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Tidal hydrokinetic energy has been recognized as a potential source of sustainable, renewable

energy. In order to properly site turbines for commercial-scale development, the complex

flow conditions in a potential deployment region must be understood. Viable locations for

turbines are limited by many factors, including underwater space that is above the bottom

boundary layer, below shipping traffic, within areas of strong currents, and yet avoids ad-

ditional fatiguing stresses. The primary area of interest in the Puget Sound for commercial

tidal energy development is Admiralty Inlet, which includes potentially disruptive flow fea-

tures such as vortices and strong turbulence. This dissertation seeks to increase the body

of knowledge of these features both from an oceanographic perspective and as they pertain

to turbine site characterization.

The primary means of studying Admiralty Inlet in this document is through numerical

simulation of the region using the Regional Ocean Modeling System (ROMS). The model

output is found to compare well with field data, capturing eddy fields, turbulence properties,

relative tidal phases, and illuminating many flow features. Horizontal velocities in the

simulation are, on average, approximately 75% the size of those found in the data. This

speed deficiency is inherited from the forcing model in which the Admiralty Inlet simulation

is nested. The model output also shows that the flow field of this fjord-like estuary is

largely affected by a headland on the northeast side of the Inlet. Vortices generated by this





headland, Admiralty Head, are found to vary considerably depending on the tidal cycle. The

eddies can persist beyond the half-cycle of generation to significantly affect the horizontal

speed and other flow field properties in the subsequent half-cycle. Detailed analysis of the

vertical vorticity governing equation shows that advection, tilting, stretching, and boundary

generation are the most significant processes dictating the behavior of the vorticity.

Turbulence modeling in the simulation is carried out via a k-ε turbulence closure scheme.

Comparisons of model output with high resolution field data show the model to perform

reasonably well: predicted Reynolds stress and turbulent dissipation rate values are usually

within a factor of two of the field data. The turbulent kinetic energy from the simulation

compares well with field data that is restricted to the frequency range of classical turbulence.

The energy density spectrum of the data is found to follow Kolmogorov’s theory beyond

the inertial subrange. Using this fact and Taylor’s frozen field approximation, an inferred

calculation for the turbulent kinetic energy is derived that spans the full frequency range of

the data set. The output from the inferred calculation compares well with the full turbulent

kinetic energy from the field data.

Maps of metrics for tidal turbine siting are generated that address many considerations

for turbine placement, and can be adjusted for the model’s speed deficiency with a simple

multiplication factor. Among the possible best locations for turbine deployment are north

of Point Wilson on the west side of Admiralty Inlet and near the center of the channel

between Point Wilson and Admiralty Head. These locations have a strong tidal resource

available along with highly bi-directional tidal currents and low turbulence levels.
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√
u2 + v2 [m/s]
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Chapter 1

BACKGROUND INFORMATION

1.1 Introduction

The primary motivation for considering alternative energy sources has historically been due

to an increase in the price of oil. While this motivation remains and has been extended by the

desire to be free of dependence on foreign resources, the larger reason has arguably become

global climate change. Additionally, it is imperative to move from burning fossil-fuels, of

which there is a finite amount, to utilizing recurring resources. A peak in oil production

is predicted to occur world-wide between 2020 and 2050, after which the amount of oil

available for energy production will diminish continually (Greene et al., 2003). It is in our

best interest to be prepared for this inevitability.

The key finding of the United States Global Change Research Program’s (USGCRP)

State of the Knowledge Report of Global Climate Change Impacts in the U.S. is that global

warming is real and caused by humans (Karl et al., 2009). Additionally, it is stated that

climate change effects are already noticeable and will continue to increase. A final key

point is that future climate change depends on what is done today as a nation and as a

planet. In response to this, many states and cities around the United States, as well as many

countries, have begun to pass initiatives requiring the creation and integration of a fraction

of their electricity to come from “green” sources. For example, the Secretary of State for

Trade and Industry (2003) in United Kingdom set as a goal to have 20% of their electricity

originate from renewable energy sources by 2020. The U.S. Department of Defense (2007)

has similarly committed to renewable energy sources for 25% of their energy needs by 2025.

Here in Washington State, Initiative I-937 has put forth an obligation on large utilities of

15% of energy production from new renewable sources by 2020 (Reed, 2006).

It is clear that new technologies must play an important role in the changes that are

employed today in order to affect the future. Energy sources are renewable if they do not

http://www.globalchange.gov
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consume a finite resource in the process of creating electricity, and thus may continue to be

utilized as long as the hardware and resource remain.

Many renewable energy sources are presently being considered. Some draw on ideas and

even technology that have been around for decades or longer, such as wind energy, solar

energy, hydroeletric dams, and tidal barrages (dam-like barriers placed in an area with a

high tidal range that trap the water upon entering and release it through turbines, creating

electricity). Others are new applications of older ideas, like off-shore wind energy, which is

similar to on-shore wind energy but is placed on deep enough water that a monopile structure

may no longer be a feasible way to keep the turbine in place, necessitating innovative designs

to harvest the vast amount of energy available in the winds farther away from land. There

are many new ideas for creating energy, such as wave energy, biomass, ocean thermal, and

hydrokinetic energy. Marine hydrokinetic (MHK) energy is a broad term encompassing

wave, tidal, and river kinetic energy, whereas tidal hydrokinetic energy (THK) refers to

turbines in a tidal environment, in which the gravitational influence of the moon and sun

interact to cause the large body of water to move back and forth once or twice a day.

The decision of what renewable energy technology to consider is based on what resource

is locally available to the population in need of electricity production. The Puget Sound

is a deep, fjord-like estuary with several large cities, including Seattle and Tacoma, on its

shoreline (Figure 1.1(a)). The Puget Sound metropolitan area supports about 3.5 million

people (City of Seattle, 2010), a much higher population density than in the eastern half

of the state, where much of the existing (conventional hydroelectric and wind) electricity

is produced. One attraction of tidal hydrokinetic energy for this region is its proximity

to a large population, which would require shorter transmission lines. Another attraction

is that, unlike wind and wave energy, tidal hydrokinetic energy is a relatively predictable

source of electricity and would be produced regardless of weather factors that may affect

energy consumption and production of other sources of renewable energy.

One of the most promising locations for a commercial-scale tidal turbine array is in

Admiralty Inlet, the main entrance to the Puget Sound (Figure 1.1(b)) (Polagye et al.,

2007; Previsic et al., 2008; Haas et al., 2011). Admiralty Inlet has peak currents of over

3.5 m/s and depths between 50 and 180 meters, though at the northern sill, the area
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(a) Puget Sound

Admiralty 
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(b) Admiralty Inlet

Figure 1.1: Western Washington state’s inland waters, the Puget Sound, where dense Pacific

Ocean water mixes with fresh river water. Blue coloring indicates water depth and green

indicates height of land above water, with both in units of meters.

of particular interest, depths are around 50 to 80 meters. These factors, along with the

large underwater space available for potential development, make Admiralty Inlet a strong

candidate for tidal hydrokinetic power development. Thus, there is a potential pilot-scale

test site in Admiralty Inlet near Admiralty Head, as indicated in Figure 1.1(b), being

developed by the Public Utility District No. 1 of Snohomish County (SnoPUD) in an effort

to fulfill its obligation of 15% of its energy production from new renewable sources by 2020

(Reed, 2006). The SnoPUD pilot project will involve two tidal turbines in Admiralty Inlet

and will enable the gathering of turbine flow data in a real environment (Public Utility

District No. 1 of Snohomish County, 2012). This work, in conjunction with both field and

numerical research being accomplished at the University of Washington, will enable science-

based decisions to be made in the future about commercial-scale tidal energy development

in the region, as well as aid in national and international decision-making.
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1.2 Tidal Hydrokinetic Energy

The basis of tidal hydrokinetic energy (THK) is the utilization of kinetic energy present in

tidal currents. It is analogous to wind energy, with which many of us are familiar. A turbine

is placed in the path of strong currents, the water rotates the turbine, and electricity is

produced by a generator attached to the turbine. This electricity then needs to be exported

from the turbine to land via transmission lines for utilization.

The main indicator of the intensity of the resource in a body of water at an (x, y, z)

location is the kinetic power density, or kinetic energy flux, which is defined as

D(x, y, z, t) =
1

2
ρ(x, y, z, t)s(x, y, z, t)3, (1.1)

where ρ is the density of water and depends on location in space and time, though is often

taken at the nominal value of 1024 kg/m3 for salt water, and s is the speed of the flow,

or magnitude of the horizontal currents, which also changes in three-dimensional space and

time. An important note is that a small increase in speed leads to a large increase in kinetic

power density, due to the cubic relationship between the two. This suggests the importance

of accurate knowledge of the tidal currents for turbine siting. Additionally, metrics for

tidal turbine siting will often present properties at a water depth corresponding to “hub

height,” the nominal vertical location of the turbine hub, in order to examine the turbine

properties at a single depth. The assumption is then that flow properties will not change

significantly over the face of the turbine around the hub height, although Kawase and Beba

(2010) specifically examines the effects of vertical changes of the currents with height. In

the present work, a hub height of ten meters is assumed unless otherwise specified. This

hub height is high enough above the seabed for a small- to medium-sized turbine, but close

enough to the seabed for a reasonable-sized turbine support structure.

Tidal turbines come in many different designs and some are at various stages of devel-

opment. The most familiar design is perhaps Verdant Power’s design, as seen in Figure

1.2(a). This design is analogous to that of a typical wind turbine. A unit is installed on

a monopile from the seabed and is completely submerged. The Marine Current Turbines

(MCT) turbine design is similar but has a protruding monopile from the seabed to be-
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yond the surface for easier maintenance, and additionally has two turbines attached to the

monopile instead of one (see Figure 1.2(b)). The Open Hydro design, which is being used

in SnoPUD’s pilot project and is in Figure 1.2(c), is a ducted turbine design which sits on

the seabed using a gravity base foundation. Ocean Renewable Power Company (ORPC)

has a Gorlov cross-flow turbine design which may be gravity- or bottom-line mounted (see

Figure 1.2(d)). The designs shown here are horizontal axis turbines, meaning that the axis

of the turbine rotation is horizontal as opposed to vertical. The research presented in this

document is largely independent of turbine design, but in some turbine siting analysis, a

circular-face horizontal axis turbine will be assumed, instead of an ORPC-style design.

Typical tidal turbines start at around 5 meter diameter and may go up to as large as 20

meters. Turbine properties, such as cut-in speed, rated speed, diameter, and efficiency will

all affect the power output of a turbine, which can range between 50 kW and over 2 MW.

As an example, the Open Hydro pilot-scale turbine that may be placed in Admiralty Inlet

by SnoPUD is expected to be 10 meters in diameter with a cut-in speed of 0.7 m/s and a

rated speed of 4 m/s.

1.3 Local Area of Interest for Development

The Puget Sound is a fjord estuary in western Washington State, in which fresh river water

from the surrounding lowlands interacts with saltier, denser Pacific Ocean water that comes

inland via the Strait of Juan de Fuca (see Figure 1.3). The main channel to the Puget

Sound is Admiralty Inlet, though there is an additional small entrance channel, Deception

Pass (Figure 1.1(a)). Underwater sills located at the entrance of each main channel affect

the flow dynamics and density fields by increasing the current speeds and turbulent mixing.

The area of interest for this research is Admiralty Inlet, shown in Figure 1.1(b). This

waterway has two sills: one northward between Point Wilson and Admiralty Head, and one

southward, south of Bush Point. Depths at the sills are 50 to 60 meters in the north, closer

to 75 meters in the south, and the Inlet is as deep as 180 meters between the two.

The tidal motions in the Puget Sound are those of a standing wave with some progression,

since the tidal currents lead the free surface displacement by close to 90◦. This is due to

the geometry of the basins in relation to the wavelengths of the tides (Mofjeld and Larsen,
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(a) Verdant Power (2010). (b) Marine Current Turbines (2010).

(c) Open Hydro (2010). (d) Ocean Renewable Power Company (2010).

Figure 1.2: Various tidal turbine designs.
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Figure 1.3: Western Washington state’s inland waters the Puget Sound where dense Pacific

Ocean water mixes with fresh river water

1984). Mean tidal ranges in the area are 1.6 meters at Port Townsend and double that in

the southern reaches (Mofjeld and Larsen, 1984).

The best reference for the tides and tidal currents in Puget Sound remains Mofjeld and

Larsen (1984), and more information on many of these topics can be found there. However,

many other papers have added to the understanding of this complex waterway (Babson

et al., 2006; Canals et al., 2009; Cannon, 1983; Geyer and Cannon, 1982; Lavelle et al.,

1988; Leonov and Kawase, 2009; Warner and MacCready, 2009).

1.3.1 Tides

The tides are caused by a combination of modulated gravitational effects between the moon

and sun (see Figure 1.4). Despite the minuteness of the gravitational pull, water will move

in reaction to the force and, with a large enough body of water, this small force can lead

to large effects as seen in tidal motions. Water in one area will be slightly higher than in

another from the force (as seen in high and low tides with free surface height changes), and
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this potential energy difference leads to the water moving in reaction, causing potentially

strong tidal currents.

Figure 1.4: The gravitational force, mainly due to the moon, is shown as exaggerated bulges

in water on the earth. The water that is closest to the moon is pulled the most, along with

the water opposite the moon, while the water at a perpendicular angle is pulled least. The

combination of gravitational pull between the moon and the sun causes a more complicated

tidal signal and leads to twice monthly maximums and minimums in tidal strength. Figure

from Atlantic Kayak Tours (2010).

