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University of Washington
Abstract
Siting Methodologies for Tidal InStream Energy Conversion (TISEC) Systems
Sam Gooch

Chair of theSupervisory Committee:
ProfessorJim Thomson
Applied Physics Laboratory

Tidal In-Stream Energy Conversion (TISEC) is a promising source of clean, renewable and

predictable energy. One of the preliminary steps in development of the technology is

establishing a standardized and repeatable methodology for the characterization of

potential deployment sites. Stationary Acoustic Doppler Profiler (ADCP) velocity data

collected at four sites near Marrowstone Island, Puget Sound are used to test the

applicability of metrics characterizing maximum and mean velocity, eddy intensity, rate

of turbulent kinetic energy dissipation, vertical shear, directionality, ebb and flood

asymmetry, vertical profile and other aspects of the flow regime deemed relevant to

TISEC. Bsed on these analyses, the flow at three sites clustered along the east bank of

-AOOT xOO0T T A )OI ATA j OAEAOOAA O1 AO OEA O0$06 OE(
have similar ebb and flood velocities and relatively low levels of turbulent actit The
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mean ebb velocities, but is more asymmetrical and has higher levels of turbulent activity.
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sites, showing the spatial variation of velocities throughout the area. This map is based

on data collected using a vessahounted ADCP in linear transects running roughly

perpendicular to the flow at the site. Interpolation between these trasects along

isobaths yields a rough grid of velocities, from which the kinematic resource map can be

determined using a twadimensional interpolation scheme. Results are promising,

although this method may not work well at sites with different bathymetrc and

geographic characteristics. The methods and conclusions are deviceutral, however

device specific considerations will be important prior to developing TISEC sites.
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Overview
Site characterization is one of thdirst stepsin the development of a Tidal In

Stream Energy Conversion (TISEC) project of any scalés such, it is also one of
the first areas of research undertaken by théJniversity of Washington branch of
the Northwest National Marine Renaable Energy Center (NNMREC), a newly

formed interdisciplinary group focusing on the advancement of ISEC technology.

This research is based ordata from two separate projects, both inPuget Sound.

One is a Nawfunded project off the coast of Marrowstone Island, intended to
demonstrate the feasibility of TISEC for providing the 25% renewable energy
mandated for all defense agencies by the year 2621]. Data from this project are
provided by Sound and Sea Technology, a partner of NNMREThe second is a

pilot project in Admiralty Inlet, Puget Soundundertaken by the Snohomish
County Public Utility District (SnoPUD) which iseventually intended to become a
utility -scale installation This vl 1 EAI B O1  /Bllibates lunder OE A

initiative 1-937 to obtain 15% of its electricity from renewable sources by 2020

O
O

[2]. NNMREC has partnered with SnoPUDBN the project and is currently

collecting velocity and environmental data at the site.

This research is divided into three sections. The firsis a literature review

covering the current state of TISEC site charactemation methodologies and

techniques The second is a collection of metrics specifically tailored to TISEC,

based onADCPvelocity data collected at a fixed point over a long (8 month)

period of time. The third section outlines a methodologyfor determining the

smalkOAAT A OAOEAAEI EOU ET A OEOAG0O uéigl 1 AEOU
data collected from a vesseimounted ADCP. The methods and findings of this

research are to be published asbOT AAAAET ¢O 1T £ ®arke / AAAT ¢
Technology forTl 00 & OOOOAq ' 11T AAT AT A |, T AAl #EAII
T Al Bitin@Methodologies for Tidal Powed 8
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Part |: Literature Review

Introduction
To date, little literature has been published on methods for field data collection

specifically tailored to Tidal In-Stream Energy Conversion (TISEC) site evaluation.
Several paper studies have been conducted based oxisting tidal current data
sourcessuch as the Admiralty Charts in the United Kingdom or the Tidal Current
tables published by theNational Atmospheric and Oceanic AdministratiofNOAA
in the Unites States [3], [4]. Errors in these predictions can be high, as the
predictions are based onvintage surveys and werenot originally intended for
resource assessment[4]. A study conducted by Black and Veatch found
discrepancies ofas much as 2n/s at a site usingdifferent tidal atlases[3]. For
this reason, field velocitydata collection for TISEC site analysis is widely accepted
as a necessityandis a component of all but the first stage of th&uropean Marine
%l AOCU #EMEQDsielsél€ation methodology the only standard procedure
proposed on this topic to date [5]. The following literature review will cover
existing methods for processing velocity data at potential TISESites, including an
overview of Acoustic Doppler Current Profiler (ADCP) technology, widely

regarded as the standard foriéld velocity data collection[6].

