Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine

Taylor Hall

University of Washington
Northwest National Marine Renewable Energy Center

MSME Thesis Presentation
3/13/2012
Tidal Energy

- Tidal energy resource realized
- Renewable
- Clean
- Predictable
- Many similarities to wind energy
Turbine Classifications

Axial Flow Turbines

Cross Flow Turbines
Turbine Design Concepts
Cross Flow Turbine Advantages

- High energy density typically found in narrow constricted channels
- Packing critical to efficiency and economic feasibility
- Cross flow turbines can be stacked, efficiently utilizing limited space
- Vertical axis: works in any direction of flow
Motivation and Goals

- Recently realized advantages have ignited interest in cross flow hydrokinetic turbines (CFHT)
- Significant gaps in understanding and modeling capabilities
- Benefits of numerical models
 - Turbine performance for a variety of parameters
 - Influence of turbine surroundings: stacking, mooring, supports
 - Environmental impacts
 - Larger scale turbine performance
- Goals:
 - Gain a better understanding of the CFHT flow dynamics
 - Develop a numerical methodology for CFHT
 - Ultimate goal of developing a computational tool to aid in turbine design and array installation process
Hydrodynamics of a Cross Flow Turbine

- Many differences from axial flow turbines
- Unsteady and largely three-dimensional
- Interference between shed vortices and blades
- Can reach very high angles of attack
- Rapidly changing angles of attack
- Dynamic stall behavior
Power available in the flow:

\[P_0 = \frac{1}{2} \rho S_{ref} V_0^3 \]

\[S_{ref} = 2RH \]

Free Stream Velocity:
\[V_0 \]

Tangential Velocity:
\[V_\theta = \omega R \]

Relative Velocity:
\[V_R = \sqrt{(V_0 + V_\theta \cos \theta)^2 + (V_\theta \sin \theta)^2} \]

Tip Speed Ratio:
\[\lambda = \frac{\omega R}{V_0} \]

Source: Antheaume
Hydrodynamics of a Cross Flow Turbine

Angle of Attack:
\[\alpha = \tan^{-1} \left(\frac{\sin \theta}{\lambda + \cos \theta} \right) \]

Relative Reynolds Number:
\[R_{rel} = \frac{\rho V_R C}{\mu} \]

Torque:
\[T = R(L \cos \alpha - D \sin \alpha) \]
\[C_T = \frac{T}{\frac{1}{2} \rho V_0^2 S_{ref} R} \]

Power:
\[P = T \omega \]
\[C_P = \frac{P}{P_0} = \frac{P}{\frac{1}{2} \rho S_{ref} V_0^3} = \lambda C_T \]
Hydrodynamics of a Cross Flow Turbine

Angle of Attack

\[\alpha = \tan^{-1}\left(\frac{\sin \theta}{\lambda + \cos \theta} \right) \]

Relative Reynolds Number

\[Re_{\text{rel}} = \frac{\rho V_R C}{\mu} \]
Helical Cross Flow Turbine

Micropower generation project as benchmark study:
Adam Niblick and UW Mech. Eng. Capstone Design Team

<table>
<thead>
<tr>
<th>Blade Profile</th>
<th>NACA 0018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Blades, N</td>
<td>4</td>
</tr>
<tr>
<td>Chord Length, c</td>
<td>0.040 m</td>
</tr>
<tr>
<td>Radius, R</td>
<td>0.086 m</td>
</tr>
<tr>
<td>Height, H</td>
<td>0.234 m</td>
</tr>
</tbody>
</table>

Source: Adam Niblick
Experiment/Simulation Parameters

Turbine and Channel Flow

- \(\text{Re}_C = \frac{\rho V_\infty C}{\mu} = 28,000 \)
- \(\text{Aspect Ratio} = \frac{H}{D} = 1.4 \)
- \(\text{Solidity Ratio} = \frac{N_C}{2\pi R} \)
 = 0.075 for 1 blade
 = 0.3 for 4 blades

Numerical Modeling

- CFD Software Fluent v12.0
- Reynolds-Average Navier-Stokes (RANS) equations
Reynolds Average Navier Stokes (RANS) Equations

