Site Characterization of Tidal Resources: Admiralty Inlet

Jeff Epler

Scope of Thesis Work

- Predictability of tidal currents using stationary ADCP data
 - Develop a set of requirements for accurate long-term predictions
- Development of a quantitative application for use of shipboard ADCP data
 - Resolve uncertainty in current amplitude and phase between survey tracks
 - New survey patterns

te Northwest National Marine Renewable Energy Center WASHINGT

ADCP Deployments

Northwest National Marine Renewable Energy Center 🖷

Oregon State

ERSITY

ASHINGTON

Prediction of Tidal Currents: Why?

- Estimation of tidal resource
 - Location and orientation of device
 - Long-term tidal resource prediction (feasibility)
 - Noise generation due to device operation
- NOAA predictions are given for a single point
 - Surface currents only
 - Bathymetry, Turbulence, etc. cause 3-D velocity variations

Prediction of Tidal Currents: Why?

- Recovery of sea-spider (11/10/09) during slack water
- Strong currents increase noise which could mask the acoustic release signal

T Tide- Tidal Analysis

• Performs harmonic analysis of tidal signal resolving the data as a superposition of sin waves due to tidal constituents

$$u(t) = \sum A_i \cos(\omega_i * t - \phi_i)$$

- Rayleigh criterion and signal to noise ratio (SNR) determine which constituents can be resolved
- Finds the least-squares fit to the current velocity data
- Statistical error analysis
- Principal Axis Velocity

Rayleigh Criterion

• A methodology developed by Foreman (1977) to determine which tidal constituents can be resolved with T Tide

$$\left|\omega_2 - \omega_1\right| * T > R$$

Ex. Resolving the K1 vs. P1 Tidal Constituents

K1, *Luni-solar diurnal constituent*, $\omega = 0.04178075$ cycles / hr

P1, Solar diurnal constituent, $\omega = 0.04155259$ cycles / hr

$$\left|\omega_{K1} - \omega_{P1}\right| * T > 1 \rightarrow T \approx 182 \text{ days}$$

For T < 182 days, K1 contains P1 information

Oregon State

Rayleigh Criterion

Days (T)	# Constituents	Variance Explained
7	8 (5)	93.6 %
15	17 (15)	95.1 %
30	29 (26)	97.9 %
70	35 (32)	98.3 %

$$Var.Explained = \frac{Variance_{T_Tide}}{Variance_{Data}}$$

T Tide vs. ADCP

May 20-August 3, Depth Averaged ADCP Data

How well does T Tide work?

NOAA Predictions vs. ADCP

NOAA Predictions vs. ADCP

T Tide- November Prediction

Coming Work

- Fourier analysis of residual between T Tide and ADCP data
- Estimating sea surface height from backscatter intensity

Mobile ADCP Data

Vertical Velocity (m/s)

Survey Track: ADM_0409_016

GTON

Survey Start: 07-Apr-2009 13:55:56

Acknowledgements

- Dr. Brian Polagye
- Dr. Jim Thomson
- Dr. Phil Malte
- Dr. Roy Martin
- Chris Bassett & Sam Gooch

Questions?

Northwest National Marine Renewable Energy Center WASHINGTON