Importance of Site Characterization
Velocity data is critical in evaluating a site for TISEC devices, as current speeds are

the primary factor in determining the quality of a potential site[7]. Power density
scales with the cube of velaty, so even a modest increase in velocity can lead to
significant gains in production [8].  Velocity time series data allow for the
calculation of additional metrics (e.g., velocity distribution and tidal ellipses,
yielding a more indepth understanding of the tidal dynamics at a site.Velocity

data are also used for calculating the maximum forces and stresses that a device
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may need to withstand, useful for design consideration§5]. These topics are

covered in depth later in this review.

Additionally, EMEC guidelines and a study conducted by Puget Sound Tidal Power
both use field velocity data for the calibration ofcomputational fluid dynamic
(CFD) models of the area[5], [9]. Field velocity data is also the only basis for
performing turbulence calculations, which is critical for the design and siting of
TISEC devicesand foundations[10].

ADCP Background
While Tidal In-Stream Energy Conversion (TISEC) is an emerging technology,

much of the instrumentation used to characterizepotential sites is mature and
commercially available. The Acoustic Doppler Current Profiler (ADCP) is the
primary instrument for collecting velocity data and has been the industry
OOAT AAOA OET AA [6D EADCPAUAIR Icdn bepdeployed @s stationary
units on the seafloor moored on the surfacepr installed on a moving vessel
depending on the device configuration and the type of data requireflll]. A
stationary ADCP deployment will give a continuous record at a fixed location,
whereas a shipboard survey will give information as a function of time and
location. ADCPsmeasure water velocity usingthe Doppler effect by tansmitting
sound at a fixed frequency and listening to echoes returning from sound
scatterers in the water. These sound scatterers are small particles or plankton
that reflect the sound back to the ADCPL1]. When sound scatterers move away
from the ADCP, thereflected sound is Doppler-shifted to a lower frequency
proportional to the relative velocity between the ADCP and scatterer. The
backscattered sound then appears to the ADCP as if the scatterassre the sound
source. Therefore, the ADCP hears the backscattered sound Dopssbifted a
second time, since the unit both sendsnd receives the signal. This allows an

ADCP unit to perceive how particles are moving parallel to the signal sent by the
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ADCP transducer (the unit sending and receiving the signal). However, with only
one transducer only this one velocity component can be determined. In order to
determine velocities in a 3 dimensional Cartesian coordinate system, 3
transducers are required. These signals do not need to be orthogonal, as they can
later be rectified using trigonometry, but they do need to be aligned at different
angles in order to capture separate directional components of the velocityl1].
The Doppler shift is calculatedas a series of ranges from the transduceby

knowing the travel-time of the signal, and theresutlt © A OAO 1T £ OAOOEAAI
DOl £ZEI1 AO6 CEOEI ¢ A NOAT OEOAOEOA HADAOEDOEITI
depth at a specific time and location.Different ADCP packages are available for

different uses. ADCP units that operate at high frequencies (over 1000kHz) are

capable of producing higher resolution velocity profiles, although their range is

much smaller because ofncreased sound absorption. The reverse is true for low

frequency (less than 200kHz) units.

ADCP Deployments

The first round of field data collection proposed by the EMEC guidelines is a beat
mounted survey consisting of transects atthe proposed TISEC s#&, which
provides an overview of the spatial velocity variability at a siteand is of use for
determining some of the most important tidal harmonic constituents and
calibrating hydrographic models. EMEC recommends that these surveyse
conducted twice, both at thepeak of a spring (strong) tide. Transect data to be
collected includes time, location (latitude and longitude in WGS 8412]),
velocities in the three directions, signal & noise ratio (SNR) for the three
directions, temperature, pressure, vertical survey range, average velocity
magnitude and direction, quality indicators and confidence levels for the

horizontal positioning of the vessel5].
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After the transect survey, EMEC guidelines call forstationary ADCP deployment
The report recommends a minimum of 3 monthsvelocity data for a TISEC array,
or 15 days worth for a single device.The guidelines recommenda minimum of
two ADCPs be deployed for redundancy.A study of currents in the Tacoma
narrows used 30 days worth of datafrom three units as it was the minimum
required for the calibration of their CFDmodel [9]. Another document published
by EMEC recommends thattationary ADCP deployments last for a minimum of
30 days, which allows forharmonic decomposition of the tidal signal, explained in

depth on page9.

