Tidal Power Development Scenarios in Puget Sound, WA

February 23, 2010

Brian Polagye¹, Mitsuhiro Kawase², Phil Malte¹

University of Washington Northwest National Marine Renewable Energy Center ¹Department of Mechanical Engineering ²School of Oceanography

Tidal Energy Projects in Puget Sound, WA

Key Questions for Puget Sound

What is the hydrokinetic power potential?

What are the effects of extracting kinetic power?

Barotropic, Far-field Environmental Effects

Category	Potential Change	Example Impacts
Tidal Range	Local contraction or expansion	Drying or inundation
Tidal Currents	Local reduction or intensification	Sediment transport Hydrokinetic resource
Mixing	Local reduction or intensification	Dissolved oxygen concentration

- Sutherland, G., Foreman, M., and Garrett C. Tidal current energy assessment for Johnstone Strait, Vancouver Island. Proc. IMechE Part A: J. Power and Energy. 2007, 221(2), 147-157
- Polagye, B., Malte. P., Kawase, M., and Durran, D. Effect of large-scale kinetic power extraction on time-dependent estuaries. Proc IMechE, Part A: J. Power and Energy. 2008, 222(5), 471-484
- Karsten, R., McMillan, M., Lickley, M., and Haynes R. Assessment of tidal current energy in the Minas Passage, Bay of Fundy. *Proc IMechE, Part A: J. Power Energy*. 2008, 222(5), 493-507

Approach: Puget Sound, WA Model

- Goals:
 - Determine tidal
 hydrokinetic potential of
 Puget Sound, WA
 - Preliminary understanding of far-field effects
- Model Puget Sound as a series of rectangular channels of constant crosssection
 - o Flow dominantly 1D
 - o Neglect salinity

Approach: Hydrokinetic Turbines

Power dissipation as a discontinuous decrease in total energy

$$\frac{u_1^2}{2g} (1 - \varepsilon \eta_d) + h_1 = \frac{u_2^2}{2g} + h_2$$

Power *Dissipated* by Hydrokinetic Turbines

• Garrett, C. and Cummins, P. The efficiency of a turbine in a tidal channel. J. Fluid Mech. 2007, 588, 243-251.

Calibration: Constituent Amplitude

Results: Pilot – 0.5 MW Average Electric

OSU

Results: Commercial – 100 MW Rated

Results: Resource Limit – 3 GW Rated

 Resource Limit: the point at which additional turbines would produce less total power.

Superseding Limits

- *Environmental*: far-field and near-field impacts
- *Technical*: available space to deploy turbines
- *Economic*: diminishing returns

Conclusions

- Hydrokinetic tidal energy in Puget Sound represents a regionally important renewable energy resource.
- Far-field environmental effects depend on the scale of and site chosen for hydrokinetic development.
- These effects are predicted to be negligible at *pilot scale*, but may be important at *commercial scale*.
- For pilot scale installations, near-field environmental risks likely to be of greatest concern.

Acknowledgements

- Electric Power Research Institute (EPRI)
 EPRI
- Snohomish Public Utility District

• US Department of Energy

Publication

Polagye, B., Kawase, M., and Malte, P. In-stream tidal energy potential of Puget Sound, Washington, Proc. Inst. MechE, Part A: J. Power and Energy, 2009, 223(5), 571-587.

Results: Site Variability

OSU

