λ_i) and biological removal (λ_b).

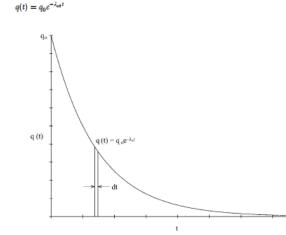
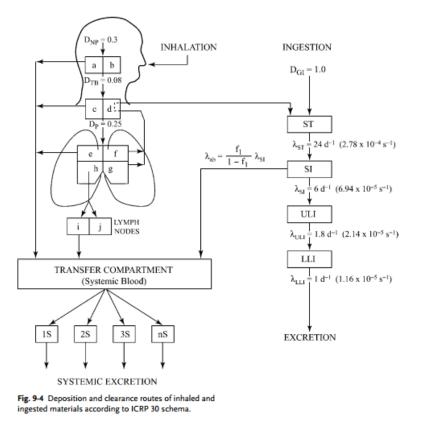



Fig. 9-2 Variation of the instantaneous dose rate with time after deposition in a tissue from which it is removed by radioactive transformation and biological processes, or with an effective removal constant $\lambda_{\rm eff} = \lambda_r + \lambda_b$.

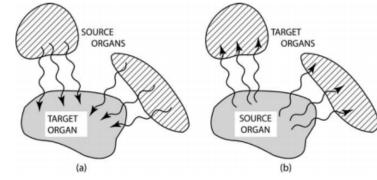


Fig. 9-3 A radionuclide may be deposited such that (a) more than one source organ produces absorption of energy in a target tissue, or (b) a source organ can produce energy absorption in more than one target tissue.

Radionuclide as the Solution

The side effects from the Na-I or lower than the effect of radiation in people under 40.

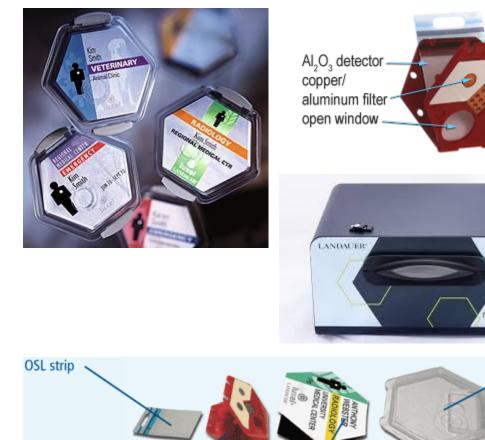
Table 1. Reference levels for different population groups for consideration in planning stable iodine prophylaxis^e

Population group	Exposure pathways to be considered	Reference levels
Neonates, infants, children, adolescents to 18 years and pregnant and lactating women	Inhalation (and ingestion ^b)	10 mGy ^c avertable dose to the thyroid
Adults under 40	Inhalation	100 mGy ^c avertable dose to the thyroid
Adults over 40 years	Inhalation	5 Gy ^d projected dose to the thyroid

Notes

^aThese idealized levels do not take into account the practicalities involved in planning to respond to an accident involving many radionuclides in unknown quantities in real time. For this reason, a generic intervention level of 100 mGy has been specified in the Basic Safety Standards. Nevertheless, this does not preclude the need to consider the practicality of planning to implement iodine prophylaxis for specific age groups.

^bIngestion of milk by infants where alternative supplies cannot be made available.


^cAdherence to these values would ensure that doses for all age groups would be well below the threshold for deterministic effects.

^dIntervention for this group is undertaken to ensure prevention of deterministic effects in the thyroid. 5Gy is the recommended limit for deterministic effects given in the Basic Safety Standards.

Table 2. Recommended single dosage of stable iodine according to age group

Age group	Mass of iodine mg	Mass of KI mg	Mass of KIO ₃ mg	Fraction of 100 mg tablet
Adults and adolescents (over 12 years)	100	130	170	1
Children (3–12 years)	50	65	85	1/2
Infants (1 month to 3 years)	25	32	42	1/4
Neonates (birth to 1 month)	12.5	16	21	1/8