A tidal period of one flood tide (water movement direction into embayments from the

ocean) and one ebb tide (water movement toward the ocean from an embayment) can be

approximately half a day (leading to two periods per days, called a semidiurnal tide) or

approximately one day (called a diurnal tide). Many coastal areas have a mix of these two

types when tidal frequencies from many different effects are combined together for the full

tidal signal and is called a mixed tide. A mixed tide will generally have two high tides

and two low tides per day, with one of each being more extreme than the other (diurnal

inequality). More information on the tides can be found in Pugh (2004).

Tides in the Puget Sound are mixed, made up of both semi-diurnal and diurnal tides.

They are characterized by periods of large inequalities between the lower low water and

higher low water, for example, and periods of more equal, twice-daily tides. The tides are
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Figure 1.5: The mixed tides in Admiralty Inlet are mostly affected by the lunar declination

cycle which dramatically changes the size of the diurnal tides. Small semi-diurnal changes

happen due to the neap-spring cycle. Data from NNMREC, University of Washington

(2010)

most dramatically affected by the lunar declination cycle, in which the diurnal tides are

largest when the moon has the largest declination and smallest when the moon is passing

the equatorial plane (Pugh, 2004). The tides have a relatively consistent high tides but

widely varying low tides.

Another astronomical cycle that affects the tides is the spring-neap cycle. The strength

of the tide changes at a period of two weeks when the moon and sun line up in relation

to each other (see Figure 1.4). When the sun and moon are opposite or in line with each

other, there is a peak in tidal strength called spring tide. When they are in quadrature,

tidal strength is weakest and is called neap tide. The Puget Sound area shows only a small

effect from the neap-spring cycle in the semi-diurnal tides, but since both the neap-spring

and lunar declination cycles occur on an approximately fortnightly basis, they are easily

confused. See Figure 1.5 for an example sea surface signal from Admiralty Inlet.
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Figure 1.6: Tidal currents are more semi-diurnal than the free surface signal in the Puget

Sound. Data from NNMREC, University of Washington (2010).

1.3.2 Tidal Currents

The tidal currents in Puget Sound are large: in several places they can exceed 3 m/s, and

in Deception Pass they can exceed 4 m/s. On the other hand, in the deep, wide main basin

near Seattle, the water tends to move slowly. The tidal currents are strongly affected by

local bathymetry and coastline changes, often abruptly, and in nonlinear ways.

The eastward velocity at a point in Admiralty Inlet is shown in Figure 1.6. The most

distinguishing feature in the velocity in contrast to the sea surface signal in Figure 1.5 is

that semi-diurnal tides are much more accentuated in current records than diurnal tides.

An additional level of complexity in tidal currents is depth variation. The currents are

slowed near the seabed in different regions due to bottom friction and have different profiles

over the water column. Most typical of the current variation with depth is a slowing to

zero at the seabed, some possible slowing near the surface due to surface winds, and a peak

in velocity in the middle or near the surface of the water column (Cushman-Roisin and

Beckers, 2009). The profile typically is different on flood versus ebb, and can be drastically

different when other effects come into play (eddies, unstable density, fronts, stratification,

and other related phenomena).
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1.3.3 Tidal Constituents

The effects from various sources of influence of the sun and moon on the tides are taken

into account through different tidal constituents, each of which has a distinct frequency.

The strongest tidal constituent in the Puget Sound is the M2 tide. The M2 tide is due

to the gravitational force from the moon and has a period of about half a day, making

it a semidiurnal tidal constituent. The next largest constituent is due to a combination

of the moon and sun and is a diurnal tide, K1. The largest solar constituent is S2, a

semidiurnal tide. In the Puget Sound, the largest tidal constituents are M2, K1, S2, O1 (lunar

declination diurnal), P1 (solar diurnal), and N2 (lunar elliptic semidiurnal). In general, tidal

constituents are named such that the number attached to the name represents the numbers

of occurrences of that constituent per day. Thus, any constituent with a “2” in the name is

a semidiurnal tide and any constituent with a “1” is diurnal.

Harmonic analysis is a method of decomposing the tidal signal into separate constituents,

each with a particular frequency. This method relies on the assumption that the full signal

is a linear combination of distinct signals, which are defined by a constant amplitude and

phase, along with their frequency, in a sinusoidal wave form, i.e.,

ζ(x, y, t) =
N∑
i=1

Ai(x, y) cos(ωit− φi(x, y)),

where x and y are horizontal Cartesian coordinates, ζ is the local free surface height, which

changes with time and space, N is the number of tidal constituents considered in the

summation, and Ai(x, y), ωi, and φi(x, y) are the harmonic amplitude, frequency, and phase,

respectively, for constituent i. Note that A and φ can and do change in space while the

frequency is constant. Harmonic analysis is done in this research using the freely available

Matlab toolbox T_Tide (Pawlowicz et al., 2002).

Harmonic analysis is used regularly to decompose free surface signals, and with good ac-

curacy can be used for predictions of the tidal surface height well into the future. Harmonic

analysis can also be used for tidal currents, with the additional complication of a third

dimension in z for A and φ for each velocity component. However, while sea surface heights

tend to vary smoothly over large length scales and tidal time scales, tidal currents can be
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strongly nonlinearly affected by local coastlines, bathymetry, and even density variations.

This decreases the accuracy of the linearity assumption in the decomposition for currents,

but it is still used to summarize varied information in a region in space and time, and to

compare model output and data (Godin, 1983).

1.3.4 Notable Features

There are many notable dynamic features in the Puget Sound, including internal waves,

fronts, vortices, and internal hydraulic jumps. While it is difficult to know with certainty,

since times are not listed with the images, the satellite image in Figure 1.7(a) appears to

show vorticity streaming from Admiralty Head on ebb tide, having separated and curled

up into an eddy in the lee of the headland. The surface has been affected by the vortex,

making it smooth with the recirculation zone visible in the image.

Figure 1.7(b) shows another satellite image of Admiralty Inlet. In this case, appar-

ently seen is a front of water being pushed forward as the tide changes from flood to ebb.

The remainder of flood tide is still pushing southeast-ward by the northeastern point of

Marrowstone Island, possibly showing a strand of vorticity in the lee of the point.

Data possibly showing evidence of an internal hydraulic jump is shown in Figure 1.8.

The density measurements upstream from Bush Point show a sharply stratified two-layer

flow approaching the point, while measurements downstream show that the density field

has become greatly mixed. This implies that a control point was crossed in which the flow

underwent a jump in order to dissipate energy, and the likely location for that jump is the

constriction created by Bush Point (Seim, 1993).

1.4 Research Review and Motivation

University of Washington researchers have been working to understand the complex issues

surrounding the THK energy field as part of the Northwest National Marine Renewable En-

ergy Center (NNMREC), a group funded by the Department of Energy to study tidal energy.

NNMREC partner Oregon State University focuses its efforts on wave energy (NNMREC,

University of Washington, 2010).
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(a) The surface disruption due to a headland-

generated eddy streaming off Admiralty Head on ebb

tide.

Admiralty 
Head

Marrowstone 
Island

Vorticity from 
flood tide

Front starting 
ebb tide

(b) A front moves through the system as the tide

changes from flood to ebb, near Admiralty Head.

Near the northeast corner of Marrowstone Island,

vorticity from flood tide is still visible.

Figure 1.7: Surface features are evident from Google Earth satellite images.

Stratified water 
upstream of 
constriction

Downstream, 
water has been 

mixed

Constriction, 
hydraulic jump 

location

Figure 1.8: Measurements stoss and lee of Bush Point. Stoss of the point, the density field

shows sharp stratification. Lee of the point, the density gradients have mixed across the

water column. From Seim (1993), altered by author.
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NNMREC’s areas of research include: (1) turbine and array optimization; (2) materials;

(3) environmental effects; and (4) site characterization. Site characterization is largely be-

ing addressed by gathering field data. This involves using acoustic Doppler current profilers

(ADCPs) to investigate the velocities at specific areas of interest, such as near the pilot

project site in Admiralty Inlet; conductivity, temperature, and depth casts to investigate

the water density profiles; and hydrophones to record acoustic information. However, while

this data is useful and necessary, it is limited in spatial and temporal resolution. To comple-

ment this work, numerical modeling is also being used for site characterization. Numerical

modeling allows for the gathering of flow field and other parameter information anywhere

in a numerical domain and at any time output from the simulation. In addition, a model

allows for analysis of alternative turbine-siting scenarios without expenditure and poten-

tial environmental damage. This combination of complementary efforts enables a greater

understanding of the tidal energy potential of the area.

1.4.1 Generalizability of Research

Some common features can be found amongst THK sites around the world. Geographic fea-

tures that generate vortices (and therefore turbulence), for example, can be found in many

sites aside from Admiralty Inlet, making this research relevant to site characterization in

other areas. Research by Baston (2012) in the Pentland Firth focuses on the generation of

vortices by the islands in the channel, as shown in Figure 1.9. Recirculation areas due to

vorticity detaching from headlands are clearly shown in Figure 1.10, in Minas Passage. Ad-

ditionally, an ORPC development in Cook Inlet is near a headland (Figure 1.11). Furthering

the understanding of vorticity mechanisms and features, accuracy of turbulence modeling,

and methodologies for applying numerical simulation results to turbine siting will aid in

turbine placement not only in Admiralty Inlet but in similar regions throughout the world.

1.4.2 Turbine Siting

In order to facilitate the site characterization of tidal energy sites around the world with

different bathymetry, coastline features, currents, and stratifications, a series of metrics
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Figure 1.9: Map of the Pentland Firth (Kelisi, 2006)

Figure 2:  A plot of the speed and direction of the fl ood jet from high resolution 3D simu-
lations of the fl ow through Minas Passage. Note the asymmetry of the jet and the large 
eddies north and south of the jet.

analysis (see Figure 1). Future research will 
examine these smaller scale motions and 
whether they affect power generation.

 The simulations continue to illustrate the 
strong asymmetry between the fl ood and ebb 
tides and the importance of the strong jet that 
forms around Cape Split on fl ood tide (see 
Figure 2). The simulations are also revealing a 
much more complicated fl ow through the Minas 
Passage where there are strong eddies formed 
by the various topographic features located 
there. The project team has also completed 
simulations that include all the tidal constituents 
in month long simulations. This has improved 
the comparison to observations and allows 
prediction of the variations in the currents, and 
thus power, on monthly and yearly scales. The 
variations in the water speeds over the monthly 
and yearly scales are large and will affect the 
design of the turbines in TISEC devices.

  The researchers have used power curve 
data from test turbines, in particular the SeaGen 
turbine in Strangford Lough, to make more 
accurate assessments of the tidal power from 
tidal currents. This analysis has again illustrated 
the importance of the turbine design. A turbine 
which is rated for fl ows of 3 metres/second may 
not be able to take full advantage of the currents 
in the centre of Minas Passage which exceed 4 
metres/second. However, there are regions with 
more moderate fl ows in the Minas Channel, to 
the west of Minas Passage, that are possible 
deployment sites.

 Finally, Dr. Karsten and the team have 
developed a simple model to examine arrays 
of turbines. This model adapts theoretical work 
on the interaction between fences of turbines 
and tidal currents, to the specifi c fl ow through 
the Minas Passage. The model allows for a 
quick assessment of a turbine array, both the 
power generated and reduction of fl ow through 
the channel. The model has indicated that it is 
possible to extract 1000-2000 megawatts from 

Minas Passage currents with gravity based 
turbines depending on the water depths the 
turbines are restricted to. According to the 
model, the effi ciency of the turbines is reduced, 
but only when a very large number of turbines 
(more than 500) are deployed.

OEER/FORCE Tidal Energy 
Workshop

Purpose & Discussions

 In conjunction with the Fundy Ocean 
Research Centre for Energy (FORCE), OEER 
recently hosted a Tidal Energy Workshop, held 
October 13th and 14th at The Old Orchard 
Inn in Wolfville, Nova Scotia. The focus of the 
workshop was on the environmental impacts 
associated with tidal power development in 
the Minas Basin and Minas Passage of the 
Bay of Fundy. Specifi cally, its purpose was to 
review the results achieved to date from the 
eight research projects funded by OEER and 
OETR, and with that as background, provide

Figure 1.10: Evidence of eddies in the Minas Passage (Karsten et al., 2010)
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ORPC Alaska’s Cook Inlet project sites

8

Why Cook Inlet?

 4th largest tidal range 
in the world up to 12 
meters (40 feet)

 Current velocities up 
to 10 knots 

 Tidal resource is in 
the vicinity of 
electrical 
infrastructure - the 
Railbelt Grid

Figure 1.11: ORPC site in Cook Inlet is near a headland (Worthington, 2011)

were proposed by the European Marine Energy Centre (EMEC) (Legrand, 2009). These

metrics quantify the influence that flow features would have on a turbine without the need

for characterizing each feature individually. Metrics proposed by EMEC to scientifically and

consistently evaluate potential tidal hydrokinetic energy sites include measures of vertical

shear, turbulent eddy intensity, asymmetry of currents on ebb versus flood, peak sustained

velocities, velocity distribution, and mean kinetic power density over a tidal cycle. Turbine

developers may want to know existing conditions in sites that could support development

in order to optimize turbine designs, and utilities will need to be able to locate and assess

these potentially desirable locations.

The work presented here builds on previous work on site characterization in the Puget

Sound (Epler, 2010; Gooch et al., 2009; Polagye et al., 2007, 2009, 2008; Polagye and Thom-

son, 2011; Previsic et al., 2008; Thomson et al., 2011). Some of this previous work identified

areas of strong currents, leading to Admiralty Inlet’s consideration for development (Po-

lagye et al., 2007; Previsic et al., 2008). More recent studies used many of the metrics to

analyze ADCP data that has been collected in Puget Sound (Gooch et al., 2009; Polagye

and Thomson, 2011). Turbulence data have been gathered as well to calculate metrics such
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as turbulence intensity (Thomson et al., 2011). Field data give temporal resolution, but it

is more difficult to obtain spatial resolution (though there has been some work on this topic

(Epler, 2010; Gooch et al., 2009)).