EMEC recommends that as an additional stepglacity data be collected for up to a
year once a TISEC deployment site has been pinpointe&tationary datacollected

under EMEC qguidelines ioludes velocities in the three directions, standard
deviation in the three directions, signal to noise ratio (SNR) for the three
directions, temperature, pressure, cell start depth (bottom cell) and cell stop
depth (top cell), average velocity with directon, and turbulence intensity (where

applicable) [5]. It should be noted that any turbulence calculations will require
data of higher resolution than that proposed under the EMEC long term

deployment guidelines[10].

Severalparameters must be configured for anyADCPdeployment, including pings
per averaging interval (ensemble), depth cell (bin) size, andnsemble duration

[11]. In any deployment configuration,the tradeoffs must be consideredbetween
range, resolution and random noise, as shown iRigure 1. Sméler bin sizes create
higher resolution velocity profiles, althoughpulse length is shorter and deviation
will increase. Fewer pings per ensemble will alsancrease deviation, although
ensemble duration will decrease and higher temporal resolution outputvill be

possible.



Resolution

Figure 1. Trade-off triangle showing relationship between range, random noise and resolution
[11].

Additionally, stationary ADCPs are generally stand-alone wunits and are
constrained by the amount of power available (battery size) or by data storage
limitations. Keeping these restrictions in mind, stationary ADCPs are generally
configured for long deployments at low temporal resolutions suitable for
capturing mesoscale currents activityor for short deployments using rapid
sampling schemessuitable for eddy intensity and turbulence characterization
[10].

Transect surveys are generally not constrained by data storage or power, but are
limited by the speed at which an acoustic signal can reach the seafloor and return
to the vessel[11]. EMEC recommends tat transects last less than 10 minutes
each, which sets a limit on the maximum possible length, as vessel speed is also
capped to maintain good correlation [11]. EMEChas established some
preliminary guidelines for ADCP deployments aimed at TISEC site

characterization, shown inTable 1.



v

Table 1. EMEC Guidelines for TISEC ADCP deployments

Time/ping[s] 0.5 0.5
Ensembleinterval 2401200 1
[s]
Duration [days] 15+ 5 <10 minutes/transect
Bin Size [meters] 0.51 1 1
Referential Cartesian Beam Coordinates Cartesian
Coordinates (Transformed) (Untransformed) (Transformed)
First Bin al :51 Of 2 as 1 meter Less than 5 meters
uz astlk ¥f below surface

Data Analysis Metrics Proposed By EMEC

This section describes the metrics proposed by the EMEC guidelines for tidal

resource assessmen{5], as well as additional background informationwhere

available.

Velocity Distribution

A velocity histogram is proposed for visualization of the probability of discreet

velocities at a site as shown inFigure 2. 10 minute intervals and0.1m/s bins are

recommended. This analysis is useful for comparing velocity distributions at

different locations within a givenproject area, and can also be used to pred the

Ai1T010 T &# OEi A OATTAEOEAO AO A OEOA

TISEC device will produce power.

x E |
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Figure 2. Velocity distribution histogram shown using data collected at three different locations at
the EMEC testing facility using 10 minute averaging intervals and 0.1 m/s bin%].

Maximum Velocities
The maximum velocity is defined as the @ak velocity that has been reached for

10 minutes during an entire month. If data from a transect survey is used, the
velocity averaged over the entire transecis to be used, as the surveys are to be
conducted during the spring tidesand should therefore represent the highest

velocities of the month This value is to be reported either at the hub height of a

TISEC device or averaged over the entire water column.

Tidal Range
This is the range in depths throughout a tidal cycl&om high tide to low tide.

Power Density
Power density scales with the cube of velocity and thereforehighlights the

importance of g¢rong currents [7]. The average power densitycan be expressed

with the equation

1
P =5p?) (1.1)

where the brackets indicate an averageThis is the flux of kinetic energy density

1/2pv? through a crosssectional area. Note that the 10minute velocity
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ensemblesare used as opposed to dong-term average velocity value, as the

average must be taken after cubing the velocities.

