Structural Design of Composite Blades for Wind and Hydrokinetic Turbines

Danny Sale and Alberto Aliseda

Northwest National Marine Renewable Energy Center
Dept. of Mechanical Engineering
University of Washington

Feb. 13, 2012

Outline

Previous Work

- —coupled aero-structural optimization (HARP_Opt code)
- -simple structural model
- Newly Developed Structural Analysis Tool (CoBlade)
 - -methodology & applications
- Structural Optimization
 - –problem formulation
 - –design of composite blade for tidal turbine
- Recommended Future Work

Previous Work: HARP_Opt

Horizontal Axis Rotor Performance Optimization

• given: turbine & environmental specifications

• optimizes: blade shape, rotor speed & blade pitch control

• satisfying: maximum Annual Energy Production (AEP)

performance constraints (power, cavitation, etc.)

Admiralty Inlet: 18m above seabed

Previous Work: HARP_Opt

Simple Structural Model

- Thin-shelled cantilever beam
- One material w/ isotropic properties
- Bending strain is only constraint
- Shell thickness is only design variable

Previous Work: HARP_Opt

Coupled Aerodynamic-Structural Optimization

- maximize energy production & minimize blade mass
- genetic algorithm identifies set of Pareto-efficient designs

Moving Forward: Structural Design

Develop a tool capable of modeling realistic composite blades

Overview of CoBlade software

Structural Analysis and Design of Composite Blades

- realistic modeling of composite blades
 - -arbitrary topology & material properties

computes structural properties

- -stiffnesses: bending, torsional, axial
- -inertias: mass, mass moments of inertia
- -principal axes: inertial/centroidal/elastic principal axes
- offsets: center-of-mass, tension-center, shear-center

Image: replica of Sandia SNL100-00 wind turbine blade using CoBlade

structural analysis tool

Methodology

Classical Lamination Theory + Euler-Bernoulli beam model + shear flow

Classical Lamination Theory (CLT)

describes mechanical response of laminated plates

$$A_{ij} = \sum_{k=1}^{N} (C_{ij}^*)_k (z_k - z_{k-1})$$
 extensional stiffness

$$D_{ij} = \frac{1}{3} \sum_{k=1}^{N} (C_{ij}^*)_k (z_k^3 - z_{k-1}^3)$$
 bending stiffness

$$B_{ij} = \frac{1}{2} \sum_{k=1}^{N} (C_{ij}^*)_k (z_k^2 - z_{k-1}^2)$$
 coupling stiffness

Methodology

Composite Euler-Bernoulli Beam and shear flow approach

• describes global mechanical behavior of composite beam

Convert Beam Stresses into Equivalent Plate Loads

recover 2D strains & stress at lamina level

Methodology

Linear Buckling Analysis

- pinned boundary conditions (conservative)
- contributions from panel stiffness, curvature, thickness, & width

Modal Analysis

• BModes: Rotating Beam Coupled Modes (NREL code)

[1] G.S. Bir, 2005. "User's Guide to BModes: Software for Computing Rotating Beam Coupled Modes," NREL TP-500-38976, Golden, CO: National Renewable Energy Laboratory.

Optimization: Composite Layup

Material Legend:	Material Properties:	Failure Stresses:
blade-root blade-shell	$\mathbf{E_{11}}$	$\sigma_{11,\mathrm{fT}}$
spar-uni	$\mathbf{E_{22}}$	$\sigma_{11, { m fC}}$
spar-core LEP-core	G_{12}	$oldsymbol{\sigma}_{22, ext{yT}}$
TEP-core web-shell	v ₁₂	$\sigma_{22, ext{yC}}$
web-core	þ	$ au_{12,y}$

Composite Layup

- all laminates balanced & symmetric
- high & low pressure surfaces symmetric
- identical shear web laminates

Optimization: Design Variables

Design Variables

- spar-cap width at inboard & outboard stations
- lamina thicknesses along blade length

Optimization: Objectives & Constraints

minimize: $f(\vec{x}) = BladeMass * \prod_{n=1}^{N} max\{1, p_n\}^2$

subject to:

$$p_1 = \frac{\sigma_{11,max}}{\sigma_{11,fT}}$$

$$p_2 = \frac{\sigma_{11,min}}{\sigma_{11,fC}}$$

$$p_3 = \frac{\sigma_{22,max}}{\sigma_{22,yT}}$$

$$p_4 = \frac{\sigma_{22,min}}{\sigma_{22,yC}}$$

$$p_5 = \frac{\tau_{12,max}}{\tau_{12,y}}$$

$$p_6 = \left(\frac{\sigma}{\sigma_{buckle}}\right)^{\alpha} + \left(\frac{\tau}{\tau_{buckle}}\right)^{\beta}$$

$$penalty factors for maximum stress$$

$$p_{allow}$$

$$p_{benalty factors for buckling under compression & shear penalty factor for tip deflection
$$p_{benalty factor for tip deflection}$$

$$p_{benalty factor for separation of blade freqs. & rotor freq.$$

$$\vec{x}_{LB} \leq \vec{x} \leq \vec{x}_{UB}$$

$$\vec{x}_{LB} \leq \vec{x} \leq \vec{x}_{UB}$$

$$\vec{x}_{LB} \leq \vec{b}$$$$

13

Optimization: Example Design

Composite Blade Design for Tidal Turbine

- hydrodynamic design: Department of Energy Reference Tidal Current Turbine, ref. [1]
- design loads: extreme operating conditions in Puget Sound, WA., ref. [2]

[1] M.J. Lawson, Y. Li, and D.C. Sale, 2011. "Development and Verification of a Computational Fluid Dynamics Model of a Horizontal Axis Tidal Current Turbine." The 30th International Conference on Ocean, Offshore and Arctic Engineering.

^[2] G.S. Bir, M.J. Lawson, and Y. Li, 2011. "Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade." The 30th International Conference on Ocean, Offshore and Arctic Engineering.

Optimization: Results

Optimization: Results normal stress, σ_{zz} (MPa)

Top Surface Lamina Stress Failure Criteria

Optimization: Results

Conclusions

- Capable structural design tool, modeling of complex layups possible with *CoBlade*
- NOT a replacement for higher-fidelity FEM, but very effective for preliminary design work
- Limited validation studies
 - -excellent agreement for analytically obtainable results
 - -good agreement with ANSYS FEM model of tapered composite beam (collaboration w/ Penn. State)

Future Work

- Preliminary results seem reasonable, but require further validation
 - –anisotropic layups
 - -buckling
 - -lamina-level strains/stresses
- Repeat coupled aero-structural optimization (HARP_Opt) with structural capabilities of CoBlade
- Include cross-coupled terms from CLT into beam equations
- Public release of CoBlade code & documentation

Thank you! Questions?

Acknowledgements

Dr. Mark Tuttle (University of Washington)

Matt Trudeau (Pennsylvania State University)

This work has also been made possible by

- National Science Foundation Graduate Research Fellowship under Grant No. DGE-0718124
- Department of Energy, National Renewable Energy Laboratory
- University of Washington, Northwest National Marine Renewable Energy Center

Extra