Metrics can be loosely separated into two categories: resource quantification, and re-

source qualification and turbine survivability. These categories each focus on a different

aspect of tidal energy production. Resource quantification contains metrics that describe

the amount of resource available for a turbine. This includes measures of mean speed and

kinetic power density averaged in time and the percentage of time the turbines would spend

producing power.

Resource qualification metrics primarily include asymmetry of the tidal flow. This asym-

metry can affect the amount of resource that is actually accessible to the turbine. For

example, some THK turbine designs, by having a fixed axis direction, assume the flow is

bidirectional, i.e., that there are 180◦ between flood and ebb. These designs may not be

suitable for a location in which the currents significantly deviate from bidirectional due

to the bathymetry or coastline, causing dynamical features such as eddies. Other turbine

designs are able to yaw so that the face of the turbine can follow the flow. Such a design

would be more appropriate for asymmetric flow locations.

Turbine survivability is another important and closely-linked consideration. Shear in the

flow field can degrade a turbine more quickly and must be understood for turbine design and

optimal placement. Flow asymmetry may be detrimental to turbine survivability in addition

to decreasing the resource available, potentiality causing variable forces across a turbine

blade. Another example of the overlap of resource qualification and turbine survivability

metrics is turbulence, which can both negatively affect the efficiency of a turbine and increase

fatigue on turbine blades. As part of this study, these metrics will be explained and used

to create maps of siting metrics for Admiralty Inlet.
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1.4.3 Local Features

Vortices

Vortices are complicated flow features that significantly affect the local flow field. In Admi-

ralty Inlet, they are tidally generated at the headlands and other topographic/bathymetric

features and advect throughout the region. They are associated with mixing and changes

in sediment transport, and they even can affect the bathymetry in their path of travel over

time (Geyer and Signell, 1990). In terms of turbine siting, they affect the currents in the

area with increases near headland tips, where vorticity is generated, decreases in currents in

recirculation zones lee of headlands, and sharp velocity gradients between. The direction-

ality in areas through which vortices may travel can quickly change, sometimes to even be

opposite to the direction of the main channel flow. Chapter 4 demonstrates that vortices

appear to be associated with significant vertical velocities, density changes, and increased

turbulence.

These effects of vortices appear to be mainly detrimental to turbine siting, and imply

avoidance of eddy fields in siting turbines. However, vortices may be collocated with in-

creases in currents near headland tips due to the channel geometry. The larger resource

could be harnessed by a well-placed turbine of the correct design. Regardless of whether

eddy fields are to be avoided or utilized, it is currently unknown where eddies advect in

space and time at different stages of the varied tidal cycles seen in Admiralty Inlet, the

specific mechanisms of generation, and how the vortices locally interact with other flow

feature effects. All of these considerations may be significant for turbine siting, and as such

more understanding of this feature is required to maximize power production and lifespan

of turbines that may be placed in Admiralty Inlet in the future.

Vortices have been studied in various regions around the world. A thorough understand-

ing of the controlling parameters in tidally-generated headland eddies using an idealized

numerical model is presented in Signell and Geyer (1991). Some measurements have been

gathered from eddy fields. Multiple studies examined the structure of the eddies with a

shipboard ADCP (Canals et al., 2009; Geyer and Signell, 1990). Details of the nature of

flow within an eddy were investigated with both numerical modeling and field data in Black
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and Gay (1987). A good review of the various studies of eddies as well as a study on the

effect of the boundary on the interior in an oscillating flow in multiple flow regimes can be

found in Pawlak and MacCready (2002).

It is well-known that headland-generated eddies propagate around the Sound with the

tides (Mofjeld and Larsen, 1984). Studies in a slowly-moving area south of Admiralty Head

in the Puget Sound have connected flow separation and form drag with vortex genera-

tion (Edwards et al., 2004; McCabe et al., 2006; Warner and MacCready, 2009). Another

study has examined the behavior of tilted vortices generated at sloping underwater ridges

(Canals et al., 2009). Multiple studies from within the NNMREC have found evidence of

vortices in Admiralty Inlet from data collection and analysis (Epler, 2010; Gooch et al.,

2009; Polagye and Thomson, 2011; Thomson et al., 2011). However, the details of where,

with what strength, and when these eddies travel around an energetic and complex site

like Admiralty Inlet, as well as a detailed understanding of generation details, are largely

open questions. While the basics of vortex generation are well-known (Kundu and Cohen,

2004; Panton, 2005; Signell and Geyer, 1991), many questions remain about the details of

generation and the complex interaction of competing mechanisms described in the vorticity

equation (though some studies have addressed some questions (Dong et al., 2007)). This

work addresses some of these open questions.

Turbulence

A high level of turbulence is expected in the areas around Admiralty Head due to strong

mixing over the sills, density variations in the flow, and strong shear in the water column.

In addition, vortices are suspected of being collocated with increased levels of turbulence,

and in fact the energy in the headland region can be dominated by headland-generated

eddies (Thomson et al., 2011). Because of this, a detailed study of turbulence in the area

is a natural fit with a detailed study of vortices, particularly considering the application of

turbine siting.

Turbulence is known to be a concern for turbine siting. In wind energy, many studies

have examined turbulence as a cause of turbine failure (Frandsen, 2007; Madsen and Frand-
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sen, 1984; Sheinman and Rosen, 1992; Thomsen and Sørensen, 1999; Wagner et al., 2010).

Turbulence is known to decrease turbine efficiency as well as add additional stress onto the

turbines (Sheinman and Rosen, 1992; Wagner et al., 2010). This has also been found to be

the case with tidal turbines (Maganga et al., 2010).

Differences in the mixing predicted by the predictions of various turbulence closure

schemes are shown in comparisons of slices of model-predicted salinity along an estuary in

the literature (Warner et al., 2005b,a). However, fewer comparisons can be found between

model predictions and turbulence data itself, partially due to the difficulty of obtaining

the turbulence data. Two such studies, one of which was in a tidally-dominated flow,

found reasonable comparisons for dissipation rate (Simpson et al., 2002; Stips et al., 2002).

Another study in a shallow tidal estuary compared model predictions with data for Reynolds

stresses (Wang et al., 2011). All of these studies found reasonable model-data comparisons,

which is probably the best one can hope to find in comparing high resolution turbulence

data with turbulence closure scheme output from an ocean modeling code. The authors

seek to add another set of comparisons to the literature for this specific region and code

in order to understand the performance of the turbulence closure scheme used. These

comparisons show multiple parameters: turbulent kinetic energy, turbulent dissipation rate,

and Reynolds stress. To our knowledge, this is among the most extensive set of comparisons

between data and simulation results from the Regional Ocean Modeling System (ROMS).

As the flow field is better understood, through numerical modeling and field data analysis,

the knowledge may be applied to tidal siting and characterization.

1.5 Research Objectives and Organization

The objective of the research discussed in this dissertation is to increase understanding about

potential siting issues for tidal turbines in Admiralty Inlet, with clear application to similar

areas of interest near headlands. The focus is on vortices and vortex generation, the ability

of the numerical code to model turbulence accurately, and presentation and interpretation

of metric maps for turbine siting. Additionally, the next logical step of modeling turbines

in ROMS is discussed and a few simulations are analyzed in detail.

This document is organized as follows. Methodology for this work will be laid out



21

in Chapter 2. This will include a summary of relevant aspects of the numerical ocean

solver, the Regional Ocean Modeling System (ROMS), used in this research, with additional

extra information on the turbulence closure scheme used and the scheme for advection of

momentum. Additionally, setup specifications will be given for the numerical simulations,

which include an idealized headland simulation and a realistic simulation of Admiralty Inlet.

The simulation results are described in Chapter 3, in order to give a general picture for the

flow fields seen in the area and to understand how well the model is performing. An in-depth

analysis of the generation and behavior of vorticity in Admiralty Inlet will be described in

Chapter 4, along with a discussion of how this behavior will affect turbine siting. Model-

output turbulent kinetic energy will be compared with data in Chapter 5, and insights

into the best use of this information will be discussed. Chapter 6 describes the metrics

that are used to analyze and characterize the flow field for turbine micrositing, and shows

maps of these metrics in Admiralty Inlet. A method for including turbine modeling in the

simulations is briefly described in Appendix C, and then applied to an idealized headland

case in order to examine the effect of turbines on the flow field. Conclusions and future

work are presented in Chapter 7.
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Chapter 2

METHODOLOGY

2.1 Introduction

The numerical simulations were accomplished using the Regional Ocean Modeling System

(ROMS) (Shchepetkin and McWilliams, 2005). ROMS solves the primitive equations in

three dimensions with a structured horizontal grid and terrain-following vertical coordinates.

Details of this widely used code pertinent to the research objectives will be given in this

chapter and references will be given for further information.

First, this chapter will give an overview of the equations of motion solved for in ROMS.

Next, options used in these simulations for open boundary conditions will be covered, along

with closed boundary conditions to be used at the sidewalls, seabed, and sea surface. Be-

cause they are focuses of this research, the turbulence closure scheme will be described,

followed by details of the scheme for the advection of momentum. A careful analysis of

the truncation error inherent in the scheme will be given, which is investigated because

of its contribution to mixing in the simulations. Also, a form of modified horizontal mo-

mentum equations in ROMS that includes this implicit horizontal viscosity inherent in the

momentum advection scheme will be presented.

In order to form a basis of understanding of the complicated physics occurring in the

simulation of Admiralty Inlet, an idealized headland simulation is first examined. This

headland simulation captures the main flow characteristics of a prominent headland in a

baroclinic tidal channel. Headlands of this general type are seen at multiple locations in

Admiralty Inlet, but this simplified model is addressed in order to focus on the underly-

ing mechanisms. Building from this knowledge base, a simulation of the Admiralty Inlet

region is then executed and analyzed. The realistic simulation allows for a highly resolved

investigation and in-depth analysis of the complex, detailed flow in Admiralty Inlet.

https://www.myroms.org


23

2.2 Equations of Motion

The equations of motion in ROMS are the set of primitive equations (Haidvogel et al.,

2008; Shchepetkin and McWilliams, 2005). These are the Navier-Stokes equations with

the hydrostatic and Boussinesq approximations, including the assumption that the fluid

is incompressible. After decomposing the velocities, pressure, and scalar concentrations

into a mean and fluctuation, i.e., u = ū + u′, the equations are time-averaged in order to

obtain a Reynolds-Averaged, Navier-Stokes (RANS) form. The following are the governing

equations for ROMS, where, as throughout this document, the overbar is dropped from the

mean properties:

∂u

∂t
+ v · ∇u− fv = −∂φ

∂x
− ∂

∂z

(
u′w′ − ν ∂u

∂z

)
+ Fu +Du (2.1)

∂v

∂t
+ v · ∇v + fu = −∂φ

∂y
− ∂

∂z

(
v′w′ − ν ∂v

∂z

)
+ Fv +Dv (2.2)

∂φ

∂z
= −ρg

ρ0
(2.3)

∂C

∂t
+ v · ∇C = − ∂

∂z

(
C ′w′ − νθ

∂C

∂z

)
+ FC +DC (2.4)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.5)

Here, v = (u, v, w) is the Cartesian mean velocity vector such that (x, y) gives the horizon-

tal east-west and north-south position, and z the vertical position; Du, Dv, and DC are

diffusion terms to solve for explicit horizontal eddy viscosities and horizontal eddy diffu-

sivity; Fu, Fv, and FC are forcing terms; f(x, y) is the Coriolis parameter; ν and νθ are

the molecular viscosity and diffusivity; KM and KC are the vertical eddy viscosity and

diffusivity; ρ is the density which is dependent on pressure, temperature, and salinity; ρ0 is

the background density; φ(x, y, z, t) is the dynamic pressure with φ = p/ρ0; C(x, y, z, t) is

a scalar concentration field; and g is the gravitational constant. The Reynolds stresses and
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turbulent tracer fluxes are parameterized as follows:

u′w′ = −KM
∂u

∂z
(2.6)

v′w′ = −KM
∂v

∂z
(2.7)

C ′w′ = −KC
∂C

∂z
, (2.8)

KM = c`
√

2kSM + ν (2.9)

KC = c`
√

2kSC + νθ (2.10)

where u′, v′, w′ are fluctuations about the mean, and SM and SH are stability functions

describing shear and stratification, and are functions of the local buoyancy and shear. The

overbar in the Reynolds stress terms represents a time average. These final terms are

addressed in a turbulence closure scheme by determining the governing equations for the

turbulent kinetic energy, k, and a turbulent length scale, `. Note that these equations

only include turbulent momentum and mass fluxes in the vertical direction, since horizontal

turbulent momentum fluxes are much weaker. Horizontal mixing can be explicitly defined

in the terms Du, Dv, and DC , but are not used in this application because the inherent

numerical mixing alone smoothes the solutions enough to keep the simulations stable. The

turbulence closure scheme will be described in detail in Section 2.4. More information on

these terms and others not pursued here can be found in Warner et al. (2005b).

2.3 Boundary Conditions

The specific boundary conditions to be used in a particular simulation are to be chosen by

the user. For open boundary conditions, there are options for the free surface, two- and

three-dimensional velocity fields, and tracers. At closed side walls there are options for

no-slip or free-slip conditions. For the seabed one can choose the functional relationship

between velocity and the bottom stress and at the sea surface one can enforce a wind stress,

in addition to the typical dynamic boundary condition. This and more information on

boundary conditions can be found at the website for ROMS.

file:www.myroms.org
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2.3.1 Open

There are a handful of options for forcing the numerical model at the open boundaries.

