Ecological Impacts of Hydrokinetic Energy:In-stream Tidal Energy

Brian Polagye
University of Washington

April 22, 2009

Northwest National Marine Renewable Energy Center nnmrec.oregonstate.edu (OSU - Wave) depts.washington.edu/nnmrec (UW - Tidal)

- → •In-stream Tidal Energy Overview
 - Ecological Impacts
 - Center Activities

Tidal Energy Overview

Advantages

- Predictable resource
- No CO₂ emissions
- No visual pollution
- Often located near load centers

Challenges

- Intermittent resource
- Not invisible to aquatic species
- Potential to place additional stress on estuaries

Approaches to Tidal Energy

Barrage

- Comparable to hydroelectric
- Very high cost and environmental footprint

Hydrokinetic

- Comparable to wind
- Potentially lower cost and environmental footprint

General Device Specifications

- Deployment currents: > 3 m/s peak
- Deployment depth: 20-80 m
- Rotor size: 5-20 m diameter
- Maximum tip velocity limited by cavitation
 - —Rule of thumb: 12 m/s
 - —Utility-scale device limited to 10-15 rpm
- Power output in proportion to velocity *cubed*
 - —Small changes in velocity = large changes in power

Hydrokinetic Devices

(clockwise from left)

- Verdant Power
- Clean Current
- Marine Current Turbines
- Open Hydro

Common Elements

Site Characteristics

Ideal

Real

- Uniform, flat-bottomed channel
- Smooth, bi-directional currents
- 30-40 m water depth
- Electrical infrastructure to the shoreline
- No existing users
- Biological desert

- Variable width and depth
- Variable, turbulent currents with ebb/flood asymmetry
- 15-100 m water depth
- Electrical infrastructure inland
- Many existing users
- Biologically vibrant

- •In-stream Tidal Energy Overview
- **→ Ecological Impacts**
 - Center Activities

Ecological Impacts Overview

- Different concerns at each stage of a project
 - —Pre-installation
 - —Installation
 - —Operation
 - —Decommissioning
- **■** Low level of understanding
 - —Unknowns or very broad range of potential effects
 - —Most test data remains proprietary to developers
 - Challenging environment to make measurements
- Difficult to perform a cost-benefit analysis

Pre-installation Studies

- **■** Establish environmental background
 - —Often not well-characterized
- **■** Many possible studies
 - —Aquatic species use and abundance
 - —Water quality
 - —Currents
 - —Substrate
- How to best structure for "before and after" comparison?

Installation

- **■** Disturbances to sea bed
 - —Device foundation
 - —Sub sea cabling (offshore and nearshore)
- **■** Disturbances on surface
 - —Ship traffic
 - —Lights
 - —Noise
- **■** Potential to mitigate some impacts?
 - —Small foundation footprint
 - —Horizontal directional drilling under the nearshore

Operation

- **■** Rotating machinery
 - —Strike, collision, or entanglement danger
- Noise
 - —Avoidance behavior
- **■** Hard substrates
 - —Colonization leading to aggregation behavior
- EMF
 - —Generator and cable
- Hydraulic fluid and mineral lubricants

Operation (cont)

- Changes to local flow field (near-field effects)
 - —Sedimentation, mixing
- Changes to regional tidal regime (far-field effects)
 - —Currents, mixing, tidal range, transport
- Cumulative effects of large arrays
 - —Can effects be extrapolated from a single device?
- Toxicity of anti-fouling coatings
- **...**

Decommissioning

- **■** Removal of infrastructure
 - —Cables
 - —Foundation
 - —Device
- Should everything be removed? Would it be less disruptive to leave foundation? Should the cables remain in place for observations?
- Who pays for removal of a failed project?

- •In-stream Tidal Energy Overview
- Ecological Impacts
- Center Activities

NNMREC Tidal Research Areas

■ Area #1: Environmental effects

■ Area #2: Site and device characterization (mobile testing)

■ Area #3: Array optimization

■ Area #4: Advanced materials for survivability and reliability

Modeling Extraction in Puget Sound

 Concerns that tidal energy extraction could exacerbate existing stresses (hypoxia)

Modeling goals:

- —In-stream power potential for Puget Sound
- —Optimal siting of arrays

Assumptions:

- —Flow dominantly 1D
- —Neglect salinity effects
- —Neglect small-scale features

Effect of Extraction on Transport

Admiralty Inlet

---- Extraction from Tacoma Narrows

---- Extraction from Both Sites

C. Hood Canal

D. South Sound

Cost-Benefit Evaluation

Changes to tidal regime

(transport, range, mixing)

?

Changes to physical environment

(sedimentation, dissolved oxygen)

Species impact

(fish, marine mammals)

Site and Device Characterization

R/V Jack Roberston University of Washington, Applied Physics Lab

Students preparing Sea Spider for deployment

Field measurements to inform all parties

- Site developers resource and site characteristics
- Device developers device performance and effects
- Regulators existing environmental and effects

Shipboard Survey

Research Question

What is the most efficient way to survey a tidal energy site?

Survey

Equipment

Currents

ADCP (RDI Workhorse - 300 kHz)

Water Quality

CTD + O₂ (SeaBird), Bottle Rosette

Fish Abundance

Echosounder (BioSonics)

Seabed

Bottom grab, ROV (SeaBotix)

Ambient Noise

Hydrophone (Cetacean Research)

Currents

Water Quality

In-situ measurements show slight halocline and thermocline (*for this cast*)

Lab results indicate low turbidity (for this season) (WHO drinking water guidelines: < 1 NTU)

Hydroacoustics for Fish Abundance

- BioSonics echosounder (Center partner)
- Significant crosstalk between echosounder, ADCP, and depth finder

Grab Samples

- Shipec grab (spring loaded)
 - Attempt #1: 3 pebbles
 - Attempt #2: nothing
- Van Veen grab (not deployed)
- Consistent with scoured seabed

Background Noise

ROV Survey

US L5 088HD+0 CA-3€ 36APR09 H1 GR 0067.1MS 04€ 10:27:37

- Scoured seabed
- Relatively flat
- Cobbles and gravel
- Sponges
- Barnacles
- Consistent with high currents and grab samples

Equipment Package for Stationary Survey

Acoustic release

(redundant recovery)

300 kHz ADCP (velocity)

Hydrophone (background noise)

Programmed for 4 month deployment

Mini-CTD

(salinity and temperature)

Sea Spider

(heavy duty fiberglass frame)

Lead Weight (600 lbs)

Next Steps in these Areas

■ Modeling changes to physical environment

- 3D numerical modeling, including baroclinic effects
- Partnership with Pacific Northwest National Labs (PNNL) to evaluate changes to physical environment

■ Additional shipboard surveys

- Every four months for next 8-20 months
- Begin to establish seasonal variability

■ Additional instrumentation for stationary survey

- Fish tag hydrophone (May)
- Upgraded storage and power for ADCP (May)
- Echolocation hydrophone (August)

Questions?

Northwest National Marine Renewable Energy Center nnmrec.oregonstate.edu (OSU - Wave) depts.washington.edu/nnmrec (UW - Tidal)