# Idealized Headland Simulation for Tidal Hydrokinetic Turbine Siting Metrics

Kristen M. Thyng and James J. Riley

Northwest National Marine Renewable Energy Center University of Washington OCEANS 2010 MTS/IEEE Seattle

September 21, 2010

## Outline







3 Conclusions and Future Work

Kristen M. Thyng and James J. Riley

### Outline









æ

#### Where should turbines go and why?

Placement depends on:

- Economics
- Survivability

# Numerical Model: Idealization of Admiralty Inlet

- Regional Ocean Modeling System (ROMS)
- 3D, terrain-following vertical coordinates, hydrostatic
- 100 meter horizontal and 4 meter vertical resolution
- 7 km wide, 105 km long, 155 meters deep
- West, east boundaries: M<sub>2</sub> tidal forcing; north, south are closed, no-slip



#### Flow Field

Figure: Depth-averaged vorticity in color with velocity arrows

문 🛌 문

Kristen M. Thyng and James J. Riley Oceans 2010

# Outline







Conclusions and Future Work



#### Mean Kinetic Power Density



Kristen M. Thyng and James J. Riley Oceans 2010

#### Asymmetry of Tidal Flow

- Expect east-west tides for channel flow
- Headland causes asymmetry



Kristen M. Thyng and James J. Riley Oceans 2010

### Bidirectionality

$$a(x,y) = | heta(x,y)_{ebb} - heta(x,y)_{flood} - 180^{\circ}|.$$



Figure: Contours of asymmetry parameter overlaid on shades of mean kinetic power density

# **Directional Deviation**

#### Standard Deviation of Direction



Figure: Contours of directional deviation overlaid on shades of mean kinetic power density

# Outline









æ

э

# Summary

- Areas of high mean kinetic power density are necessary for economically viable tidal development
- Extractability of the resource must be taken into account along with power resource
- Bidirectionality and directional deviation of the tidal flow are two metrics that may be important for turbine siting, depending on turbine design
- Presence of a headland significantly affects the mean kinetic power density and tidal asymmetry of a channel flow

# More Metrics

Many more metrics to consider:

- Percentage of time a turbine would spend producing power
- Percentage of time spent idle
- Timing of power production throughout day
- Bias of power toward ebb or flood tide

#### Idealized Sills Model and Realistic Model



Figure: Mean kinetic power density, *x-z*, for idealized double-silled channel



#### Figure: Surface salinity in Admiralty Inlet numerical model