These are conditions on the free surface height, velocity fields, and tracers. Techniques

include clamping, gradient conditions, nudging, and radiation, among others. Users on the

ROMS forum have found that a good combination for forcing the physics uses the follow-

ing conditions: the Chapman boundary condition for the free surface elevation height, the

Flather boundary condition for barotropic velocity, and the radiation and nudging bound-

ary conditions for baroclinic velocity, and, accordingly, these are used in the simulations

presented in this research.

The Chapman boundary condition on the free surface assumes that outgoing waves leave

the domain at the shallow water wave speed of
√
gH (Chapman, 1985). To do this, the

following is imposed:

∂ζ

∂t
= ±

√
gH

∂ζ

∂ξ
, (2.11)

where ζ is the free surface elevation, H is the local water depth, ξ is the generalized coordi-

nate normal to the open boundary, and this condition has been written here for simplicity

in the one-dimensional case. The sign of the condition is chosen based on the direction of

the waves. This condition is intended to be consistent with the Flather boundary condition

for the barotropic velocity. A diagram illustrating ζ and H is in Figure 2.1.

The Flather condition acts on barotropic velocities. Deviations in the velocity from the

exterior value of the normal barotropic velocity, ūext, which is set with boundary forcing

information, radiate out of the numerical domain at the speed of the external gravity wave

(Flather, 1976):

u = uext −
√

g

H
(ζ − ζext) (2.12)

The radiation condition allows outgoing parameters (baroclinic momentum and trac-

ers) to exit the domain. With the two-dimensional condition set, this is accomplished for

waves incoming at an angle. The two-dimensional radiation condition for a variable φ at a

boundary point is:

φt = − (φxφx + φyφy) ,
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ζ

H

Figure 2.1: Notation illustration of the free surface, ζ, as the fluctuation around mean sea

level (dashed line), and the depth, H, as measured between mean sea level and the seabed.

where subscripts indicate partial derivatives, and

φx =
−φtφx
φ2
x + φ2

y

(2.13)

φy =
−φtφy
φ2
x + φ2

y

. (2.14)

Equations 2.13 and 2.14 are evaluated at the nearest interior point to the open boundary,

and applied only to outgoing waves, as determined using a phase velocity check (Raymond

and Kuo, 1984).

2.3.2 Closed

Vertical Boundary Conditions

At the sea surface, z = ζ(x, y, t), are the following boundary conditions, from the continuity

of stress:

KM
∂u

∂z
= τxs (x, y, t)

KM
∂v

∂z
= τys (x, y, t),
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and from the linearized kinematic boundary condition:

w =
∂ζ

∂t
,

where τxs and τys are the applied surface stresses in the x and y directions, respectively.

At the seabed, z = −h(x, y),

KM
∂u

∂z
= τxb (x, y, t)

KM
∂v

∂z
= τyb (x, y, t)

−w + v · ∇h = 0,

where τxb and τyb are the bottom stresses in the x and y directions, respectively, and the

final condition is the kinematic boundary condition.

The surface stresses are set using atmospheric information about the wind speeds from

an atmospheric numerical model (see Section 2.7.2). Bottom stresses are set as a function

of the bottom grid cell velocity. The function can be linear, quadratic, or logarithmic, and

is chosen by the user along with the coefficient of friction, CD. In these simulations, the

quadratic relationship for the bottom stresses is chosen and is given as

(τxb , τ
y
b ) =

(
CDu

√
u2 + v2, CDv

√
u2 + v2

)
, (2.15)

where the bottommost output velocity is the velocity at the top of an assumed bottom

boundary layer and CD = 3× 10−3.

Sidewalls

Vertical sidewalls in a ROMS simulation may generally have free- or no-slip conditions.

The sidewalls are the vertical area above the seabed. In the case of variable bathymetry

up to the coastline, the minimum height of the sidewall is set to the minimum depth in the

simulation (see Figure 2.2). In the case of no bathymetry altering the simulation depth, the

height of the sidewall is the maximum depth in the simulation. For a free-slip condition,

the ghost cell value of tangential velocity on land is set to be equal to the closest interior

value that is active, such that the gradient at the wall is zero. A no-slip condition requires
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Figure 2.2: Illustration of sidewall versus seabed. The sidewall is vertical along the masked

regions and is as deep as the minimum depth in the simulation. The seabed is the rest of

the bottom boundary.

that the ghost cell value of tangential velocity be equal and opposite to the interior value

so that the tangential velocity at the wall is zero.

Users are given the choice of no-slip or free-slip conditions at closed sidewalls, but only

when there in no masking involved. Masking is the way to change active water cells into

land cells using a switch in the grid generation. For example, in a simulation of a rectangular

channel with no masking, the sidewalls can be set as no- or free-slip. However, if the channel

has an area with masking, say, a headland protruding into the channel from the sidewall,

that masked area has no-slip conditions hard-coded in.

2.4 Governing Equations in Turbulence Closure Scheme

Since a focus of the research here is on the performance of the turbulence closure scheme

in the realistic simulation and its ability to aid with turbine siting in terms of turbulence

properties, the scheme is explained in detail here. Most of the turbulence closure schemes

available in ROMS use the generic length-scale framework (Umlauf and Burchard, 2003;
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Warner et al., 2005b). In this framework, well-known formulations are special cases of the

generalized formulation and can be recovered using the appropriate constants. All of the

formulations use a generic variable, ψ, to represent one variable (which may be turbulent

dissipation rate, ε, turbulent frequency, ω, or turbulent length scale, `), and the turbulent

kinetic energy, k, for the other variable, which is equal to

k =
1

2

(
u′2 + v′2 + w′2

)
. (2.16)

The governing equation for k is

Dk

Dt
=

∂

∂z

(
KM

σk

∂k

∂z

)
+ Ps + PB − ε, (2.17)

where σk is the turbulence Schmidt number for k, KM is the vertical eddy viscosity presented

in Equation 2.9, Ps is the shear production, PB is the buoyancy production, and ε is the

turbulent dissipation rate. The shear and buoyancy production terms have been simplified

to eliminate horizontal gradient terms that are expected to be small relative to vertical

gradient terms, and have further been parameterized using the forms in Equations 2.6 to

2.8. Their forms are given as

Ps = −u′w′∂u
∂z
− v′w′∂v

∂z
= KMM

2, M2 =

(
∂u

∂z

)2

+

(
∂v

∂z

)2

PB = − g

ρ0
ρ′w′ = −KHN

2, N2 = − g

ρ0

∂ρ

∂z
,

with N as the buoyancy frequency. The turbulent dissipation rate is generally a function

of k and ψ.

In addition to the equation for k, a second equation is needed. ROMS uses a generic

length scale (GLS) for its second variable, which can then be related to another variable

depending on which constants the user chooses (e.g., ε, `, or ω). The governing equation

for the GLS, ψ, is

Dψ

Dt
=

∂

∂z

(
KM

σψ

∂ψ

∂z

)
+
ψ

k
(czPs + csPB − c2εFwall), (2.18)

where σψ is the turbulence Schmidt number for ψ and Fwall is a wall function which is

specific to each formulation.
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For the k − ε scheme, used in this work, with ψ = ε, the equations are

Dk

Dt
=

∂

∂z

(
KM

σεk

∂k

∂z

)
+ Ps + PB − ε (2.19)

Dε

Dt
=

∂

∂z

(
KM

σε

∂ε

∂z

)
+
ε

k
(cε1Ps + cε3PB − cε2ε), (2.20)

where σεk is the Schmidt number for the eddy diffusivity of turbulent kinetic energy and σε

is the Schmidt number for the eddy diffusivity of the dissipation rate. The constant values

are σεk = 1.0, σε = 1.3, cε1 = 1.44, cε2 = 1.92, and cε3 = ±1.0.

2.5 Advection of Momentum

The scheme for the advection of momentum used in these ROMS simulations is pertinent to

energetics and mixing. Vorticity generated in the simulation depends on the level of mixing.

In particular, the vortices seen in Admiralty Head have predominantly horizontal motions,

and are generated by the friction along the sidewalls and seabed. Because horizontal mixing

is not explicitly modeled in this simulation, frictional effects along the boundaries are at

least partially due to truncation error, which stems from the scheme for the advection of

momentum. Additionally, while the mixing in the simulation is expected to originate in

the turbulence closure scheme, the truncation error due to momentum advection is another

source of mixing that is occurring in the simulation, but due to the turbulence modeling

scheme.

2.5.1 Description of Scheme

ROMS by default uses a nominally third-order upstream advection scheme based on the

UTOPIA scheme. Figure 2.3 shows a schematic of how the flux at the grid cell of interest

is calculated. The value of the flux at the grid cell is approximated using a polynomial

interpolation of field values from neighboring and upstream grid cells.

This advection scheme can be used for tracers as well as for velocity. More information

about this scheme, including truncation error analysis, when used for advection of tracers,

particularly in a constant velocity field, can be found in other sources (Haidvogel et al.,

2008; Rasch, 1994; Shchepetkin and McWilliams, 1998). In this research, though, there
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Figure 2.3: Diagram of UTOPIA scheme. Values at bold circles are used to approximate

the flux into the grid cell indicated by the box. Utilized values are based on the direction

of flow, as shown by the arrow. From Rasch (1994).

is a particular interest in the advection of momentum, and that is what is pursued here.

The biggest difference between advection of momentum and advection of tracers is that the

scheme is inherently nonlinear when advecting momentum. The case in which the velocity

field is not constant is important. This spatial truncation error analysis is new as far as

the authors can find in the literature, as others looking at these details have focused on the

simpler case of advection of tracers in a uniform flow field.

2.5.2 Truncation Error

Knowledge of the order and form of the truncation error may aid in understanding the

performance of the momentum advection scheme and numerical mixing being generated in

the system. When a physical equation F is numerically discretized as F , there is inherently

a truncation error, ε, introduced into the system:

F = F + ε. (2.21)

The truncation error is solved for by subtracting off the discretized equation, expanded

using Taylor series around the mean state, from the physical equation.
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The conservation form of the horizontal advection of momentum is

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
= 0. (2.22)

We have the following simplified form for the model of the spatial term in Equation 2.22:

un+1
ijk = unijk −

∆t

h2

(
Fn
i+ 1

2
,j,k
− Fn

i− 1
2
,j,k

+Gn
i,j+ 1

2
,k
−Gn

i,j− 1
2
,k

)
,

where F is the flux in the x-direction and G is the flux in the y-direction, superscript n

indicates the current time step and superscript n+ 1 the following time step, ∆t is the time

increment, h is the uniform grid spacing, and indices i, j, and k indicate the x, y and z

directions, respectively. Following analysis in Haidvogel et al. (2008), but without assuming

the velocity field to be constant, the fluxes for momentum advection are rearranged and

given from the ROMS code itself as follows:

Fi+ 1
2

= h

[
1

2
(ui + ui+1)− 1

8
(ui−1 − 2ui + ui+1)

]
×{

1

2
(ui + ui+1)− 1

2

[
1

8
(ui−1 − 2ui + ui+1) +

1

8
(ui − 2ui+1 + ui+2)

]}
,

Gj+ 1
2

= h

[
1

2
(uj + uj−1)− 1

8
(uj−1 − 2uj + uj+1)

]
×{

1

2
(vj + vj−1)− 1

2

[
1

8
(vj−1 − 2vj + vj+1) +

1

8
(vj−2 − 2vj−1 + vj)

]}
.

Many indices are suppressed in this form, upstream direction assumptions ui + ui+1 > 0

and vi + vi−1 ≤ 0 have been made, vertical fluxes have been ignored, and the terms have

been rearranged to produce familiar forms.

The truncation errors for each part of these terms can be found by expanding in Taylor

series around the value of the field at index i or j. The Taylor series are analogous in x and
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y:

ui+1 = u+ hux +
1

2
h2uxx +

1

6
h3uxxx +

1

24
h4uxxxx +O(h5)

ui−1 = u− hux +
1

2
h2uxx −

1

6
h3uxxx +

1

24
h4uxxxx +O(h5)

ui+2 = u+ 2hux + 2h2uxx +
4

3
h3uxxx +

2

3
h4uxxxx +O(h5)

ui−2 = u− 2hux + 2h2uxx −
4

3
h3uxxx +

2

3
h4uxxxx +O(h5)

ui−3 = u− 3hux +
9

2
h2uxx −

9

2
h3uxxx +

27

8
h4uxxxx +O(h5).

Plugging these into the grouped terms above gives:

1

2
(ui + ui+1) = u+

1

2
hux +

1

4
h2uxx +

1

12
h3uxxx +

1

48
h4uxxxx +O(h5)

1

2
(ui + ui−1) = u− 1

2
hux +

1

4
h2uxx −

1

12
h3uxxx +

1

48
h4uxxxx +O(h5)

1

8
(ui−2 − 2ui−1 + ui) =

1

8
h2uxx −

1

8
h3uxxx +

7

96
h4uxxxx +O(h5)

1

8
(ui − 2ui+1 + ui+2) =

1

8
h2uxx +

1

8
h3uxxx +

7

96
h4uxxxx +O(h5)

1

8
(ui−1 − 2ui + ui+1) =

1

8
h2uxx +

1

96
h4uxxxx +O(h6)

1

2
(ui−1 + ui−2) = u− 3

2
hux +

1

2
h2uxx −

3

4
h3uxxx +

17

48
h4uxxxx +O(h5)

1

8
(ui−3 − 2ui−2 + ui−1) =

1

8
h2uxx −

1

4
h3uxxx +

25

96
h4uxxxx +O(h5),

all of which are again analogous for v and in any direction.