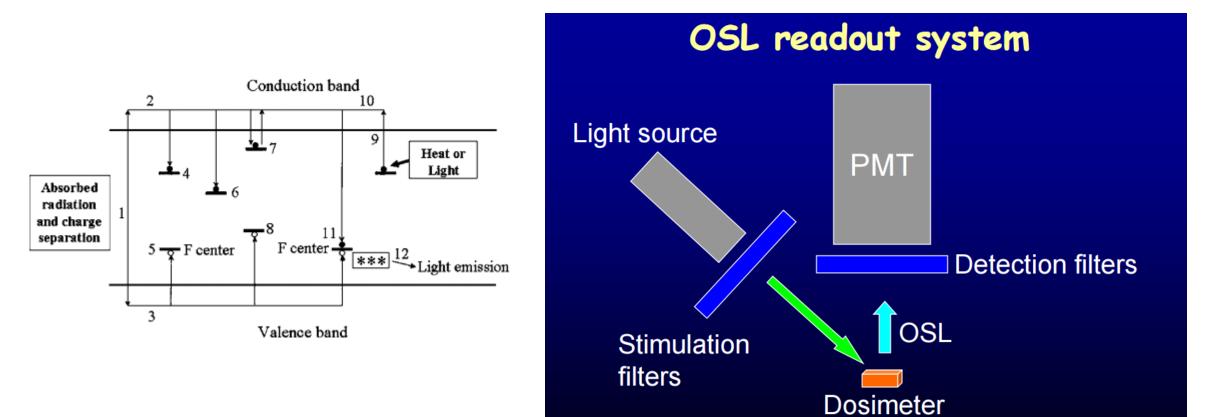
Optically Stimulated Luminescence

Paper pouch

with participant identification

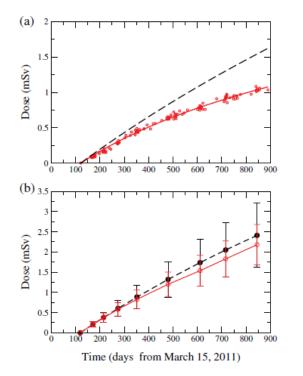
Multi-element filter pack

aluminum filter imaging filter plastic filter nicrostari Plastic blister pack


Neutrak dosemeter

(option)

- > To determine impact of the radiation, school children were provided OSL badges
- > Regular readings were taken to determine exposure
- Cross checking was done > via controls at a series of schools
- > Unique because in Japan civilians are not allowed this type equipment!


Physics of the OSL Badges

Stored energy from the badge material is stimulated via light, and energy is released as luminescence. This can be used even years after exposure to check radiation levels/quality.

Measuring the Impact of the Radiation

Collecting data with the OSL badges, as well as measurements with a Geiger counter, researchers showed a negligible impact of the radiation.

Figure 11. (*a*) Cumulative dose reading as a function of days of a reference OSL badge placed in the Miharu building office. Open circles are read values with a solid fitting curve with a weathering factor as one of the parameters. The dashed curve without weathering is also shown for comparison. (*b*) Similar to (*a*) for the 522 students who made all eight measurements over more than two years. The red curve represents the measured trend, while the dashed one is a prediction based on the first read-out values without the weathering factor. Error bars represent one standard deviation (σ).

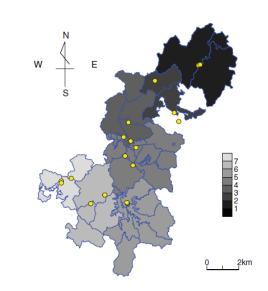


Figure 7. Map of Miharu town. Yellow circles are locations of the schools surveyed.

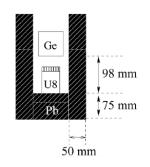
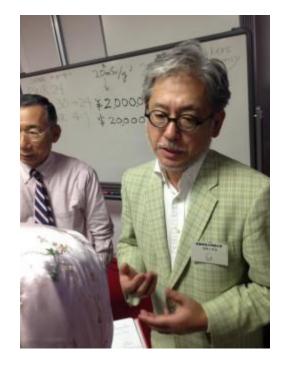
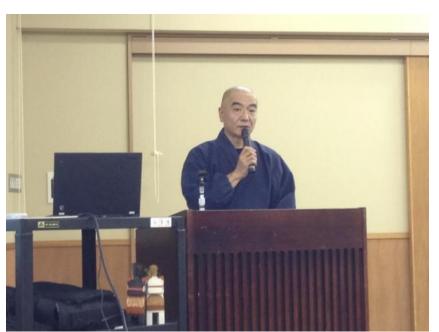




Figure 8. Schematic diagram of measurement setup. A germanium crystal of diameter 70 mm \times 70 mm and a U8 polystyrene container of diameter 50 mm \times 65 mm were placed inside a lead-brick chamber. The distance between the lead surface and the end cap of the Ge detector was 98 mm.

Legacy of the Misho Project

Proactive treatment and ability for civilian response in conjunction with a low cost radiation monitoring method makes this a future model for other potential areas of exposure.

