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Why Micro XRF?
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Some pixels can be very different
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Mars 2020 Mission

 M2020 Science Objectives Mars 2020 Rover
— Habitability: Characterize the geologic L ik
record for astrobiologically relevant e VEA S R e S:;‘Mm‘z”c'm'
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Calibration Target

— Biosignatures: Search for materials with oot —
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MEDA Thermal Infrared Sensors

— Prepare for Humans: Demonstrate in situ 3 x MEDA Air Temperature Sensors

resource utilization technologies and characterize dust size and morphology

e Mission life: 1.5 Mars years/1005 Martian days
* Flight Instruments delivered by Fall 2018, Launch July 2020, Land February 2021

e Instrument Complement:
— Mastcam-Z and Supercam for panoramic/stereo imaging and chemical analysis
— MEDA for weather
— RIMFAX ground penetrating radar
— MOXIE technology experiment to produce Oxygen from CO,
— SHERLOC and WATSON for UV Raman and high resolution imaging
— PIXL: Topic of today’s talk and the coolest instrument on the Mars 2020 Mission!

Elam, PIXL Seminar, Nov 2015 http://mars.nasa.gov/mars2020/mission/instruments/



Assessing Past Environments
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Element maps reveal concentrated vanadium and copper in the
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black spot — a potential biosignature in sandstone
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The Problem

Significant low energy counts when using high energy sources is not understood

Differences observed in soft and hard x-ray output functions using the same detectors

SDD response functions well researched and modeled for low energy x-rays

Not so for high energy x-rays
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Hypothesis

Any photon incident to the detector will have one of four fates:

1. Photon is fully absorbed, its full energy is captured by the detector

2. Photon passes through the detector with no interaction, no energy is captured by the detector
3. Photon scatters inelastically in the detector, the scattered photon is then absorbed without
escaping the detector. All of the incident photon energy is captured by the detector and
measured as one count.

4. Photon scatters inelastically in the detector; the scattered photon then escapes the detector
with no subsequent interactions. Only the energy transferred to an electron during the scattering
event is captured and measured by the detector.

We think case #4 is the cause of low energy counts being registered when there are no low
energy photons present.
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The physics of the four processes

photon absortion in Amptek X-123SDD at 10keV
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Numerical modeling of the problem

We don’t have access to a monochromatic source
Must work backwards from the experimental source peak to derive the incident x-ray beam

hJa_n*a.mL. i ial

Number of electrons contributing to the compton scattering response calculated numerically
Energy of each electron is calculated
Compton response and source peak response are summed as the total response function
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Experimental Data
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Comparison of model and experiment
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Looks pretty good!



What's next?

* Design and run a better experiment:
higher counts, cleaner data

e Statistical comparison of model and
experimental data to quantify the
accuracy of the model

* Send this thing to Mars and check out
some rocks




Thank you

any guestions???

Curiosity celebrates 2 Earth Years on Mars in ‘Hidden Valley’
Credit: NASA/JPL/Ken Kremer/Marco Di Lorenzo