Combining pieces and ignoring grid metrics for advection of u momentum gives:

1

h

(
Fi+ 1

2
− Fi− 1

2

)
= 2uux + h2

(
1

12
uuxxx +

1

4
uxuxx

)
+

1

16
h3 (uuxxxx + uxuxxx) +O(h4)

1

h

(
Gj+ 1

2
−Gj− 1

2

)
= uvy + uyv + h

(
−1

4
uvyy − uyvy −

1

4
uyyv

)
+O(h2)

Since the first term in the F equation and the second two terms in the G equation are

the spatial terms from the original equation, Equation 2.22, and can be subtracted off, the

truncation error terms in u, and by analogy in v, are found as:

u : h

(
−1

4
uvyy − uyvy −

1

4
uyyv

)
+O(h2) = h

[
−1

4
(uv)yy −

1

2
uyvy

]
+O(h2) (2.23)

v : h

(
−1

4
uvxx − uxvx −

1

4
uxxv

)
+O(h2) = h

[
−1

4
(uv)xx −

1

2
uxvx

]
+O(h2). (2.24)
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Note that the terms with the largest error for each momentum equation come from the

cross terms (i.e., terms involving both u and v). This analysis shows that this scheme, when

applied to advection of momentum, is first-order accurate in space for two dimensions. In

one dimension, the scheme is second order accurate in space for advection of momentum, and

when a tracer is being advected in a uniform velocity field, it is third order accurate in space.

Future work will examine the spatial error in combination with the time discretization in

order to determine the overall error for the advection of momentum.

An additional source of truncation error in the ROMS equations of motions that is not

explored here is from the vertical grid. Terrain-following coordinates are known to create

errors in the system when stratified flow moves over steep terrain, which could spuriously

create vorticity in our system. There is some discussion of this and references in Burchard

et al. (2004).

2.6 Modified Horizontal Momentum Equations

Having derived the explicit forms for the lowest order truncation error terms, they can be

added in to the equations of motion in ROMS to make explicit the effect of the truncation

error. In this way, these modified governing equations are used in analysis done for vorticity

and turbulence in Chapters 4 and 5, respectively, in order to directly find the effect of the

error terms.

In ROMS, the horizontal momentum equations are given by

ut + v · ∇u− fv = −px
ρ0

+
∂

∂z

(
KM

∂u

∂z
+ ν

∂u

∂z

)
(2.25)

vt + v · ∇v + fu = −py
ρ0

+
∂

∂z

(
KM

∂v

∂z
+ ν

∂v

∂z

)
, (2.26)

where v = (u, v, w), ν is the molecular viscosity, KM is the vertical eddy viscosity which

parameterizes the Reynolds stress terms, and the diffusion and forcing terms have been left

off. Because the flow is incompressible, the continuity equation is

ux + vy + wz = 0.

Because ROMS is a hydrostatic code, the vertical momentum equation becomes a balance

between gravity and the hydrostatic pressure.
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We can find from scaling estimates that the molecular viscosity is smaller than the

vertical eddy viscosity:

KM

ν
∼ u′l

ν
= ReT � 1⇒ KM � ν,

where ReT is the turbulent Reynolds number. In this case, ReT is very large, and the

molecular viscosity will be ignored for the rest of the analysis, although it is included in the

ROMS equations themselves.

2.6.1 Implicit Numerical Viscosity

Horizontal viscosity can be explicitly modeled in ROMS using one of several available flags.

However, even without the explicitly-added viscosity, there is implicit numerical viscosity,

νN , inherent in a RANS simulation. This is a source of numerical error, but it can serve

a purpose as well. The default momentum advection scheme is a nominally third-order

upstream scheme. Previous analysis for the advection of tracers in a constant velocity field

represent a velocity-dependent hyperviscosity brought into the simulation via the trunca-

tion error terms (Haidvogel et al., 2008). This smoothes out underresolved features and

approximates the physics better than some explicit horizontal viscosity methods because it

is a function of the flow field (Dong et al., 2007). It is also associated with enforcing the

no-slip condition at the sidewalls through the advection operator. In Dong et al. (2007), it

was found that vorticity plots from simulations of water flow around a tall cylinder with a

decreasing level of explicit horizontal viscosity converged to the implicit-only (no explicit)

horizontal eddy viscosity.

2.6.2 Added Terms from Truncation Error

Since issues related to mixing and energetics occurring in a ROMS simulation are important

in this study, it is critical to determine the size and effect of the horizontal numerical

viscosity. To make explicit some of the implicit effects occurring because of the momentum

advection truncation error, the form of the error terms are arranged for placement in the

momentum equation.
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The spatial truncation error terms from the momentum advection scheme are given in

Equations 2.23 and 2.24. The typical form of a stress, τ , in the Navier-Stokes equations is

∇ · τ . Some of the truncation error terms can be arranged into this form:

τ
N

=
h

4


0 (uv)x 0

(uv)y 0 0

0 0 0

 .
Other truncation error terms cannot be fully put in this form. The leftover terms from the

truncation error can be renamed into a vector:

T =
h

2
(uyvy, uxvx, 0) .

We can do the same rearranging into stress form of the Reynolds stress terms from

Equations 2.25 and 2.26:

τ
R

=


0 0 0

0 0 0

KMuz KMvz 0

 .

2.6.3 Final Momentum Form

With these rearranged and added terms, the effective ROMS momentum equations can be

written as:

ut + (v · ∇)u+ fk̂ × u = − 1

ρ0
∇p+∇ · τ

R
+∇ · τ

N
+ T . (2.27)

The second and third terms on the RHS are the stress terms resulting from the spatial

numerical truncation error, and while the fourth term cannot be written in a convenient

form it is expected to act as a force.

2.6.4 Effect of Spatial Truncation Error on Kinetic Energy in Simulation

Energy dissipation in the system due to the truncation errors in the numerical advection

is taken into account in this section. This erroneous dissipation could be accounting for

a significant amount of mixing and playing a key role in the dynamics, without being

specifically accounted for.
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While horizontal mixing is not explicitly modeled in this simulation, there is effective

horizontal mixing entering the system due to the truncation errors in the numerical scheme

for the advection of momentum. This can supplement the vertical mixing from the turbu-

lence closure scheme. The question is how large is the effect of truncation error. If it is

large relative to the terms in the turbulent kinetic energy governing equation, this mixing

should possibly be taken into account in the interpretation of turbulent kinetic energy.

The truncation error analysis is described in detail in Section 2.5.2. The expressions

for the truncation error in the advection scheme are shown in Equations 2.23 and 2.24.

We determine the effect of the truncation error terms in the kinetic energy equation by

multiplying the terms in the x- and y-directions by u and v, respectively:

u : h

(
−1

4
u2vyy − uuyvy −

1

4
uuyyv

)
+O(h2)

v : h

(
−1

4
uvvxx − vuxvx −

1

4
uxxv

2

)
+O(h2).

The terms resulting from the u equation can be rewritten as

−h/4
[
(u2vy)y + (uuyv)y − (uy)

2v + uuyvy
]
. (2.28)

The first two terms in Equation 2.28 are dispersive and conservative and can be ignored since

they only result in energy transport. The second two terms cannot be put in a desirable

form to ensure that they are dissipative; however they can still be calculated from the model

output as source or sink terms. The numerical terms from the u and v momentum equations

are given as:

νN,u = −h/4
[
uuyvy − (uy)

2v
]

(2.29)

νN,v = −h/4
[
uxvvx − u(vx)2

]
. (2.30)

These terms can be separated into components that are positive, adding energy to the flow,

and negative, taking energy out of the system. This gives:

Positive: ν+
N =

√(
ν+
N,u

)2
+
(
ν+
N,u

)2
for ν+

N,u, ν
+
N,v > 0

Negative: ν−N =

√(
ν−N,u

)2
+
(
ν−N,u

)2
for ν−N,u, ν

−
N,v < 0.
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Note that for an (x, y) location at a particular time, both numerical dissipation rate com-

ponents may be positive or negative, or one may be positive and one may be negative.

The size of these numerical terms compared with the modeled terms from the turbulent

kinetic energy governing equation are shown in Figure 2.4. The turbulent dissipation rate

and shear production are similar in size. The numerical sources and sinks are found to be

significantly smaller than the other terms in the turbulence energy equation most of the

time, but not always. At Nodule Point, the numerical terms are fairly consistently at least

an order of magnitude smaller than the other terms. At Admiralty Head, the numerical

effects are relatively larger at the higher energy comparisons, and may play a role in the

dynamics there. Overall, though, from these results the truncation error is not expected to

play a strong role in the energy dynamics.

2.7 Simulation Specifics

2.7.1 Idealized Headland Simulation

The flow in Admiralty Inlet is compressed due to multiple headlands along both sides

of the channel. The largest is Admiralty Head on the east side of the channel. Eddies

are known to be generated during each flow direction of the tidal cycle. The vortices

may travel downstream or across the channel with varying speeds, and may persist for

more than one tidal cycle. It is necessary to know the influence of large bathymetry and

coastline features on the utility of any given location in Admiralty Inlet for tidal hydrokinetic

energy before placing a significant number of turbines. It is desirable to quantify what flow

conditions create the “best” turbine site. ROMS was first employed to examine the effects

of a symmetric headland with a flat-bottomed rectangular channel on the tidal hydrokinetic

siting characteristics (see Figure 2.5).

In this simulation, there are open boundaries at the west and east ends of the channel,

and no-slip walls at the north and south ends. An M2 tide is forced on both open boundaries

with a phase difference between the two approximated using the shallow water wave speed,

distance, and frequency of forcing. Both free surface and u-velocity are forced, using the

ROMS open boundary forcing methods of Chapman for free surface and Flather for velocity
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(a) Sink, Nodule Point (b) Sink, Admiralty Head

Most numerical mixing is much smaller than the 
dissipation rate or the shear production

(c) Source, Nodule Point

Numerical mixing is closer in size to the dissipation rate 
and the shear production at Admiralty Head, but still low

(d) Source, Admiralty Head

Figure 2.4: Numerical source and sink compared with other turbulence production terms.
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Figure 2.5: Idealized headland domain. This is a top-down view and units are meters.

The coloring represents depth. The headland is close to the center of the channel and is

symmetric.

(Section 2.3). The initial density is enforced at the east and west open boundaries, and

outward-moving baroclinic momentum is radiated out of the system. Maximum speed

reaches about 2.5 m/s and the density field is initialized using a linear stratification from

1025 kg/m3 at the bottom to 1023 kg/m3 at the surface, giving a buoyancy frequency

of N = 0.01 1/s. The Coriolis force is included. The dimensionless friction parameter

CD = 3 × 10−3 and was used in conjunction with quadratic bottom friction. This model

was run for six tidal cycles and was ramped up over part of the first cycle. Averages and

asymmetries were calculated over four tidal cycles.

The headland model domain is 105 km long and 7 km wide with a flat bottom of depth

157 meters, as seen in Figure 2.5. The headland is symmetric and about 5 km across and

extends just over 2 km into the channel. The phase difference, φ, between the two open

boundaries is found using an approximation of a gravity wave moving across the length, L,

of the channel. That is

φ =
Lω√
gH

=
(105000 m)(1.4053× 10−4 rad/s)√

(9.81 m/s2)(157 m)
= 0.3760 radians, (2.31)

where ω = 1.4053 × 10−4 rad/s is the frequency of the M2 tidal constituent and H is the

depth of the channel. This simulation is run in three dimensions. The horizontal resolution
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is 100 meters and the vertical resolution is about 4 meters (in 40 layers).

2.7.2 Admiralty Inlet Simulation

The high resolution simulation of Admiralty Inlet is one-way nested inside a larger, regional

model of the neighboring waterways, called the Salish Sea, and part of the Pacific Ocean.

The domain of this model is shown in Figure 2.6 and is described in detail in Sutherland et al.

(2011). This regional model ranges in horizontal resolution from 280 meters in the Puget

Sound to 3.1 km in the Pacific Ocean, and has 20 vertical layers with stretching such that

the upper water column is more resolved than the bottom. It is one-way nested in the global

Navy Coastal Ocean Model (NCOM) (Barron et al., 2006). Tidal forcing constituents were

gathered from the 1/4◦ TPXO7.1 inverse global tidal model (Egbert and Erofeeva, 2002) and

imposed at the open boundaries, rivers were forced using daily river discharge data from U.S.

Geological Survey gauge stations, and meteorological fields were forced using model output

from the Northwest Modeling Consortium fifth-generation Pennsylvania State University-

National Center for Atmospheric Research Mesoscale Model (MM5) regional forecast model

(Mass et al., 2003). Both the regional model and the nested simulation include the Coriolis

force. This regional model performs well in many skill assessments, though is known to have

a deficiency in M2 tidal amplitude.

The regional model was run for all of 2006. The nested Admiralty Inlet simulation was

run for September 2006 for 30 days.

The horizontal grid in this simulation is uniform: the resolution in both the x and y

directions is 65 meters. There are 20 vertical layers that are evenly spaced for every (x, y)

point. That is, the depth may change at every location horizontally, and for each (x, y) point

the depth is divided uniformly (see Figure 2.7). In this way, neighboring (x, y, z) points in

the domain may be in different vertical layers. The minimum vertical layer thickness is 0.2

meters, occurring at points that have the minimum depth allowed in the simulation of 4

meters, and the maximum thickness is about 9.3 meters and occurs where the domain is

deepest. The bathymetry data was taken from the same set described in Sutherland et al.
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Figure 2.6: Surface salinity in a snapshot from the larger regional model whose output is

used to force the nested simulation of Admiralty Inlet.
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Figure 2.7: Example of vertical grid. Taken at a fixed latitude through deepest point in

domain.

(2011) and is smoothed such that

r0 = max

(
Hi −Hi−1

Hi +Hi−1

)
≈ 0.2

for neighboring cells of full water column depth Hi and Hi−1 (Beckmann and Haidvogel,

1993), and

r1 = max

(
zi,k − zi−1,k + zi,k−1 − zi−1,k−1

zi,k + zi−1,k − zi,k−1 − zi−1,k−1

)
≈ 7.6

for the vertical location z for neighboring points i and i− 1 and vertical levels k and k − 1

(Haney, 1991).

