Numerical Modeling of Tidal Turbines: Comparison of Models with Different Complexity

> Teymour Javaherchi Prof. Alberto Aliseda

Introduction

- NREL Phase VI turbine (Re = 2.6 10⁶, λ (TSR)= 6.13)
- Single Moving Reference Frame (SRF)
- Virtual Blade Model (VBM)
- Actuator Disk Model (ADM)
- Main focus is the far wake of the turbine.

Single Moving Reference Frame (SRF)

SRF is a model to simulate rotating flows with axisymmetric boundary conditions in a simplified environment.

W

Single Moving Reference Frame (SRF)

Single Moving Reference Frame (SRF)

Characteristic Result from SRF

Virtual Blade Model (VBM)

- Effect of blades is modeled by body forces exerted on the fluid.
- These forces are calculated using the lift and drag coefficient for each section of the blade.
- The effect of the blades (body forces) is averaged over a whole revolution.

UNIVERSITY of WASHINGTON

Virtual Blade Model (VBM) Mesh

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

W

SRF vs. VBM

Actuator Disk Model (ADM)

- Based on the actuator disk theory, turbine is modeled as a circular porous disk.
- Modeling the porous disk requires two porous coefficients, which are calculated based on actuator disk theory and the efficiency of the turbine.

Changing Turbulent Intensity (TI)

- Turbulent Intensity for the first set of simulation was 1% based on NREL test conditions in the AMES wind tunnel.
- To have more realistic simulations, the background turbulence intensity was changed from 1% to 10%.

Summary

- SRF was computed as a benchmark for other models. These results were validated with experimental results from literature (NREL).
- VBM has been compared to SRF both in the integral performance metrics (torque, power and thrust) and in detailed comparison of the far wake.
- ADM presents the opportunity of studying large turbine arrays with reasonable accuracy and computational cost.

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

Acknowledgement

Mr. Sylvain Antheaume Mr. Joseph Seydel

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

Thank you for your time.

