Physics Invention Sequences Users' Guide: Entropy

ENTROPY INVENTION SEQUENCE

Includes: *possibility rule* (total entropy change of naturally occurring process >0)

Teacher Notes: Entropy change is a challenging concept, and the 2^{nd} law has new structures that confound students. Unlike energy, there is no balancing that has to take place, yet students tend to see entropy as a conserved quantity. One challenge for students is to understand what is meant by the 'total entropy change of the universe'. We make no pretense of teaching entropy rigorously in the statistical mechanics sense, but do think all students who have studied introductory thermodynamics should understand the limits that the 2^{nd} law puts on energy transformation processes. A correct qualitative understanding of the 2^{nd} law is essential for many engineers, and for life science majors.

Levels: This sequence is appropriate for college level.

Possibility Rule

There are 6 events described in Table 1 below. Some are realistic, others are ones you've never seen before. Are all of them possible? If not, why not?

Let's explore based on the relevant conservation laws. If it doesn't happen, does that mean it violates the conservation of energy? Use each as a test of the first law of thermodynamics (conservation of energy) by finding the total energy exchanged by the heating/cooling combinations below. Then do the same for the entropy changes.

	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6
	Two touching	Two touching blocks	Ice cube	Puddle of 0°C	Sun(1)	Earth(2)
	blocks T ₁ =280K	are at the same	(m=0.1 kg)	water forms	Transfers	Transfers
	and $T_2=320K$	initial temperature of	melts in	into an ice	58 MJ of	58 MJ of
	come to thermal	300K. Block 1 cools	kitchen	cube (m=0.1	thermal	thermal
	equilibrium in	to T_1 =280K and	(which can	kg) in a	energy to	energy to
	perfect thermal	thereby warms	be treated as	kitchen,	the	Sun(1)
	isolation from	Block 2 to $T_2=320K$	a hot	thereby	earth(2)	
	their	in perfect thermal	reservoir that	transferring		T _{sun} =
	surroundings.	isolation from their	transfers heat	heat to the hot	T _{sun} =	5800 K
	Each has a heat	surroundings. Each	to ice) that is	reservoir that	5800 K	T _{earth} =
	capacity	has a heat capacity	300K.	is 300K.	T _{earth} =	290 K
	$C_p = 200 \text{ J/K}.$	$C_p=200 \text{ J/K}.$	$L_{f(ice)} = 3.34 \text{ x}$	$L_{f(ice)}=3.34 \text{ x}$	290 K	
			10 ³ J/K	10 ⁵ J/K		
Final	$T_1 = T_2 = 300 \text{ K}$	$T_1 = 280 \text{ K}$	$T_1 = 273 \text{ K}$	$T_1 = 273 \text{ K}$	$T_1 = 5800 \text{ K}$	$T_1 = 5800 \text{ K}$
Temps		$T_2=320 \text{ K}$	$T_2=300 \text{ K}$	$T_2=300 \text{ K}$	$T_2=290 \text{ K}$	$T_2=290 \text{ K}$
0	$\perp A \downarrow I$	11-1	$3.34 \times 10^4 I$	$3.34 \times 10^4 I$		
\mathbf{Q}_{I}	$\pm 4 \text{ kJ}$	- 4 KJ	3.34×10^{-3}	-3.34×10^{-3}		
Q_2	- 4 kJ	+4 kJ	$-3.34 \times 10^4 J$	$3.34 \times 10^4 J$		
50						
20	0	0	0	0		
	0	U	0	0		
ΔS_1	+ 13.8 J/K	- 13.8 J/K	+ 122 J/K	- 122 J/K		
45.	120 I/K	$\pm 120 I/K$	111 I/K	+ 111 I/K		
<u>дз</u> 2	- 12.9 J/N	\pm 12.9 J/K	- 1 1 1 J/K	· 111 J/K		
$\Sigma(\Delta S)$	+0.9 J/K	- 0.9 J/K	+11 J/K	-11 J/K		

Table 1:

© 2013 S. Brahmia, Rutgers Unversity, A. Boudreaux, Western Washington University,

S. Kanim New Mexico State University; reproduction by permission only

Follow up questions

- 1. Describe the conservation of energy, in words, in the context of thermal energy transfer between two objects for each event.
- 2. Do any of the events violate your description of the conservation of energy? If so, which ones?
- 3. Do you notice any patterns in the table? Namely, is there anything that all of the everyday occurrences share, that the impossible ones don't?
- 4. Describe this pattern in the form of a hypothesis that starts with "Events occur spontaneously in nature if..."

Applying the Rule

A. The following events describe heat transfer between two objects, 1 and 2. Based on your rule in I, which of the following events in Table 2 can occur?

	Q 1	T ₁	Q_2	T_2
Event A	+20J	100K	-20J	101K
Event B	-50J	75K	+50J	75K
Event C	+33J	201K	-33J	200K
Event D	+47J	300K	-45J	302K

Table 2

In your own words: What must be true about processes that involve heat transfer in order for them to be physically possible?

Name that quantity: Invent a name for $\Sigma(\Delta S)$

© 2013 S. Brahmia, Rutgers Unversity, A. Boudreaux, Western Washington University, S. Kanim New Mexico State University; reproduction by permission only