Tidal Resource Characterization from Acoustic Doppler Current Profilers

Jeffrey Epler Masters Thesis Defense May 28th, 2010

Outline

- Motivation & Background
- Stationary Acoustic Doppler Current Profiler Analysis
- Shipboard Acoustic Doppler Current Profiler Analysis
- Conclusion

Why Tidal Energy?

 \rightarrow

U.S. Electric Power Industry Net Generation by Fuel, 2008

Washington State Net Electricity Generation, Feb 2010

* WA State Initiative 937

Source: U.S. Energy Information Administration, *Electric Power Annual* (2010).

Tides and Currents

- Gravitational interactions of Earth, Moon, & Sun system
- Spring / Neap Tidal Cycle: 14.76 days

Source: http://www.oc.nps.edu/nom/day1/partc.html, May 1, 2010

Tides and Currents

Source: http://oceanservice.noaa.gov/education/kits/tides/media/supp_tide07a.html

U.S. Tidal Current Resources

Source: http://depts.washington.edu/nnmrec/workshop/docs/Tidal_energy_briefing_paper.pdf

Puget Sound & Admiralty Inlet

Port Townsend

Admiralty Inlet

OpenHydro Tidal Turbine

Source: http://www.snopud.com/Site/Content/Documents/tidal/ai/11-ExhibitF_LargeFormat.pdf

Kinetic Power Density

$$P = \frac{1}{2}\rho \upsilon^3$$

Data Collection

ADCP Basics

Source: web.vims.edu/physical/research/TCTutorial/currentmeasure_files/image002.gif

Teledyne RDI Workhorse Monitor-300 kHz

Scatterer Displacement

Echoes

Source: Gordon, Acoustic Doppler Current Profiler: Principles of Operation A Practical Primer

ADCP Deployments

ADCP Deployments

Outline

- Motivation & Background
- Stationary Acoustic Doppler Current Profiler Analysis
- Shipboard Acoustic Doppler Current Profiler Analysis
- Conclusion

Stationary ADCP Analysis- Overview

• Harmonic Analysis (H.A.) of Acoustic Doppler Current Profiler resolving the data as a superposition of sine waves due to tidal constituents

$$u(t) = \sum A_i \cos(\omega_i * t - \phi_i)$$

- Godin (1972) → Foreman (1977) → Foreman (1978) → Pawlowicz (2002)
- Finds the least-squares fit to the current velocity data
- Generate tidal current predictions

Tidal Constituents

- Representations of the periodic variations of the Earth-Moon-Sun system
 - 45 Astronomical Constituents
 - 343 Shallow Water Constituents

Constituent	Name	Period				
M2	Main Lunar Semidiurnal	12.42 hours				
S2	Main Solar Semidiurnal	12.00 hours				
N2	Larger Lunar Elliptical Semidiurnal	12.66 hours				
K1	Lunar-Solar Declinational Diurnal	23.93 hours				
O1	Lunar Declinational Diurnal	25.82 hours				

Rayleigh Criterion

• A methodology developed by Foreman (1977) to determine which tidal constituents can be resolved with harmonic analysis

$$\left|\omega_2 - \omega_1\right| * T > R$$

Length of			Fre	quancy	y Diff	erenc	es (cycle	s/hr)×10	3 B	etwee	n` N	eight	ourin	g C	onsti	tuent	S		
Record (hr) Required for		87806.	92905	75904	30978	22816		30100	01877		20/95				11407	114.08		10202		2 2 8 1 6	61716
Constituent		~	~	~	\sim	\sim°	~	~	i~		~		~	2	2	°∕.		$\dot{\sim}$		\sim	
<u>luciusion</u>	ALPI	201	SIGI	QI	RHOI	01	TAUI	BETI	NOI	CHII	PII	PI	SI	KI	PSII	PHII	THEI	JI	SOI	001	UPSI
24							1						(5301 - KI	1)						
328					(3	7694) 01-							\sim	VIN	\square						
651					1			THERE REAL &					$\left \right $		\backslash	\angle				1624)	
662		(955) 201-	(†	- Q1					(2964) NOI				/				1	(2964) JI	~	1	(311) UPSI
764	ALPI (278)								Y			/				\backslash			1	1	
4383			\sum	- - -	\sum		TAUI (493)	BETI (278)		\backslash	(PI 17543	,			PH11 (755)			soi		
4942			SIGI (115 2)		RH01 1371)					CH11 (567)		/					THEI (567)				
8767							-				PII (1028)	SI (416)	1 ¹	PS11 (422)						