The domain bathymetry is shown in Figure 2.8. The pilot site where a few turbines may

be placed is just off Admiralty Head, so that the area of interest for turbine siting is near

Admiralty Head. Point Wilson and the northeast corner of Marrowstone Island, along with

Admiralty Head, strongly affect the flow field. Admiralty Bay is a large shallow region that

can harbor eddies. Nodule Point on Marrowstone Island is a proposed testing area for tidal

turbines and is thus also being studied.

The nested Admiralty Inlet simulation uses the same atmospheric forcing as the MoSSea

model, interpolated down to the grid size, and all other forcing information comes into the
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Figure 2.8: Simulation domain bathymetry of Admiralty Inlet, with significant locations

marked for future reference.

model through the forcing from the MoSSea model. The open boundary conditions used

for physical forcing are the Flather boundary condition for depth-averaged (barotropic)

velocity, the Chapman boundary condition for free surface, radiation and nudging for the

3D (baroclinic) velocity, and for radiation with nudging for the tracer condition (Section 2.3).

The seabed employs the quadratic friction relationship with velocity, with the dimensionless

friction parameter CD = 3× 10−3, a typical value that was also used in the regional forcing

model and was found to not significantly affect model results when varied by orders of

magnitude Sutherland et al. (2011). The no-slip condition is imposed at every vertical wall.
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Chapter 3

GENERAL SIMULATION RESULTS

3.1 Introduction

In this chapter some results from simulations are presented, both for an idealized case and

also for the realistic Admiralty Inlet case. The idealized case allows for the study of the

effects of a headland in isolation, without the effects of complex bathymetry. The Admiralty

Inlet case is examined in detail to note flow features in the system, some of which are seen

in the idealized case and some of which are due to the complexity of the realistic situation.

An idealized simulation is examined in Section 3.2. With it, it is possible to investigate

important flow features to increase understanding of the model for Admiralty Inlet. Section

3.3 describes the behavior of the realistic Admiralty Inlet simulation. Summary and discus-

sion of this chapter can be found in Section 3.4. In particular, flow fields are examined in

time to establish a general physical understanding of the typical behavior of the velocity,

turbulent kinetic energy, free surface, vorticity, density, and vertical velocity. In the Admi-

ralty Inlet simulation, comparisons are also made between the simulation output and data

in order to understand model performance.

3.2 Idealized Headland Simulation Results

The most notable features of the idealized headland simulation are the eddies formed at the

headland with each tidal direction. The setup for the baroclinic, tidal channel simulation

with a symmetric headland was described in Section 2.7.1. Evidence of these unsteady

vortices are seen in all field variables. Since vorticity is one of the foci of this research,

shown here is a set of snapshots of the model output showing effects of the vortices over

flood tide. Flow field quantities are shown at a nominal hub height of 10 meters above the

seabed, which in this flat-bottomed simulation is at a depth of 147 meters.

Flood begins with a packet of fast flow pushing past the headland to the right, as seen
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in Figure 3.1(a), along with a circular dip in speed. This corresponds to the rollup of new

vorticity right off the headland tip, that curls up into an eddy and is advected downstream,

and the advection alongside of a persistent old vortex of the opposite sign (Figure 3.1(b)).

The newly-forming vortex is associated with a dip in the free surface, as seen in Figure

3.1(c). This dip is expected as the free surface is adjusting to lower pressure in the center of

the eddy and higher pressure along the outside of the eddy. Figure 3.1(d) shows the density

field, in which there is a downwelling of the fresher water which is then pushed forward

with the tide moving past the headland. The vorticity and density front generate turbulent

kinetic energy (Figure 3.1(e)) and shear (Figure 3.1(f)), with shear magnitude calculated as

sz =
√
u2
z + v2

z ,

where the z subscript denotes the partial derivative with respect to z. The turbulent kinetic

energy and the shear both show the shape of the front, but with emphasis at different

locations. All of the fields shown in Figure 3.1 demonstrate the jetting effect as the tide

pushes around the headland.

Close to peak flood tide, multiple vortices are seen streaming from the headland tip

downstream. Evidence of them can be seen in all of the flow fields: dips in the speed, free

surface, and shear (Figures 3.2(a), 3.2(c), and 3.2(f)); patches of vorticity (Figure 3.2(b));

and density and turbulent kinetic energy wrapping around the outside of vortices (Figures

3.2(d) and 3.2(e)). Older persistent negative vorticity is still visible alongside the positive

vortices being generated this half-cycle. The density field also shows that the horizontal

gradients of density have advected downstream with the tide, but have retained much of

the sharpness in the gradients. Turbulent kinetic energy and shear continue to accompany

the vorticity field as well as the density front moving through the system.

Toward the end of flood tide, as ebb tide begins to ramp up, the speed increases alongside

the headland first, a remnant from the large flood eddy that occupied most of the channel

lee of the headland (Figure 3.3(a)). This eddy has a larger patch of vorticity that is weaker

than earlier in the cycle (Figures 3.1 and 3.2), approximately consistent with conservation

of potential vorticity (Figure 3.3(b)). In Figure 3.3(c), the effect of the large eddy can be

seen as it causes a large dip in the free surface. The effect of ebb tide ramping up can be
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Figure 3.1: Multiple snapshots are shown in shading and contours in x-y (m) at hub height

with horizontal velocity overlaid as arrows, just as the tide changes from ebb to flood. Fields

shown are speed, vorticity, free surface, density, turbulent kinetic energy, and shear. The

vorticity and tidal front can be seen in all fields.



48

Eddies

(a) Speed (m/s)

Old vorticity

Shed 
vortices

(b) Vorticity (1/s)

Eddies

(c) Free surface (m)

Front

(d) Density (kg/m3)

Front

(e) Turbulent kinetic energy (m2/s2) (f) Shear (1/s)

Figure 3.2: Multiple snapshots are shown in shading and contours in x-y (m) at hub height

with horizontal velocity overlaid as arrows, at peak flood tide. Fields shown are speed, vor-

ticity, free surface, density, turbulent kinetic energy, and shear. As the tide has progressed,

more vorticity have shed from the headland tip and continued to affect the flow fields.
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seen in the density, turbulent kinetic energy, and shear fields as well (Figures 3.3(d), 3.3(e),

and 3.3(f)), where the density field prepares for another front on the next tidal cycle, and

the other fields continue to accompany the vorticity field and areas of higher speeds.

These patterns of the various flow field characteristics around the regions with vortices,

and the tidal fronts moving throughout the system, can be seen in the Admiralty Inlet

simulation, along with more complicated details.

3.3 Admiralty Inlet Simulation

3.3.1 Examination of Model Flow

Many details of the flow field that we find in the Admiralty Inlet simulation can be traced

back to and understood further from the simpler idealized headland case. The vorticity

generated in this simulation behaves similarly to the idealized case: it advects downstream

and persists before advecting back with the new tide. The speed and free surface both show

effects from the eddies. The density field has fronts that move with the tide, as before, and

turbulent kinetic energy is collocated with the vortices and fast tidal speeds.

Snapshots from a variety of flows field are shown in this section at three different times

for a sample tidal cycle. Plots are shown at the surface when possible, and at 10 meters

below mean sea level when more appropriate (for vertical velocity, shear, and turbulent

kinetic energy). There is little variation from the surface to 10 meters down so that the

surface and near-surface fields are nearly coincident in the spatial features shown. Plots

show each field in color and sometimes in black contours for emphasis. Arrows indicate the

size and directions of the tidal currents at the same vertical height as the plotted field. The

signal in the upper right corner of the plots shows the free surface elevation at a point near

Port Townsend on the western side of the channel, with a red dot indicating the time of

that particular snapshot in the cycle.

Figure 3.4 shows flow properties after peak ebb tide. At this point, the free surface is

mostly on the low end of its cycle (hence the all-green coloring) since it is ebb tide. The

free surface also shows a few dips corresponding to vortex locations as well as along-channel

contours showing the minor effect of the Coriolis force. The vorticity field shows that many
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Figure 3.3: Multiple snapshots are shown in shading and contours in x-y (m) at hub height

with horizontal velocity overlaid as arrows, just as the tide changes from flood to ebb. Fields

shown are speed, vorticity, free surface, density, turbulent kinetic energy, and shear. A large

eddy occupies the channel toward the end of the tide.
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Figure 3.4: Properties on ebb tide in Admiralty Inlet, at 1:15PM on 9/4/06.
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of the points in the channel have tendrils of vorticity streaming from them as ebb tide

pushes past. The plot of surface speed shows that most of the channel has a uniform speed,

and the overlaid arrows show the same for direction, except lee of points where there is

recirculation with vorticity. Intensification due to flow past the headlands in the channel

is strongest earlier in the tidal phase. The vertical velocity field is not particularly active

at this point, but does take on significant values near Admiralty Head, associated with the

vorticity field.

It is interesting to compare shear and turbulent kinetic energy fields since they both

can negatively impact turbines and are both associated with velocity fields (shear with the

vertical derivative of the horizontal velocity fields and turbulence with increased velocity

fluctuations), yet they have distinct behavior. The turbulent kinetic energy is produced by

current shear, as seen from the production term in the kinetic energy equation (Equation

2.17). The turbulent kinetic energy is also affected by buoyancy (Equation 2.17), however,

which usually acts to extract kinetic energy from the flow field in regions of significant

stable stratification. Therefore, regions of high shear and high turbulence do not always

correspond. In addition, current shear is lower frequency and associated which larger hori-

zontal length scales, whereas turbulence is of much higher frequencies and has much smaller

horizontal length scales. The shear is focused in particular in shallower areas, as the speed

decreases near the seabed, whereas the turbulent kinetic energy is more focused in areas

with high vorticity generation. The surface density shows that a considerable amount of

river water has entered the domain from the south end and is headed northward with the

tide. The river water enters at the boundaries at a rate that is prescribed by the boundary

information of the forcing model.

The flow fields at the start of flood tide are shown in Figure 3.5. The mid-range color

of the free surface plot shows that the tide is close to mean sea level. There is a persistent

dip in free surface alongside Point Wilson as vortices are beginning to be spun off. This

location of the vortex, just north of Point Wilson, is the area that first shows flood tide,

with strong eastward velocities along the shore. A streak of vorticity from the previous ebb

has been advected with the flow, now stretching with the flood tide. There is new vorticity

being generated and streaming from each of the prominent points in North Admiralty Inlet:
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Point Wilson, Admiralty Head, and northeast Marrowstone Island. The speed shows the

front of the tide moving through the channel and being affected along the way by Point

Wilson, Admiralty Head, and the corner of Marrowstone Island, with speed up at the points

and recirculation behind. There is also a thin, long patch of increased speed coming into

the estuary past Point Wilson that carries along with it old vorticity. There are notable

negative vertical velocity strips in the field due to convergence (White and Wolanski, 2008)

(discussed further in Section 4.2.6) and possibly from denser water meeting lighter water

and pushing underneath. These strong negative vertical velocity regions can be aligned

with a density gradient, suggesting a connection between the fields. An example of when

a front often develops is when flow builds up behind a headland before the tidal direction

changes, and then pushes past with the change in tide. These horizontal density gradients

can then advect with the tide before being broken up by other currents over time. Shear

again seems to be concentrated in shallower areas and TKE in vorticity-affected areas. It is

expected that the vertical shear nearer the seabed would be largest, when it is in the bottom

boundary layer. However, the shear is also largest in regions in which strong currents are

moving from deeper to shallower areas, with strong speeds and shear as the flow adjusts

to the change in bathymetry. This is shown in a plot of mean shear throughout Admiralty

Inlet at ten meters above the seabed in Figure 6.24.

A view of what happens later in the flood tide is given in Figure 3.6. The surface

elevation in the domain is above mean sea level but, despite flood being finished according

to the velocity field, the surface has not yet reached maximum flood tide. The free surface

elevation and velocity field are close to 90◦ out of phase but, in addition to this, flood tide as

defined by the velocity field clearly starts at different times in different parts of the domain.

The free surface shows a large dip in Admiralty Bay south of Admiralty Head, where an

eddy has expanded over the entire bay toward the end of flood tide, and another dip,

implying lower pressure in the center of the eddy, from the vortex off Marrowstone Island.

Vortices extend leeward from Admiralty Head and from the NE point of Marrowstone

Island, mirroring each other and creating a strong jet region between them. Additionally,

the recirculation areas from these eddies are extensive, even as strong currents continue

to push in the area between the eddies. This jetting is clearly seen in Figure 3.6(c). In
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Figure 3.5: Properties on flood tide in Admiralty Inlet, at 6:45PM on 9/4/06
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the figure, speeds are increased between the eddies and velocity vectors have significantly

different directions in neighboring areas due to the eddies and jet. Negative vertical velocity

is again apparent in areas of convergence, of which there are many at this time in the tidal

cycle. The vertical velocity also corresponds to some of the sharp density gradients. The

density field traces out the flow features in the system. Flood tide brings denser water

southward through the channel, while the eddies on the sides of the jet contain fresher

water. The freshest area in North Admiralty Inlet, just southeast of Admiralty Head, will

shortly move with the start of ebb tide as the water there pushes past Admiralty Head

as a front in density and speed, along with associated negative vertical velocity. Shear is

spread throughout the channel but is concentrated in shallower areas like Admiralty Bay

and north of Marrowstone Island. Meanwhile, the turbulent kinetic energy highlights the

jet/vortex/front area.