Reynolds decomposition of velocity
\[\vec{U} = \bar{U} + \bar{u}' \]

Reynolds decomposition of a scalar variable
\[\phi = \bar{\phi} + \phi' \]

Conservation of mass
\[\nabla \cdot \bar{U} = 0; \quad \nabla \cdot \vec{u}' = 0 \]

Conservation of momentum
\[\frac{D \bar{U}_i}{Dt} = \nu \nabla^2 \bar{U}_i - \frac{\partial u_i' u_j'}{\partial x_j} - \frac{1}{\rho} \frac{\partial p}{\partial x_i} \]

- Shear Stress Transport-\(k\omega\) turbulence closure model
- Default turbulence model coefficients
- Low-Reynolds number modeling
Channel Domain and Boundary Conditions

- **Channel Side Wall:** No Slip
- **Channel Free Surface:** Zero Shear
- **Channel Bottom Wall:** No Slip

Dimensions:
- Length: 23.6R
- Width: 8.7R
- Height (H): 2.8R
- Height (Z): 5.0R
Blockage Ratio: Matched to Experiments

\[
\text{Blockage ratio} = \frac{2RH}{\text{Channel Area}} = 0.12
\]
Simulation Cases

- **Static Turbine**
 - 1 blade
 - 4 blades

- **Rotating Turbine**
 - 1 blade
 - 4 blades
Labeling of Helical Blade Position

θ = 45°
Static Turbine: Single Blade

- Particle brake applies constant torque to hold turbine in stationary position: $\lambda=0$
- Torque cell measurements available from experiments
- Repeated at several azimuthal locations
Static Turbine: Single Blade
Flow fields for angles of attack (α)
Modeling in Near Wall Region

Wall Functions

Near Wall Approach

Wall Function Approach

Near-Wall Model Approach
Modeling in Near Wall Region

Wall Functions

- $30 < y^+ < 300$
- $\frac{\text{First Length}}{\text{Chord Length}} = 0.15$
- Total Elements = 185,000

Near Wall Approach

- $y^+ < 1$
- $\frac{\text{First Length}}{\text{Chord Length}} = 0.0001$
- Total Elements = 4.0 million

Near Wall: 20x computation time, 20-25% reduction in error
Static Turbine: Single Blade with near-wall modeling approach
Static Turbine: 4 Blades
Static Torque: 4 Bladed Turbine

Graph: Static Torque: 4 Blades

- C_Torque on the y-axis
- \(\theta \) (degrees) on the x-axis
- Data points represent experimental and CFD results.
Superposition of Single Blades vs. 4 Bladed Turbine
Superposition of Single Blades vs. 4 Bladed Turbine

CFD:

Experiments:
Single Blade
vs. 1 blade from 4 bladed turbine

VS.

VS.

VS.

VS.
Single Blade vs. 1 blade from 4 bladed turbine

Experiment Static Torque: Per Blade

- 4 bladed turbine, per blade
- 1 bladed turbine

θ (degrees)
Wake Interactions
Simulation Cases

- **Static Turbine**
 - 1 blade
 - 4 blades

- **Rotating Turbine**
 - 1 blade
 - 4 blades
Sliding Mesh Technique for Rotating Turbine

Set RPM of rotating domain

Time step = 1.2 degree rotation

At each time step:
- Non-conformal boundary
- Determine interfaces
- Calculate flux
Rotating Turbine: Single Blade

- **Experiment**
 - $\lambda=3.2$
 - $\lambda=3.6$ (no load)

- **CFD**
 - $\lambda=3.2$
 - $\lambda=3.6$
 - $\lambda=1.6$
Dynamic Torque: Single Blade

\[C_{\text{Torque}} \]

\[\theta \text{ (degrees)} \]

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(C_{\text{avg Torque}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>0.047</td>
</tr>
<tr>
<td>3.2</td>
<td>0.065</td>
</tr>
<tr>
<td>3.6</td>
<td>0.057</td>
</tr>
</tbody>
</table>
Theoretical Angle of Attack

\[\alpha, \text{Degrees} \]