Harmonic Analysis
The periods of motion of the earth, sun and moon are fixed, and as a result, so are

OEA DPAOEIT AO T £ OEA OEAAI A& OAEMtCthédy AEO 1 T (
of equilibrium tide referred to these aspartial tides, each identified by a unique

and known period of oscillation, and each representing a specific solar or lunar

tractive forcing. The dynamic theory of Laplace states that partial tides cabe

applied as a series of sine wavesf known frequency which can be summed to

reproduce the actual tidal behavior. In addition to a fixed period, each of the

partial tides (known as tidal constituent§ has an amplitude and phase. The

harmonic method of tidal analysis, credited to Lord Kelvin, isbased on the

extraction of these constituentsfrom the power spectra of theobserved tidal

signal[13].

The predominant constituent, except in areas withmainly diurnal tides (one low

and one high tide per day), is thenain lunar semidiurnalor Mz constituent, with a

period of 12.42 hours. The main solar constituent,,Shas a period of 12.00 hours.

0-6 AT A 0306 OAEAO O1 OE A ubkchipi refersitd the faOtE A O OT |
that the periods are semidiurnal, orhaving two tidal cycles per solar or lunar day

When superimposed, the two constituents initially appear to be in phase.

However, after a period of 14.76 days, the two constituents will bexactly out of

phase. This oscillation is known as thspring-neap cycle
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Figure 3. Spring-neap tidal cycleat Marrowstone site D9

Adding the larger lunar elliptic semidiurnal or N tidal constituent incorporates
AAOOAA Au OHAngAI | ED
the 27.55 day elliptic month. Adding the K and Q constituents incorporates the

the perigeanA DT CA AT

diurnal tropic-equatorial cycle. The behavior of these constituents is shown in

AUAT An

Figure4 [13].
D9
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Figure 4. Tidal cycles produced by the M. S, N,, K; and O, constituentsat Marrowstone site DQ
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The aforementioned tidal constituents can also be used to describe the type of
tide, whether it is semidiurnal, diurnal, or amixture of the two. This is commonly

defined using a tidal form numbergexpressed ag13]:

K+ 0,

Tidal Form Number = M, 1S, 1.2)

If the tidal form number is less that 0.25, the tides are semidiurnal. Form
numbers between 0.25 and 1.5 are mixednainly semidiurnal. Form numbers
between 1.5 and3.0 are mixed mainly diurnal, and above 3.0 areconsidered
diurnal. Example tidal signals and locations in which they occur are shown in
Figure 5. Harmonic analysis carbe performed on data using freely available code
such as theT _tidepackage for MATLAB14].

Bl Semidumal tides
1 Diumnal tides
Bl Mixed tides

= Mixed tide, Los Angeles Diurnal tide, Mobile, Alabama Seawdiurnal tide, Cape Cod S
144 Higher hagh tide r4
10 -3
Lower high tide High tide
6 vahl tide L 2
i /\ /\ /\ B
JU eI i U\ VL]
] Vo vighe ; w\/ \/ V1L,
low tide low tide Low tide tide
T T T T T T T T T T T T T T T T T T T T T T T T T T T
0 & 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48 0 6 12 18 24 30 36 42 48
a Time (hr) b Tienws (hr) c Time (hr)

Figure 5. Types of tide and locatios in which they occur.© Brooks/Cole, Cengage Learning
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While only five constituents have been described thus far, their behavior typically
accounts for over 75% of tidal activity. Thdive most predominant constituents

are shown inTable 2, although over 400 constituents have been identifieflL4].

Table 2. Tidal Constituents in Standard Order[5], [13].