The model output was harmonically analyzed to create a map of the harmonic constants

in the area. Harmonic analysis was described in Section 1.3.3. Because the less-dominant

tidal constituents maintain a constant phase and size relative to the dominant tidal con-

stituent for each type of tide, we examine only M2 and K1 here to understand the behavior

of the diurnal and semi-diurnal constituents (Mofjeld and Larsen, 1984). Inference was used

to approximately separate the P1 constituent from the K1 free surface constituent using a

known local relationship from two nearby 6-month data sets (the P1 amplitude and phase

are approximately offset by a factor of 0.33 and -2 degrees, respectively, from the reference

constituent K1) (NNMREC, University of Washington, 2010; Polagye, 2010), since a half

year-long period is required to separate the two similar frequencies otherwise (Pawlowicz

et al., 2002). This relationship did not seem to improve behavior with the tidal current

decomposition and so was not used in the tidal current decomposition. Thus, we expect

the K1 velocities to be inaccurate for this reason, as well as because harmonic analysis does

not work as well with tidal currents as with the tides themselves (which would also apply

to the M2 tide) (Godin, 1983).

The amplitude and phase for the M2 constituent are shown in Figure 3.7 for the free

surface. Harmonic constant maps for K1 are shown in Figure 3.8. Admiralty Bay has the

most noticeable impact on these maps. The M2 amplitude plot shows deviation in the



56

Eddy

(a) Free Surface

Main flood 
eddies

(b) Surface Vorticity

Eddy 
Recirculation

Flood 
affected by 

eddies

(c) Surface Speed

Horizontal 
convergence

(d) 10 m depth Vertical Velocity (e) 10 m depth Vertical Shear

Front

(f) Surface Density

Eddy field 
and front

(g) 10 m depth Turbulent Kinetic

Energy

Figure 3.6: Properties toward end of flood tide in Admiralty Inlet, at 9:45PM on 9/4/06
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bay, but K1 amplitude and phase plots both show changes in behavior right where the

large eddy sits in Admiralty Bay on flood tide, implying that the Admiralty Bay eddy is

more associated with the diurnal rather than semi-diurnal tide. Phases in both M2 and K1

progress through the channel, but the M2 tide has a much larger range of phase than the

K1 tide, as expected (Mofjeld and Larsen, 1984).

Figure 3.9 shows the M2 constants for velocity at hub height and Figure 3.10 shows

them for K1. Both amplitude maps show increased values in the areas of the channel that

showed faster speeds in the snapshots examined earlier in this section. The highest values

are in similar, but not identical, areas. For example, the strongest amplitudes for the M2

tide is just north of Point Wilson, with smaller peaks near each of the other headland tips,

and some down the main channel constriction. The K1 amplitudes show a peak just north

of Point Wilson and in the main channel, but the areas of larger values tend to be in the

middle of the channel rather than focused at the headland tips. Also, whereas the M2

and K1 amplitudes are about the same size for the free surface elevation, the M2 velocity

amplitudes are much larger than those of K1. The phase maps for the velocities are not

smooth like those for the free surface; instead, they have sharp variation over short length

scales in areas behind headlands where the flow can behave nonlinearly and the direction

rapidly changes.

3.3.2 Model-Data Comparisons

Satellite Images

Satellite images of the area can sometimes catch interesting events occurring near the water

surface. Flow features can have surface signatures by changing the wavelength of the surface

wave patterns, and the differences can then be visible due to differences in light reflection.

Figure 3.11(a) shows a Google Earth image of the water immediately surrounding Admiralty

Head. The surface appears to show the effect of the ebb tidal flow ripping past the headland,

and the vorticity in the flow wrapping into an eddy with recirculation lee of the headland,

seen as a smoother water surface. Figure 3.11(b) shows a somewhat typical moderately-

sized ebb vortex in model output surface vorticity off Admiralty Head with a very similar
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Figure 3.8: K1 free surface harmonic constants
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Figure 3.10: K1 hub height velocity harmonic constants
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Figure 3.11: Comparison between typical ebb vortex in model with Google Earth image.

appearance to the satellite image. Without a time stamp on the satellite image, however,

an exact comparison cannot be made.

It is somewhat difficult to tell what is happening in the satellite image in Figure 3.12(a)

until compared with a surface density plot from the simulation in Figure 3.12(b). With this

extra information, we can better interpret what is seen in the satellite image. Between flood

and ebb tides, there is time when flood tide is still ending, near Marrowstone Island, and

ebb tide is just starting with a frontal push past Admiralty Head. This is most easily seen

in the density field since the front brings fresher water with it. The density field also helps

explain the front pattern further south, and the streak east of Marrowstone Island, since

that is where flood tide, with dense water, continues flooding. The flooding brings with it

vorticity streaming off Marrowstone Island, as apparent in the satellite image, and as can

be seen in the vorticity field (not shown).

Time Series Data

A direct time series comparison between data from a NOAA tide gauge station at Port

Townsend and simulation output from the same location is shown in Figure 3.13. The

model phase lines up well with the data. Times when the diurnal tide dominates, such as at

the beginning, middle, and end of the month, line up well, though some of the small tides
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Figure 3.12: Comparison between transition from flood to ebb tide with Google Earth

image.

are missed. The timing of the minimum in tides due to the lunar declination cycle (near

9/10/06 and 9/24/06) is good, but the extremums in the tides are not large enough at these

times. There is a known deficiency in the dominant semi-diurnal M2 tide in the regional

forcing model that has been inherited into this nested model. It is logical that at a time of

minimum effect of the diurnal tides, the model would perform worst.

Time Series Comparison Method

Only a few sets of data are available during the actual time period of the simulation run,

September 2006. However, detailed examination of the simulation output shows that many

of the features in the system occur periodically under similar circumstances. For example,

medium-sized eddies tend to be generated and shed from Admiralty Head during tides with a

larger free surface range (diurnally-dominated tides), and smaller eddies are shed on smaller,

shorter tides (the small tide during a time of strong diurnal inequality). The largest eddies

are produced during dominantly semi-diurnal tides, which during this simulation period

are also approximately aligned with the strongest tidal currents. It follows that there may

be a way to group occurrences of similar behavior and, using this technique, align non-
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Figure 3.13: Comparison between NOAA tidal gage data at Port Townsend (black) and

model output interpolated to the same point (red). Units are meters.

coincident data sets for comparison with simulation output in order to increase the number

of model-data comparisons possible.

A straight-forward yet physically-based way to do this is to align time series based on

their free surface signals at a specific location. Investigation of model output showed that

the elevation range covered during a half-cycle along with the time taken correlate with

many of the flow feature behaviors in the system. By lining up the free surface signals from

the two time series by range and duration and finding consecutive similarly-sized half-cycles

between the data and model free surface signals, we can find realistic comparisons between

the data and model flow fields. See Figure 3.14 for an illustration. This method is used

repeatedly in this research to make comparisons between data and model output that were

not taken at the same time but display similar behavior.

OTS ADCP Data

Figure 3.15 shows model output and data from an over-the-side (OTS) ADCP track taken

from a ship moving across the channel. As the ship travelled, velocity data was collected

from the water column below the ship. By assuming that the track was instantaneous and

taking model output at the same spatial locations, as well as employing the time series
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Figure 3.14: Time series information from non-coincident times are aligned by finding con-

secutive half-cycles with similar range and duration between the free surface signals at the

same location from each time series. Shown is an example of comparing the y-axis free

surface elevation between three different signals for a single half-cycle. The signals in Fig-

ures 3.14(a) and 3.14(c) are similar to each other and may be aligned to find a reasonable

comparison for fields from the sources and times represented by the two signals. In our

case, one of the signals represents model output and the other represents field data. Figure

3.14(b) shows a signal that displays much different behavior from the other two signals. This

process could be repeated to find multiple consecutive matches for a longer comparison.



64

comparison method described in the previous section, a meaningful comparison is made.

The model output gives context to the data transect in the arrow plot showing that the

bend in the ship path shown in black can be explained by the ship being in the vortex

shown in the model flow field (in red). This transect cuts through fast, uniform currents on

ebb tide until about 800 meters in when the horizontal speed suddenly drops and changes

direction. This transition is also associated with a negative vertical velocity field, which in

Chapter 4 is identified as due to convergence in the presence of bottom friction.

Note that the limits on the color bars for the model output are different than for the

data. The pattern seen that connects the two is the relative change across the transect,

not the absolute numbers. The relative change, or the gradient, are what is significant for

some important flow features, such as vortices. For reference, the absolute comparison is

shown in Figure 3.16, where a known speed deficiency is apparent. The data shows some

smaller horizontal scales than are captured in the simulation, perhaps due to smoothed

bathymetry and horizontal resolution. Additionally, we do not expect this hydrostatic code

to necessarily reproduce vertical velocities well. The changes made to the bathymetry in

order to have a stable simulation, accomplished by smoothing the bathymetry, may have

contributed to a slightly altered trajectory on ebb tide, as shown in the velocity direction

plot. The important things to note here are the processes and mechanisms that seem to be

the same between data and simulation in an eddy, which are explored in-depth in Chapter

4.

Currents and Density, Salinity, and Temperature

Comparisons for salinity, temperature, and density were completed using data from the

simulation period (Washington State Department of Ecology, 2011). A map showing the

two station locations is shown in Figure 3.17, and timing of the casts in relation to simulation

time is shown in Figure 3.18. Temperature, salinity, and density are shown at Port Townsend

in Figure 3.19. The temperature gradient is not steep enough and the salinity and density

profile shapes are a little too steep. The temperature, salinity, and density are all too

stratified and too cold/salty/dense in the model when compared with the data at Bush
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Figure 3.15: OTS ADCP data (left column) and model output (middle) showing, from top

to bottom, speed and directionality of horizontal currents, and vertical velocity. The right

column shows surface currents from the data (black) and model (red) near Admiralty Head,

and the free surface signals of each that were used for alignment.
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Figure 3.16: Figure 3.15 but with matched color bar limits for absolute comparison.
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Bush 
Point 
site

Port 
Townsend

site

Figure 3.17: Map of CTD comparison points: near Port Townsend (Station PTH005, at

11:42AM on 9/11/06) and Bush Point (station ADM001 at 11:45AM on 9/19/06)

Point in Figure 3.20.

Harmonic Analysis

Free Surface One-to-one comparisons are shown here for free surface tidal constants

following harmonic analysis (see Section 1.3.3). A map showing comparisons points is given

in Figure 3.21. Inference was used in the harmonic analysis to separate the K1 and P1 tides,

which have very similar frequencies and otherwise require a long data set to separate.

The M2 constants for the free surface are shown in Figure 3.22. The amplitudes are con-

sistently low, which is a known problem in the larger forcing regional model, and inherited

by this model (Section 2.7.2). The phases also do not match up correctly. However, because

the phases are consistently mismatched, the correct phase propagation is occurring in the

model through the domain as in the data, as demonstrated by the comparison points hav-

ing the same slope as the one-to-one line, just not along the actual one-to-one dashed line.

The phase propagation through the domain is related to dissipation and is more important

dynamically than the absolute values (Mofjeld and Larsen, 1984). The exception to this is a
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Figure 3.18: Timing of CTD casts in relation to model time
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Figure 3.19: CTD comparisons at Port Townsend
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Figure 3.20: CTD comparisons at Bush Point

location which in the model has a phase of close to 370 degrees and is too large as compared

with the data, more so than the other points. This point is located near Admiralty Head

near several other data sources and it is not clear why it has an inconsistent relationship.

Figure 3.23 shows the model-data comparison of free surface harmonic constants for K1.

The amplitudes line up well, as do the phases.

Hub Height Velocity Velocity harmonic constants at a hub height of 10 meters above

the seabed are shown in this section. A map indicating data comparison locations is shown

in Figure 3.24. These sets of stationary ADCP data were analyzed in previous studies

(Gooch et al., 2009; Polagye and Thomson, 2011). Inference was not used in this case due

to a lack of available information about the K1 tide compared with the P1 tide, so we expect

these K1 values to be low in both model output and data, based on comparisons made in

the analysis. Also note that the assumptions necessary for this analysis do not hold as well

for velocities as they do for the free surface, so the results are not as reliable (see Section
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Figure 3.21: Map with free surface comparison points
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Figure 3.22: M2 free surface 1-1 comparison
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Figure 3.23: K1 free surface 1-1 comparison

1.3.3).

M2 velocity constants are shown in Figure 3.25. The amplitudes are low, as they are

for the tidal amplitudes and in the forcing model (Section 3.3.2), though not quite as

consistently. Both the free surface and velocity amplitudes from the model output are

approximately 75% the size of the values from the field data. Some of the phases line up

much better in this case, but there is more scatter as well. Since velocity is much more

affected by nonlinearity, the scatter in the comparison may be unavoidable. The K1 tides

have similar behavior. In most of the plots, there are three points that separate from the

others. These three are from the southeast corner of Marrowstone Island and are in a very

different environment from the others.

3.4 Summary and Discussion

Interesting flow features were found in the simplified headland case, particularly in the eddy

field and its effects on other parameters. The eddies produced by the headland are advected

downstream, causing dips in the free surface and speed. Density fronts travel with the speed
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Figure 3.24: Map of velocity comparison points
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Figure 3.25: M2 hub height velocity 1-1 comparison
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Figure 3.26: K1 hub height velocity 1-1 comparison

front as the tide changes and pushes past the headland each half-tide.

These features are found in the Admiralty Inlet simulation as well, but with more com-

plexity. Instead of just one headland, there are several headlands in Admiralty Inlet, and

Admiralty Head is, in particular, very asymmetric. Multiple vortices can interact and

strongly affect the flow in terms of speed and the density, among other things.

Some of the most interesting features will be explored in other chapters. Chapter 4

goes into a more detailed look at the vortices on ebb and flood tide as well as analysis of

vorticity generation. Chapter 5 has comparisons of output from the model’s turbulence

closure scheme to compare with data.

