Limits to the Predictability of Tidal Current Energy

Brian Polagye, Jeff Epler, Jim Thomson
University of Washington
Northwest National Marine Renewable Energy Center

MTS/IEEE Oceans 2010

September 21, 2010

Motivation

- Resource predictability is beneficial
 - More accurate economic assessments
 - Easier for grid operators to integrate with other generation options
 - No extreme loading cases for device design
- A presumed benefit to tidal hydrokinetic power generation is resource predictability
 - Predictability of tidal heights is well-established

Tide and Current Comparison

Tides

Currents

Study Area

Data Collected

Current Predictions for Hydrokinetics

Classical Problem

Predict horizontal current speed and direction throughout water column

Complications

 Predict kinetic power density (varies as u³)

Simplifications

- Neglect direction
- Neglect velocities below device cut-in (0.7 m/s)
- Prediction for device hub height only

Approach

- Harmonic constituent analysis of horizontal velocity
 - $-u(t) = \sum_{i=1}^{N} u_i \sin(\omega_i t + \phi_i)$
 - 15 minute ensemble average at 10m hub height
- Rayleigh criteria defines number of included constituents

$$-\left(\omega_{i}-\omega_{j}\right)T>R$$

- With 45 days of data and R=1, 35 constituents can be included
- Signal to noise ratio defines number of resolved constituent
 - Signal to noise ratio of 3, 29 constituents can be included
- Test ability to fit measurement with harmonic constituents
- Test ability to predict currents with harmonic constituents
 - At same location: 30 days at Deployment 1
 - At other locations: Deployments 2-4

Harmonic Fit of Measurements

Accuracy of Harmonic Fit

Metric	Value	Definition
$\operatorname{var}(K_{\operatorname{fit}})/\operatorname{var}(K_{\operatorname{measured}})$	0.99	Ratio of variance in fit compared to variance in measurement
RMS error (kW/m²)	0.5	RMS error between fit and measurement
Coefficient of determination (R^2)	0.96	Goodness of fit
$K_{\text{max,fit}}/K_{\text{max,measured}}$	0.98	Ratio of maximum kinetic power density in fit compared to measurement
$\langle K_{ m fit} angle / \langle K_{ m measured} angle$	0.98	Ratio of mean kinetic power density of fit compared to measurement

Evaluating Predictive Accuracy

$$\operatorname{var}(K_{\operatorname{fit}})/\operatorname{var}(K_{\operatorname{measured}})$$

RMS error (kW/m²)

O Fit

Prediction

$$K_{\text{max,fit}}/K_{\text{max,measured}}$$

$$\langle K_{
m fit}
angle / \langle K_{
m measured}
angle$$

Deployment

Sources of Error in Harmonic Fit

Conclusions

- Predictions of mean flow conditions are possible
 - Requires long time series to resolve constituents
 - Requires empirical relations to predict topographic currents
- Predictions of mean flow are only valid over short spatial scales O(100m)
- Turbulent fluctuations cannot be predicted and may be operationally significant

Questions?

Many thanks to:

- Joe Talbert for keeping all equipment in working order.
- Sam Gooch, Chris Bassett, and Alex DeKlerk for helping turn around instrumentation.
- Captains Andy Reay-Ellers, Eric Boget, and Mark Anderson for piloting skills during instrumentation deployment.

This work is supported by funding from the US
Department of Energy and Snohomish County Public
Utility District.