Azimuthal Position, \(\theta \) (Degrees)

\(\lambda = 1.6 \quad \lambda = 3.2 \quad \lambda = 3.6 \)

Theoretical \(\text{Re}_{\text{REL}} \)

\[\times 10^4 \]

Re\(_{\text{REL}} \)

Azimuthal Position, (Degrees)
Rotating Single Bladed Turbine: CFD vs. Experiment

Dynamic Torque for a Single-Bladed Turbine at $\lambda=3.2$
Oscillating Rotational Velocity

\[\lambda_{avg} = 3.2 \]

\[\lambda_{avg} = 3.6 \]
System Dynamics

\[I \frac{d\omega}{dt} = \sum M_{ext} = T_{Hydrodynamic} - T_{ParticleBrake} - T_{SystemFriction} \]

- CFD models the Hydrodynamic Torque
- Experiments measure the Particle Brake Torque
Torque Calculations

\[I \frac{d\omega}{dt} = \sum M_{ext} = T_{Hydrodynamic} - T_{ParticleBrake} - T_{SystemFriction} \]

\[T_{Hydrodynamic} - T_{SystemFriction} = T_{ParticleBrake} + I \frac{d\omega}{dt} \]

\[T_{Hydrodynamic} \approx T_{ParticleBrake} \quad \text{if} \quad \frac{d\omega}{dt} \quad \text{and} \quad T_{SystemFriction} \approx 0 \]

\[\int_{0}^{360^\circ} I \frac{d\omega}{dt} \, d\theta = 0 \]

\[\frac{T_{Hydrodynamic}}{T_{ParticleBrake} + T_{SystemFriction}} = \frac{\int_{0}^{360^\circ} I \frac{d\omega}{dt} \, d\theta}{0} \]
Experiment Single Blade, $\lambda_{AVG} = 3.2$
Model Validation

Differences Attributed To:

• Constant vs. varying tip speed ratio

• System Frictional Torque

<table>
<thead>
<tr>
<th>λ</th>
<th>Experiment</th>
<th>CFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>0.032</td>
<td>0.065</td>
</tr>
<tr>
<td>3.6</td>
<td>0.007</td>
<td>0.057</td>
</tr>
</tbody>
</table>
Possible Comparison Improvements

— Run simulations at several different tip speed ratios: create a composite result
— Run experiments with a variable load to keep a constant rotation speed

Four-bladed turbine

• Hydrodynamic torque undergoes much smaller fluctuations
• Much higher moment of inertia
• Leads to much smaller oscillations in the rotational velocity
Increased Reynolds Number Simulation

- Decreased viscosity to achieve higher Re
- Required finer mesh
- Increase in turbine efficiency from 21 to 42%
Rotating Turbine: 4 Blades

- Experiments
 - $\lambda=1.3$ to 2.1

- CFD
 - $\lambda=1.3, 1.6, 2.0$
Rotating 4 Bladed Turbine
1 Bladed Turbine vs. 4 Bladed Turbine: Effect of Solidity for $\lambda=1.6$
1 Bladed Turbine vs. 4 Bladed Turbine: Effect of Solidity
4 Bladed Rotating Turbine: CFD vs. Experiments

\[C_P = \frac{T}{\frac{1}{2}\rho V_\infty^3 S_{ref} R} \]

\[C_P = \frac{P}{\frac{1}{2}\rho V_\infty^3 S_{ref}} = C_T \lambda \]
Summary and Conclusions

Static Turbine Analysis

— Methodology can accurately model the starting torque of the turbine
— Limitations associated with predictions of separated flow in RANS simulations

Rotating Turbine Analysis

— Direct comparisons between the model and experiments were challenging for a 1-bladed turbine with high levels of experimental angular acceleration
— Limitations modeling dynamic stall
— Simulations for 4 blades show great qualitative agreement
— Promising results for using the methodology for future turbine performance predictions
Acknowledgements

Professor Aliseda
Professor Malte
Professor Riley
Adam Niblick and the Capstone Design Team
Northwest National Marine Renewable Energy Center
Department of Energy
Friends and Family