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•Previous Work 

–coupled aero-structural optimization (HARP_Opt code) 

–simple structural model 

•Newly Developed Structural Analysis Tool (CoBlade) 

–methodology & applications 

•Structural Optimization 

–problem formulation 

–design of composite blade for tidal turbine 

•Recommended Future Work 

 



Previous Work: HARP_Opt 
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Horizontal Axis Rotor Performance Optimization 
• given:          turbine & environmental specifications 

• optimizes:  blade shape, rotor speed & blade pitch control 

• satisfying:  maximum Annual Energy Production (AEP) 

                       performance constraints (power, cavitation, etc.) 

 



Previous Work: HARP_Opt 
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Bending Strain: 

Simple Structural Model 

• Thin-shelled cantilever beam 

•One material w/ isotropic properties 

• Bending strain is only constraint 

• Shell thickness is only design variable 



Previous Work: HARP_Opt 
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Coupled Aerodynamic-Structural Optimization 

•maximize energy production & minimize blade mass 

• genetic algorithm identifies set of Pareto-efficient designs 



Moving Forward: Structural Design 
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Develop a tool capable of modeling realistic composite blades 

Image: www.Gurit.com 



Overview of CoBlade software 
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Structural Analysis and Design of Composite Blades 

• realistic modeling of composite blades 
–arbitrary topology & material properties 

• computes structural properties 
–stiffnesses:  bending, torsional, axial 

– inertias:  mass, mass moments of inertia 

–principal axes:  inertial/centroidal/elastic principal axes 

–offsets:  center-of-mass, tension-center, shear-center 

• structural analysis tool 
–arbitrary applied loads & body forces 

– recovery of 2D lamina-level strains & stresses 

–blade deflection & modal analysis 

– linear buckling analysis 

• optimization of composite layup 

 

Image: replica of Sandia SNL100-00 wind turbine blade using CoBlade 



Methodology 
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Classical Lamination Theory (CLT) 

• describes mechanical response of laminated plates 

 

Image: G.S. Bir. “PreComp User’ Guide” 

Classical Lamination Theory  + Euler-Bernoulli beam model + shear flow 

 

extensional stiffness 

coupling stiffness 

bending stiffness 



Methodology 
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Composite Euler-Bernoulli Beam and shear flow approach 

• describes global mechanical behavior of composite beam 

 

Convert Beam Stresses into Equivalent Plate Loads 

• recover 2D strains & stress at lamina level 
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Methodology 
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[1] G.S. Bir, 2005.  “User’s Guide to BModes: Software for Computing Rotating Beam Coupled Modes,” NREL TP-500-38976, Golden, CO: National 
Renewable Energy Laboratory. 

Linear Buckling Analysis 

• pinned boundary conditions (conservative) 

• contributions from panel stiffness, curvature, thickness, & width 

shear web panels top/bottom surface panels 

Modal Analysis 

• BModes: Rotating Beam Coupled Modes (NREL code) 

beam divided into finite elements 



Optimization: Composite Layup 
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Material Legend: 
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Material Properties: Failure Stresses: 

Composite Layup 

• all laminates balanced & symmetric 

• high & low pressure surfaces symmetric 

• identical shear web laminates 



Optimization: Design Variables 
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Design Variables 

• spar-cap width at inboard & outboard stations 

• lamina thicknesses along blade length 



Optimization: Objectives & Constraints 

13 

 = BladeMass *    minimize: 

subject to: 

penalty factors for 
maximum stress 

penalty factors for buckling 
under compression & shear 

penalty factor for 
tip deflection 

penalty factor for separation 
of blade freqs. & rotor freq. 

constraints ensure 
feasible geometry 



Optimization: Example Design 
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Image: ref [2] 

[1] M.J. Lawson, Y. Li, and D.C. Sale, 2011. “Development and Verification of a Computational Fluid Dynamics Model of a Horizontal Axis Tidal 
Current Turbine.” The 30th International Conference on Ocean, Offshore and Arctic Engineering. 

[2] G.S. Bir, M.J. Lawson, and Y. Li, 2011. “Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade.” The 30th International 
Conference on Ocean, Offshore and Arctic Engineering. 

Composite Blade Design for Tidal Turbine 

• hydrodynamic design: Department of Energy Reference Tidal Current Turbine, ref. [1] 

• design loads: extreme operating conditions in Puget Sound, WA., ref. [2] 



Optimization: Results 
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CoBlade is fast: single evaluation: ~1 sec, total optimization: ~40 min 

Blade mass is minimized, final iteration satisfies all constraints (no penalties) 



Optimization: Results 
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normal stress, σzz (MPa) 

shear stress, | τzs | (MPa) 

buckling criteria, R 
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Optimization: Results 
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Conclusions 
• Capable structural design tool, modeling of complex layups possible with CoBlade 

•NOT a replacement for higher-fidelity FEM, but very effective for preliminary design work 

• Limited validation studies 

–excellent agreement for analytically obtainable results 

–good agreement with ANSYS FEM model of tapered composite beam (collaboration w/ Penn. State) 

Future Work 
• Preliminary results seem reasonable, but require further validation 

–anisotropic layups 

–buckling 

–lamina-level strains/stresses 

• Repeat coupled aero-structural optimization (HARP_Opt) with structural capabilities of CoBlade 

• Include cross-coupled terms from CLT into beam equations 

• Public release of CoBlade code & documentation 



Thank you!  Questions? 
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