M, 12.42 1 Main Lunar Semidiurnal

S 12.00 2 Main Solar Semidiurnal

[\ 12.66 3 Larger LunaElliptic Semidiurnal
Ky 23.93 4 LunarSolar Declinational Diurng
O 25.82 5 Lunar Declinational Diurnal

EMEC guidelines state that for later stages of site characterizatiam least 20tidal
constituents should be resolvedand it should be possibleto extract aminimum of
23 tidal constituents using one month of velocity dat45]. It should be noted that
while it may technically be possible to extract this many constituents, only a few
may have a signal to noise (SNR) ratio high enough to justify theinclusion in a
long term prediction. Including additional constituents will likely lead to
characterization of noise in the tidal signal, and will actually decrease the quality
of the prediction [13]. Additionally, some regionally important constituents may
be convolved with others (e.g. Kand P in Puget Sound, Washington) because
their periods are extremely similar, and will require longer timeseries to
determine. A study by Lueck and Lu found that 91% of the flow velocity at a test
site in the Cordova Channel, British Columbia could be explained using only the
M2, S, Ki and Q constituents [15]. In an example presented by Pawlowicz et al.
in [14], a harmonic analysis of a 66 day tida¢levation series found only 11
constituents had a SNR higher than one, and only 6 had a SNR higtien two.
Further, tidal elevation series are generally easier to predict than velocity series.

Much of thetidal signal not explained by these few predominant constituentss
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generally due to nontidal variations caused by weather turbulence, local
bathymetric influence or baroclinic circulation and cannot be predicted using

harmonic analysis[13].

EMEC recommends an extrapolation of field data to a period of one year using
harmonic analysis and compeang the power density given by the two
distributions. If the power density differs by more than 5%, explanation is
recommended as to the causes of the variation, as this could indicate that data
taken at a site is not representative of overall activity5]. However, as explained
previously, variations due to weather cannot be predicted using harmonic
analysis and could explain differences between extrapolated and field datasets
[13]. EMEC guidelines recommendnalyzing this difference betweenharmonic
tidal predictions and actual field data to estimate the effects of metorological

phenomena[5].

Tid al Ellipse
While, in theory, tidal currents are perfectly bidirectional, in practice ebb and

flood currents are two-dimensional in nature and cannot be described as a simple
back-and-forth motion. This is in contrast to tides, described as a ore

dimensional height difference from a referencedatum [13]. Currents may be

I £FEOAO AU 1 AOGO OEAT puymd AT ATT O OmAt AEOAAC
the tidal cycle. The tidal ellipse is defined as the path the currents trace out

during one period for a given tidal constituent. Figure 6 shows a simple tidal

ellipse with the major and minor axes labeled. For TISEC considerations, a tidal

ellipse with a large major and small minor axis is ideal, as this represents a

strongly bi-directional flow. This becomesimportant for devices that may not be

able to extrad energy from all directions, such as those with no or limited ability

to yaw into the direction of the currents A device with no yaw control would be
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aligned parallel to the major axis.Figure 7 shows tidal ellipses of the Mcurrents

throughout one12.4 hour period in Monterey Bay.

37° 00°'N

M2 1999

36° 55'N -

36° 50'N

see a5~ L0 & N (P2 27 J

NN
< ZAAAR

- S==2 77 ()

@ 36° 40°N NS B Z,2 (7 L@ﬁ
b A7,

36° 35'N Major Axes: 5 cm/s

Minor Axes: 2.5 cm/s

T T T T T
122°10°W  122°05'W  122°00'W 121°55'W 121°50'W  121°45'W

Figure 6. Tidal Ellipse with major axis Figure 7. M, surface current tidal ellipses for
(R), minor axi s (r MontereyBay. The red lines indicate the direction at
This tidal ellipse traces the direction and which the current is pointing at a given time. The blue
magnitude of the currents throughout one ellipses indicate a counterclockwise rotation; the gree
period of the constituent it describeg16]. ellipses indicat a clockwise rotation16].

EMEC guidelines recommend generating separate ellipses for ebb and flood tides,
and if the flow direction is off of the major axis by more than 10% for over 5% of
the time, a directionality offset in the available resource is to be applied if
applicable to the functionality of a specific TISEC device. However, it is somewhat
unclear as to what separate flood and ebb ellipses entail, as both tides are
necessary for the constructiom of a single ellipse. This metric may not be relevant
if a device is able to extract energy from any direction, but should still be

considered for the purpose of support structure and yaw tracking.
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Turbulence
EMEC has reserved a section for studies of turbulence in its guidelines, but has not

established its own specifications to date, instead recommending that recent

paperson the topicbe consulted[5].

