Tidal Hydrokinetic Energy

Brian Polagye Research Assistant Professor University of Washington

September 23, 2010

- Tidal Energy
- Challenges
- Northwest National Marine Renewable Energy Center

Tidal Energy

Barrage

- Comparable to hydroelectric
- Very high cost and environmental footprint

Hydrokinetic

- Comparable to wind
- Potentially lower cost and environmental footprint

Tidal Energy Resource

Other Forms of Marine Energy

Wave

Ocean Thermal

Ocean Current

Offshore Wind

Tidal Hydrokinetic Devices

"Typical" Sites and Devices

Worldwide Demonstrations

Tidal Energy in Puget Sound

Race Rocks
Demonstration turbine

Admiralty Inlet
Pilot project

Motivation

Local Drivers

- I-937: 15% renewable energy by 2020
- Limited transmission capacity for new wind energy
- US Navy target of 50% alternative energy by
 2020

National and Global Drivers

- Predictable resource
- No CO₂ emissions
- No visual impact
- Close to load

- Tidal Energy
- Challenges
- Northwest National Marine Renewable Energy Center

Tidal Energy Challenges

Technical Challenges

Deep water deployments

- Most of the resource is in water deeper than 20m
- Most wind deployments in water less than 20m

Biofouling and corrosion

- Long-term reliability
 - Moving parts in the marine environment
 - 20+ year service life
 - 2+ year service interval

Survivability and Reliability

Orme, Masters, Griffiths (2001)

316 Stainless – Crevice Corrosion

Hydrodynamic performance

- Reduced power output
- **■** Structural performance
 - Increased loads
 - Metal corrosion
 - Composite aging

Shallow Water Biofouling Example

Clean Current turbine 15m depth 6 months deployment

Before After

Cost of Energy

Marine renewables more expensive than terrestrial alternatives

- Wave energy: 200-700 \$/MWh
- Tidal energy: 150-600 \$/MWh
- Ocean thermal energy: 500+ \$/MWh

Several contributors to higher cost

- Capital cost for extended marine deployments
- Operations and maintenance in marine environment
- Long and uncertain permitting requirements
- Intensive environmental monitoring requirements

Potential Environmental Effects

• Effects on aquatic species

- Avoidance
- Aggregation
- Strike
- Entanglement

Far-field environment

- Circulation
- Nearshore environment
- Water quality

Near-field environment

- ■Noise (device, vessels)
- Wake (sediment transport)
- •Hard substrate (artificial reef)
- **■**EMF
- Toxicity (coatings, lubricants)

Barriers to Resolving Uncertainty

"Chicken and Egg" Problem

Need devices in the water to reduce large uncertainties

Technology readiness of monitoring

- "You can only analyze what you can measure..."
- Existing tools focused on stock assessments, not individuals
- Significant overlap with fundamental research needs
- High natural variability in relation to project scale

Mitigation Trade-offs

Environment

VS.

Economics

Further from shore less sensitive

Temporary shut-down

VS.

Higher cost of energy

Higher cost of energy, financing

Environment

Slack moorings are quiet

Taut moorings pose a low entanglement risk

Environment

Slack moorings pose a high entanglement risk

Taut moorings strum loudly

Existing Uses

Tribes

- Usual and Accustomed Treaty Rights
- Fishing and crabbing

Commercial Users

- Fishing and crabbing
- Shipping

Recreational Users

- Fishing and crabbing
- Diving
- Military

- Tidal Energy
- Challenges
- Northwest National Marine Renewable Energy Center

8 Faculty members involved

10 Graduate student researchers supported

Resource and Site Assessment

Seabed Instrumentation *Measurement Tripod*

Shipboard Survey
R/V Jack Robertson

Land Observation

AIS Ship Tracks

Seabed Characterization

Sea Spider Instrumentation Tripod

Acoustic release

(redundant recovery)

ADCP

(Acoustic Doppler Current Profiler)

Hydrophone

(background noise)

Programmed for 3 month deployments

CTDO (conductivity, temperature, depth, dissolved oxygen – partnership with WA Dept of Ecology)

Fish Tag Recorder

(partnership with NMFS)

T-Pod/C-Pod

(porpoise clicks)

Lead Weight

(650 lbs)

Deployment Time Lapse

August 15, 2010

Instrumentation Staging

Rough Deployment

IR Detection of Marine Mammals

Lime Kiln State Park July 5, 2010 at 0350

HD Webcam IR Camera

Turbine Noise

Two Open Hydro Turbines Northern Admiralty Inlet

Biofouling Prevention

- Biocides: "Anti-fouling"
 - Effective
 - Toxic
- Low friction: "Foul-release"
 - Cost
 - Long-term effectiveness

Deep Water Screening Experiment

Large Annual Variability

Composite Aging

- Water absorption, leading to loss of strength
- *In-situ* screening tests
 - 9 18 months exposure
 - Four composite material systems

Test Platform Goals

- Provide a fully instrumented and permitted platform for testing tidal energy conversion devices.
- Provide objective performance evaluations of tidal energy devices in realistic conditions.
- Provide comprehensive environmental monitoring to study potential environmental effects of tidal energy conversion.
- Accelerate commercialization by reducing development cost and uncertainty.

Site Characteristics

Realistic hydrokinetic resource

—Peak currents ~ 2.5 m/s

Supports range of devices

Depth varies from 20m to 50m over 1 km distance

Full range of aquatic species present

- —Fish
- —Marine mammals
- —Diving seabirds

Infrastructure Concept

- Grid connection
- Environmental and performance monitoring nodes
- Plug and play foundation
- Power and data "sockets"

Leveraging Infrastructure

- Build on NSF Ocean Observing Initiative
- Fiber optic to Ethernet: real-time observations
- Robust nodal architecture, "daisy chain" interconnections
- Simple retrievals for service/upgrade (independent from tidal device maintenance)
- Potential to integrate proven technologies next to beta

UW-APL Regional Scale Nodes project

National Tidal Energy Platform

Conclusions

- Tidal energy is not a "silver bullet", but will be regionally important.
- Significant challenges must be overcome before commercial development.
- Opportunity for universities to solve these problems and train first generation of marine energy engineers.

Thank You!

To learn more about tidal energy, visit: http://depts.washington.edu/nnmrec

