DEVELOPMENT OF A METHODOLOGY FOR THE NUMERICAL SIMULATION OF TIDAL TURBINES

> Teymour Javaherchi Prof. Alberto Aliseda

- 1. Introduction
- 2. Single Moving Reference Frame (SRF)
- 3. Virtual Blade Model (VBM)
- 4. Actuator Disk Model (ADM)
- 5. Results
- 6. Summary
- 7. Future Work

Introduction

- > NREL Phase VI turbine.
- Single Moving Reference Frame (SRF)
- Virtual Blade Model (VBM)
- > Actuator Disk Model (ADM)
- > Main focus is the far wake of the turbine.

- 1. Introduction
- 2. Single Moving Reference Frame (SRF)
- 3. Virtual Blade Model (VBM)
- 4. Actuator Disk Model (ADM)
- 5. Results
- 6. Summary
- 7. Future Work

Single Moving Reference Frame

SRF is a model to simulate rotating flows with axisymmetric boundary conditions in a simplified environment.

Single Moving Reference Frame (SRF)

Single Moving Reference Frame (SRF)

Results from SRF

- 1. Introduction
- 2. Single Moving Reference Frame (SRF)
- 3. Virtual Blade Model (VBM)
- 4. Actuator Disk Model (ADM)
- 5. Results
- 6. Summary
- 7. Future Work

Virtual Blade Model (VBM)

- In this model the geometry of the blades and the flow around the blades are not resolved.
- > Thus, the blades are accounted for, without actually being present (Blades are Virtual).
- This technique models the rotor through source terms in the momentum equation.

VBM Mesh

Inputs for VBM

Rotor Inputs	;				Roto	or Inputs		<u> </u>
Number of Rotor Zones 1			Number of Rotor Zones 1					
Active Rotor Zone 1 🔶 Change/Create			Active Rotor Zone 1 🖕 Change/Create					
Trimming								
General Geometry Trimming			General Geometry Trimming					
Number of Blades 2	Rotor Disk		Numb	er of Sections	20			
Rotor Radius (m) 5.53	Pitch Angle (deg)		Hub					T
Rotor Speed (rpm) 72	Bank Angle (deg) 90		No.	0.25	0.73	twist (deg)	s809	
Tip Effect (%) 96	Blade Pitch		2	0.27	0.71	-14	s809	
Rotor Disk Origin Rotor Face Zone	Collective (deg) -5.5		3	0.3	0.7	-12	s809	
X (m) 0 Surfaces	Cyclic Sin (deg)		4	0.35	0.67	-8	s809	
Y (m) 0 default-interior default-interior:	Plade Elapping		5	0.41	0.64	-5.3	s809	
	Cone (deg) 0		' Tip		1	1		
	Cyclic Sin (deg) 0							
	Cyclic Cos (deg)							
						Connect		
OK Cancel Help						ancel	негр	

Plus a table of lift and drag coefficient as a function of Angle of Attack (AOA).

VBM Iteration Procedure

- 1. The source term is unknown at the beginning.
- 2. The initial velocity field is used to obtain a local AOA, Mach and Reynolds number.
- 3. Based on AOA, lift and drag coefficient will be interpolated from the look-up table.
- 4. The lift and drag forces will be calculated as fallow:

$$f_{L,D} = C_{L,D}(\alpha, Ma, Re) * c\left(\frac{r}{R}\right) * \frac{\rho. u_{tot}^2}{2}$$

- 5. New sources and then new velocity is calculated.
- 6. The iteration will repeated till convergence.

- 1. Introduction
- 2. Single Moving Reference Frame (MRF)
- 3. Virtual Blade Model (VBM)
- 4. Actuator Disk Model (ADM)
- 5. Results
- 6. Summary
- 7. Future Work

Actuator Disk Model (ADM)

- > Turbine is modeled as a homogeneous disk.
- > The disk evenly spreads out the blades effect.
- The disk supports a pressure difference, but not an axial velocity difference.
- > "Porous Disk"
- > Two coefficients for modeling a Porous media.
- > The coefficients were evaluated based on the Actuator Disk Theory and results from VBM.

- 1. Introduction
- 2. Single Moving Reference Frame (MRF)
- 3. Virtual Blade Model (VBM)
- 4. Actuator Disk Model (ADM)
- 5. Results
- 6. Summary
- 7. Future Work

.5 Y/R

ZIA

2

1.5

1

0.5

0

 $\begin{smallmatrix} 1 \\ 1 \\ 0 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.8 \\ 1 \end{smallmatrix}$

-11

Vy/V0 1.20 1.15 1.10 0.99 0.83 0.78 0.73 0.68 0.68 0.68 0.68 0.657 0.52 0.57 0.52 0.47

SRF vs. VBM

Model	Number of Mesh Element [mil.]	Number of Iterations	Calculated Power [Watt]
SRF	5.10	12000	5200
VBM	1.65	2500	5400

Changing Turbulent Intensity (TI)

- Turbulent Intensity for the first set of simulation was 1% based on NREL test conditions in the AMES wind tunnel.
- To have more realistic simulations, the background turbulence intensity was changed to 10%.

VBM 1% TI vs. VBM 10% TI

VBM / Velocity Contour / X-Cut / 1% Turbulent Intensity

VBM / Velocity Contour / X-Cut / 10% Turbulent Intensity

VwV0 1.20 1.15 1.10 1.04 0.99 0.94 0.89 0.83 0.78 0.73 0.68 0.63 0.57 0.52 0.47 0.42

1.20 1.15 1.10 1.04 0.99

0.94 0.89 0.78 0.78 0.68 0.68 0.63 0.57 0.52

VBM 1% TI vs. VBM 10% TI

Turbulent intensity [%]	1.00	10.00	Difference [%]	
Thrust [N]	1254.27	1258.00	0.30	
Torque [N-m]	718.15	722.76	0.64	
Power [Watt]	5414.75	5449.53	0.64	
Min. Angle of Attack [deg]	5.12	5.21	1.76	
Max. Angle of Attack [deg]	7.54	7.55	0.13	

Turbulent Intensity does not effect the amount of extracted power, but it has effect on length of the turbulent wake.

Vy/V0 1.20 1.14 1.09 0.97 0.91 0.86 0.80 0.74 0.69 0.63 0.57 0.51 0.46

- 1. Introduction
- 2. Single Moving Reference Frame (MRF)
- 3. Virtual Blade Model (VBM)
- 4. Actuator Disk Model (ADM)
- 5. Results
- 6. Summary
- 7. Future Work

Summary

- SRF results has been validated with the NREL reports.
- VBM results has been validated with SRF both in the integral performance metrics (torque, power and thrust) and in detailed comparison of the far wake.
- VBM can be validated and used for study of the far wake with complex boundary conditions and of multiple turbines.
- > ADM presents the opportunity of studying large turbine arrays with reasonable accuracy and computational cost.

- 1. Introduction
- 2. Moving Reference Frame (MRF)
- 3. Virtual Blade Model (VBM)
- 4. Actuator Disk Model (ADM)
- 5. Results
- 6. Conclusions
- 7. Future Work

Future Work

- Modifying SRF mesh for change the working fluid from air to water.
- Optimizing the VBM mesh to minimize the computational timing.
- > Modeling a farm of turbine with ADM and VBM.
- > Study of the far wake in more details.
- > Modeling hub of turbine in VBM.

Future Work

Rectangular channel with shear velocity profile at the inlet.

Acknowledgement

Mr. Sylvain Antheaume Mr. Joseph Seydel

Thank you for your time 🙂