Turbulence is related to the formation of eddies of many different length scales.
The majority of the energy is contained in the largest structures. Through largely
ET OEOAEA [ AAEAT EOI Oh OEA tuhdGtAddgy HAAEAO
smaller structures and so on, until theeddies reach a point at which viscous
dissipation becomespredominant. Thisis known as theKolmogorov length scale,

and at this point the energy contained in the eddies is dissipated into hef17].

A more recentADCP survey conducted at the EMEC test berth focused on defining
turbulence at the site. The ADCP was configured with 1m bins in the vertical and

1 second sampling. The study focused on turbulence due to the bottom boundary

layer and its vertical penetrdD ET T 8 04 O00A01I AT 66 AT T AEOQOET T
sample having a 1m/s difference between maximum and minimum velocities

within a centered 10 minute sample[10]. A simple metric from the wind energy

industry, termed turbulent intensity, uses the ratio of velocity anomalies to the

steady background velocith xEAOA OOOAAAUG6 AT T AEOEITT O

minute samples where mean velocity can be considered constgit8], [19].

More rigorously, treatment the rate of turbulent kinetic energy (TKE) dissipation
may be estimated A recent paper by Wiles et al[19] describes a method for
determining the rate of TKE dissipation at the Kolmogorov scale using data
collected from a standard stationary ADCP uniOther methods for estimating TKE
dissipation rates, using variance and spectraiechniques, can also be applied to
ADCP datd20], [21].



16

Modeling and Data Comparisons
One of the primary uses of field ADCP data in the EMEC guidelines is model

validation and calibration. No particular modelis suggested although a list of
possible hydrodynamic models is included. It is specified that the model shall be
either 2D or 3D, and information including boundary conditions, frictional
parameters and forcing condiions shall be included with proper justification.
Once the model has reached equilibrium (this can take-3 model days depending
on the domain size), he model is to k& run for the same length of time as the
stationary field survey (nominally 30 days), and results are to be calibrated to the
field data[5].

Modeling efforts at the National Northwest Renewable Energy Center (NNMREC)
have focused on theStanford Unstructured Nonhydrostatic Terrainfollowing
Adaptive NavierStokes Simulator SUNTANS$ code developed at Stanford for
developing a modelof Puget Souad [22]. This is a 3Dunstructured grid model
that will also be calibrated with ADCP data from Admiralty Inlet, a site with
potential for TISEC developmenshown in Figure 8. The model is norhydrostatic
and is designed toaccurately representvertical fluid movements that might be
lost otherwise. Current efforts with the model include matching verical structure

and amplitude changes acrosadmiralty Inlet [23].
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Figure 8. Map of Puget Sound with SUNTANS grid shown at Admiralty Inlet in inset. Potential

Boundary Layer

development sites are shown in red circld23].

EMEC guidelines recommend plotting the depth prdg from stationary field data,

transect data, and the output of the hydrographic model and comparing the

results with depth velocity distributions using formulae commonly employedin

industry. A power law approach is employed in the wind energy industry for

approximating velocity reduction due todrag within the boundary layer:

1

r=n

(1.3)

where d represents the total depth,z is the depth at which the velocity is to be
E Ghomidlly 7A[24).E GRECA |

APDPOT GEI AOAAR

AT A |

OAAT I T ATAO OOET ¢ pm

A O

tA in & dtdef@AcurdEla®d | h

therefore smaller boundary layer. Another approximation was developed in the

JOULE 1996 resource study, and is shown fiigure 9. These approximations can

be used in conjunction with 2D models givingdepth-averagedto estimate the

velocity at the working height of a TISEC device.
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Figure 9. Comparison of boundary layer approximations[5], [25].

Data Analysis: Additional Metrics

A paper by Lu and Lueck15] describes several other metrics used to characterize
ADCP data. These metrics serve to characterize a site beyond the
recommendations of the EMEC guidelines and are potentiallyseful for TISEC site
anaysis. Some results of their analysesn the Cordova Channel, British Columbia
are shown inFigure 10 and Figure 11. These metrics include information about
vertical shear, transverse flows, and directional variation as a function of height