Rayleigh Criterion

Ex. Resolving the K1 vs. P1 Tidal Constituents K1, *Lunar-solar declinational diurnal const.*, $\omega = 0.041780$ cyc / hr P1, *Solar diurnal constituent*, $\omega = 0.041552$ cyc / hr

$$|\omega_{K1} - \omega_{P1}| * T > 1 \rightarrow T \approx 182$$
 days

For T < 182 days, K1 contains P1 information

Inference

- Inclusion of constituents which are important to the location but left out by the Rayleigh Criterion
- Tidal Height
- Long records from the specific location
- Long records from a nearby location
- Tidal Potential Theory

Tidal Current

- Long records from the specific location
- Long records from a nearby location

Current Velocity Representations

- \rightarrow Progressive Vector- 2 D
 - Principal Axis Current- 1 D
 - Signed Speed (+ Flood & Ebb)- 1 D

Current Velocity Representations

- Progressive Vector- 2 D
- →• Principal Axis Current- 1 D
 - Signed Speed (+ Flood & Ebb)- 1 D

August → November 2009, P.A.V. = 97.4 %

Current Velocity Representations

- Progressive Vector- 2 D
- Principal Axis Current- 1 D
- \rightarrow Signed Speed (+ Flood & Ebb)- 1 D

H. A. - Determining Inference

- Record Length ≈ 172 days
- Distance $\approx 140 \text{ m}$
- Water Depth $\approx 63 \text{ m}$
- Parameters
 - Rayleigh Criterion < 1
- Allowed resolving of tidal constituents:
 - P1 from K1
 - K2 from S2

AugNov. 2009	NovFeb. 2010
63.4 m	62.7 m
98.8 days	72.6 days

Feb. 2010 Sea Spider Deployment

Inference Results

Harmonic Analysis w/ Inference

- Apply inference to from a long term record analysis to improve shorter nearby records
- Apply Inference from Aug. 09 → Feb. 10 combined record to individual records:
 Aug. → Nov. 09 & Nov. 09 → Feb. 10
- Comparison of velocity representations at water depth ≈ 10 m (OpenHydro hub height)

Harmonic Analysis Goodness of Fit

Coefficient of Multiple Determination

$$R^{2} = 1 - \frac{\sum_{i} (\hat{y}_{i} - y_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

- y_i velocity data point in time series
- \hat{y}_i harmonic fit to each data point in time series
- \overline{y} mean velocity of the time series

	Principal Axis Current	Prog. Vector- 2D	Signed Speed						
ADCP Stationary Deployment	R-squared								
August-November 2009	0.94	0.95	0.94						
November-February 2010	0.95	0.96	0.95						
	R-squared above cut-in speed of 1 m / s								
August-November 2009	0.97	0.97	0.97						
November-February 2010	0.97	0.98	0.98						

OSU

Data vs. Harmonic Analysis

*Inference used for P1 and K2 constituents, water depth (10 m)

M2- Amplitude Map

M2- Phase Map

Outline

- Motivation & Background
- Stationary Acoustic Doppler Current Profiler Analysis
- Shipboard Acoustic Doppler Current Profiler Analysis
- Conclusion

Design of Survey Track

August 2009 Ebb Survey

Volumetric Averaging

Velocity PDF

Sinusoidal Fit to Averaged Data

Ebb Survey Amplitude Variation

Ebb Survey Phase Variation

Flood Survey Amplitude Variation

Flood Survey Phase Variation

Outline

- Motivation & Background
- Stationary Acoustic Doppler Current Profiler Analysis
- Shipboard Acoustic Doppler Current Profiler Analysis
- Conclusion

Future Work

• Use ¹/₄ Sine Wave Fits for Shipboard Analysis

Future Work

• Survey Ebb \rightarrow Flood Transition (Slack Water)

Conclusions

- Stationary ADCP analysis
 - Identification of spatial variation
 - Harmonic analysis \rightarrow residual
- Shipboard ADCP analysis
 - Efficient spatial characterization
 - Quantitative use of shipboard ADCP surveys
 - Integration of stationary analysis with shipboard surveys

Acknowledgements

- Dr. Brian Polagye
- Dr. Jim Thomson
- Dr. Phil Malte
- Joe Talbert
- Captain Andy Reay-Ellers
- Dr. Roy Martin
- Snohomish County PUD & DOE
- My family & friends

Questions?