and time.
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Figure 11. (upper panel) Time series of the direction of the 2thin mean velocity at 3.6m (solid
line) and 27.6m (dahed line) and the shear at 3.6m (circles). (lower panels) Typical profiles of
current direction during (a) flood and (b) ebb and of the shear direction during the (c) flood and
(d) ebb[15].
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Part Il: Statonary Data Analysis
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Figure 12. Velocity data at the four Marrowstone sites and at Admiralty Inlet. The blue line
indicates surface height. Note that the Admiralty data does not include surface height and is
truncated at 56 meters.
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Introduction and Device Neutrality
This chapter presents a methodology to characterize potential sites for tidal

power development by analyzing Acoustic Doppler Current Profiler (ADCP) data
collected at fixed locations shown inFigure 12. Thus far, site evaluation methods
have been developed by private industry and are considered proprietary.
Because these methods are not subject to public or peer review, it is difficult to
determine whether they are accurate, releant or repeatable at future sites. Here,
a standardized suite of publicly available measurement and analysis methods is
developed, which can be used to characterize sites so that they may be directly
and fairly compared against one another. These methedutilize repeatable
metrics that allow for future sites to be judged not only on the quantitative results
of the metrics themselves, but by a relative comparison with similar sites.The
methodology developed herein is applied as a test case to severast sites. Four
of these sites are under consideration for a Navy demonstration project off the
coast of Marrowstone Island, Puget Sound-{gure 13). This data wascollected by
Orders Research Associates (OARS) and represents the four most promising sites
based on mobile velocity déa collected by EvansHamilton [26]. A fifth site under
development by the Snohomish County Public Utility District (SnoPUD) lies near
Admiralty Head, Puget SoundFigure 13). Data collection by the NMREC is

currently underway for this project.
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When required, a hub height of half the water column depth is assumed. For the
four (D9, D10, D11, C5) sites of the Marrowstone Island case study, this is
approximately 13 meters, and is calculated using the free surface height as
recorded by the ADCP prssure sensor Hub height at the Admiralty Inlet site is
27.8 meters. Actual hub-height values are tabulated inthe Summary of Results
(Table 4) at the end of the chater.

Most metrics are separated into values for ebb, slack, and flood, using a threshold

of 0.5 m/s. Ebb and flood regimes are determined using aprincipal axis

decomposition as described in the section omirectionality on page34. The

OEOAOGEI T A AAT AA Al I-EOEA AOBRAA AR ACHmA ADEORAT A
AA AAOGEAA T AOOOAT AT A EDoxAlEl AARI[EkKT ®EA AA@é@
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More importantly, the separation of ebbslack-flood regimes ensures that the
metrics presented are not biased bymeasurementsof no practical importance,

such as the fluctuations in velocity direction surrounding slack W@ A 08 A OB &I |
statistics reported in Summary of ResultgTable 4) on page48 are an average of

the corresponding flood and ebb statistics, weighted by the number of samples in

the ebb and flood regimes.

Analysis presumes that the method of power generation would be istream (i.e.,
hydrokinetic), but nothing further is assuming regarding device specifics or
performance. In practice, device specifics will be essential in site development
decision-making. However, a device neutral methodology is necessary for world

wid e site characterization, and that is the focus herein.

Finally, the analysis presented is sensitive to the sampling scheme used. For
consistent results, at least 28 days of fixed ADCP data at 1 min intervals and 1 m
resolution are required. Most ADCP anufacturers provide deployment software

to assist in configuration and specification of memory and power needs to meet

the recommended sampling.

All analysis is performed in the MATLAB programming environment.

Data Overview
Full velocity profiles at the five sites for all heights are shown inFigure 12, with

the surface height shown as a blue line. Note that surface height is not yet
available for the Admiralty Inlet site. The top four bins are truncated at each site,
as these are contaminated with noise from wave and wind interactions. Velocities
are highest near the surface, as water nearer to ¢hseafloor is more affected by
bottom boundary layer drag. While tlese plots are a convenient way to visualize
all data at the same time, examining a single bin is often mopeactical. Figure 14

shows a onemonth timeseries of eachsite at hub height, in whicha two neap
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tides surrounded by three partial spring tides can be observed for the four
Marrowstone sites. The Admiralty site begins and ends on a neap and contains
two springs. Also of interest is the strong ebb on the C5tsj which is largely due
to the headland effect of the nearby Marrowstone poinfFigure 13) which causes

flow accelerationin that direction [28].

Figure 14. One month timeseries of the five test sites. Ebb is shown as positive velocity and flood
as negative.





















































































