Comparisons of the model with data show that the model has the ability to reproduce

relevant features in the system, particularly vortices. Compelling comparisons are made with

the surface behavior of a vortex and a vertical slice through the vorticity field, indicating

that vortex behavior can be better understood using this simulation. While the speeds are

low in the model, this deficiency is understood and can possibly be accounted for in metrics

for assessing the actual resource in the system. Regardless, this model is a useful tool and
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can be used to understand the relative changes and behavior within Admiralty Inlet, which

is key to understanding and deciding upon turbine placement.
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Chapter 4

VORTICITY DYNAMICS

4.1 Introduction

Tidal headland-generated eddies in Admiralty Inlet have been identified as potentially im-

portant to turbine siting due to their significant effect on the flow fields, including generation

of sharp changes in horizontal speed, directionality, and density gradients; significant vertical

velocities; and increased turbulence (NNMREC, University of Washington, 2010; Thomson

et al., 2011).

The high resolution simulation of Admiralty Inlet enables examination of many details

in the system dynamics. A visualization of the vorticity time history can reveals many

different behaviors, including vortices of various sizes and trajectories. Additionally, the

interaction of competing terms in the governing equation for vorticity must be determined

in order to understand the interplay of mechanisms for vorticity generation, advection, and

destruction. The focus here is on the area around and affecting Admiralty Head, as it is the

area of interest for tidal energy development. However, it is important to note that every

piece of land protruding into the flow in this area can spin off vortices that contribute to

the complex dynamics of the region.

In this chapter, the variety of vortices seen around Admiralty Head throughout different

tidal cycles is described in detail (Section 4.2). This includes information about distinct

features in the system associated with the vortices, including fronts, jets, and vertical ve-

locity. When appropriate, reference is made to the idealized headland simulation, in which

some of the same features are seen. However, much of the behavior seen in the Admiralty

Inlet simulation is due to the complexity of the problem. Note that the color bars on plots

are kept largely consistent; limits for vorticity are kept at ±0.025 1/s for plots in Admiralty

Inlet, unless otherwise noted. Section 4.3 steps through a derivation of the vertical vorticity

governing equation, starting from the ROMS horizontal momentum equations described in
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Figure 4.1: Example of a small flood vortex, shown in the depth-averaged vorticity field.

Overlaid box lines are used in future analysis but also serve here for visual reference. Arrows

indicate horizontal depth-averaged velocity and the upper right corner curve shows the free

surface signal near Admiralty Head with location in time indicated in red.

Chapter 2. Section 4.4 uses a calculation of the volume-integrated form of the equation

for vertical vorticity to understand the generation rate of vorticity around Admiralty Head,

along with other mechanisms that are pertinent to the dynamics. After discussing the equa-

tions, a detailed analysis of the results will be presented. Summary and a discussion of the

application to turbine siting are in Section 4.5.

4.2 Description of Vorticity in Admiralty Inlet

4.2.1 Flood Tide

Vortex Behavior Through a Cycle

On flood tide, the size of vortices can range from small, as in Figure 4.1, to large, as in

Figure 4.2(c). It is necessary to begin with the previous ebb tide in order to understand a

typical flood tide in detail. Often during ebb tide, there is a secondary induced vortex of sign

opposite to that of the main vortex and formed between the main negative ebb eddy (with

rotation direction defined by the right-hand rule such that negative is clockwise rotation)
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(a) 6:30PM: secondary induced vortex forms on ebb

tide

(b) 8:30PM: old positive vortex advects with new

flood tide

(c) 10:00PM: reach of vorticity region, first to the

east

(d) 12:15AM: reach of vorticity region, second to the

south

Figure 4.2: Flood tide process example from 9/9/06-9/10/06, showing depth-averaged vor-

ticity at multiple times.
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and the coastline, as shown in Figure 4.2(a). The recirculation region near the boundary

due to the negative vortex generates a counter-rotating eddy. As ebb tide finishes and

flood begins, this positive vortex persists and advects with the flood tide to jump-start the

positive vorticity accumulation (Figure 4.2(b)). The vorticity builds up near the headland

until it sheds from the headland tip with a first, strong reach to the east, as shown in

Figure 4.2(c). This initial reach to the east is due to a surge of water toward the beginning

of flood tide that comes from the vortex from the previous ebb tide, as will be explored

further in Section 4.2.3. After this initial surge, the vorticity pulls back to recollect, then

pushes forward again, but this time more to the south with less momentum behind it, as

in Figure 4.2(d). If the flood tide has only a small initial surge from the previous ebb tide

vortex moving through, the flood tide vorticity will still reach out to the east, but will have

a smooth clockwise movement throughout the cycle as opposed to the somewhat distinctive

reach to the east followed by a temporary retreat and a push more to the south.

The size of the vortex generated on flood tide is related to the behavior of the free

surface of that half-cycle as well as the previous half-cycle. A large diurnal flood tide would

have behavior similar to the tide shown in Figure 4.2(c), as would a moderate semi-diurnal

flood tide following a moderate ebb. A small lower high water diurnal flood tide produces a

small vortex, as in Figure 4.1, and the half-cycle following a small tide would have reduced

behavior as well.

Jets

As flood tide pushes south into Admiralty Inlet, it is squeezed between various points of land:

Port Wilson and the north-east corner of Marrowstone Island on the west and Admiralty

Head on the east (Figure 4.3(a)). Vorticity is generated at and near these points, which

builds up until the flow separates from each point and reaches downstream. The flow field

is strongly affected by these various points and is redirected drastically lee of the headlands,

often altering the rest of the flow in that area, and recirculating behind the point. As

shown in Figure 4.3(b), the eddy from Marrowstone Island reaches east across the channel,

pushing against and redirecting the main channel flow in the process. A large eddy develops
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Admiralty 
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Recirculation

Flow 
Disruption

(a) 11:45PM: example of typical flood tide

Marrowstone 
Island Eddy

Admiralty 
Head Eddy

Front

(b) 1:45AM: large Marrowstone Island and Admiralty

Bay eddies with front starting ebb tide

Figure 4.3: Flood tide jetting on 9/9/06-9/10/06, showing 10 meter depth vorticity at two

snapshots.

in shallow Admiralty Bay just south of Admiralty Head. As flood tide slows and reverses,

the Admiralty Bay vortex leads ebb tide, even while flood is still finishing.

This jetting behavior can be found in the idealized headland case as well. Figure 4.4

shows the vorticity and speed at hub height in the idealized headland case discussed in

Chapter 3. As ebb tide begins, the flow pushes past the headland with newly generated

negative vorticity on one side and old persistent vorticity on the other, with the jet in

between.

4.2.2 Ebb Tide

Vortex Behavior Through a Cycle

The range of sizes of ebb vortices is from small (Figure 4.5) to huge (Figure 4.7(d)).

Generally, the vorticity on ebb starts to build up near Admiralty Head (Figure 4.6(a)), even-

tually separating and curling in a sheet to the northwest of the headland (Figure 4.6(b)),

moving further west as the tide continues (Figure 4.6(c)). In some cases, a noticeable sec-
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(a) Vorticity (b) Speed

Figure 4.4: Flow field properties at hub height in the idealized headland case, showing

jetting behavior analogous to the realistic case.

Figure 4.5: Example of a small ebb vortex, shown in depth-averaged vorticity field.
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ondary vortex of opposite sign is induced between the main negative eddy and the coastline,

as discussed in Section 4.2.1 (Figure 4.6(d)).

During some ebb tides, eddies from the previous flood tide persist and affect the flow.

In an example semi-diurnal tide shown in Figure 4.7, the vorticity builds up as typical,

but in this case is accompanied by positive vorticity and a velocity surge from the previous

cycle (Figure 4.7(a)). An initial vortex reaches out to the north under the influence of

the previous vorticity and initial speed surge (Figure 4.7(b)), weakens momentarily (Figure

4.7(c)), then pushes out strongly more to the west (Figure 4.7(d)). Initial velocity surges

and persistent vortices will be addressed in detail in Section 4.2.3.

Fronts

At the start of flood tide, the layout of the density field can look very different for different

tidal cycles. Generally there is denser water to the northwest, which is the opening to the

Strait of Juan de Fuca and to the Pacific Ocean, and there is less dense water in the south,

toward the main basin of Puget Sound where there are rivers inputting fresh water (Figure

4.8(a)). As flood tide begins, the denser water from the northwest corner pushes southward,

pushing the water in the Inlet southward with it (Figure 4.8(b)). As the typical flood jet

discussed earlier pushes further between the points on the coastlines and eddies develop on

either side, the dense water pushes straight with the jet while the fresher water is carried

to the sides and northward in the eddies lee of Marrowstone Island and in Admiralty Bay

(Figure 4.8(c)). As flood continues, the eddies carry the fresh water further but, before the

water has a chance to fully recirculate, it is pushed past Admiralty Head as a front as ebb

tide starts, even while flood tide is still finishing (Figure 4.8(d)). In this manner, many of

the ebb tides begin with a sharp gradient of speed and density around Admiralty Head,

often with strong flood tides still flowing in other areas, until the whole area eventually

ebbs.

A density front was also seen in the idealized headland case and shown in Figure 3.1(d).

As in Admiralty Inlet, the front in the headland case is associated with a jet of strong

currents down the middle of the flow past the headland, and eddies of opposite sign on
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(a) 12:15PM: vorticity builds up at headland (b) 2PM: vorticity eventually separates and curls

(c) 3:45PM: vortex moves counterclockwise with flow

Secondary 
induced vortex

(d) 4:15PM: can also have secondary induced eddy of

opposite sign

Figure 4.6: Ebb vortex process on 9/5/06, showing depth-averaged vorticity at multiple

snapshots in time.
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Old positive vorticity is 
collocated with negative 

vertical velocity

(a) 4:15AM: ebb vorticity is accompanied by positive

vorticity from previous tide

(b) 5:30AM: initial vortex heads north

(c) 6:15AM: vortex weakens (d) 8AM: in second phase, vortex reaches west;

zoomed out to accommodate large vortex

Figure 4.7: Behavior modification on ebb tide on 9/10/06 with persistent old vortices and

strong initial surge. Shown are snapshots of vorticity at a depth of 10 meters below mean

sea level.
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Denser

Fresher

(a) 9PM: the density field at the start of flood typi-

cally has denser water toward the ocean and fresher

water toward the main basin.

Denser 
water

(b) 10:45PM: flood tide pushes denser water south

Fresher 
water

(c) 12:30AM: fresher water is carried with the eddies

Front starting ebb
Flood still going

(d) 2:15AM: fresher water with a speed surge begins

ebb tide while flood finishes

Figure 4.8: Flood tide front example on 9/9/06-9/10/06. Shown are plots of surface density

at multiple snapshots in time.
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either side. The strong velocities that lead the tide also carry the less dense water, as in

Admiralty Inlet.

4.2.3 Initial Surges and Persistent Vorticity from Previous Tides

When tides are strong enough, they can create vortices with enough momentum to persist

into the next tidal cycle. This vorticity advects around Admiralty Inlet with the tides

and is accompanied by an area of increased speed. These surges and persistent vortices

are most noticeable on flood tide; however, the effects are seen on some ebb tides as well.

The coastline and bathymetry conspire to generate and shape smaller patches of stronger

vorticity on ebb tide that then affect flood tide. On flood tide, eddies have larger area,

taking up Admiralty Bay, and are weaker, and thus are less often noticeable on ebb tide.

However, as will be seen in Section 4.4.2, persistent vortices on ebb tide, while less visible,

still sometimes traverse the area, affecting all of the mechanisms in the vorticity equation.

Figure 4.9 has a series of plots showing two different ebb to flood situations. The left

hand column of the set of figures are from an ebb to flood transition when there is a large

ebb eddy, shown in Figure 4.9(a). This ebb vortex persists strongly into the subsequent

flood tide, traveling adjacent to the newly generated positive flood vorticity (Figure 4.9(c)),

and is accompanied by a strong, discrete packet of increased speed (Figure 4.9(e)). The

right hand column of figures shows a small ebb eddy after a relatively slow-moving ebb tide

and tiny previous flood tide (Figure 4.9(b)). This eddy advects into the following flood tide,

but with weaker vorticity (Figure 4.9(d)) and a smaller, weaker packet of increased speed

(Figure 4.9(f)).

On the transition from flood to ebb tide, the same effects as seen on the ebb to flood

tide transition can be found, but because the area of vorticity in shallow Admiralty Bay

is relatively large and the vorticity weak, the effects are more difficult to pick out. Figure

4.10 shows the transition from flood to ebb tide. In Figure 4.10(a) there are two large

eddies on flood tide. Each of these eddies is accompanied by an area of increased speed

(Figure 4.10(b)). As ebb tide begins, much of the old vorticity is dissipated, but in this case

enough remains to be seen in Figure 4.10(c) advecting past Admiralty Head. Sometimes the
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(a) Vorticity, 7:30PM: large ebb vortex (b) Vorticity, 2:15PM: small ebb vortex

(c) Vorticity, 9:15PM: persists into flood (d) Vorticity, 5:30PM: persists into flood

(e) Speed, 9:15PM: speed pocket with eddy (f) Speed, 5:30PM: speed pocket with eddy

Figure 4.9: Two examples of speed surges and persistent vortices on flood tide, large on left

(9/9/06) and small on right (9/4/06), shown at 10 meter depth. Note the lower color bar

limits in these figures, for visual illumination.
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flood Marrowstone Island eddy vorticity is advected back to Admiralty Head to affect the

dynamics there as well. Accompanying this persistent vorticity from flood tide is a surge

of increased speed from the faster-moving outer edge of the large Admiralty Bay vortex,

pushing past the headland (Figure 4.10(d)). This packet is quickly followed by a speed

surge from the Marrowstone Island negative vortex from flood tide, and then the rest of ebb

tide pushing through, such that while there are multiple small peaks of speed in the area

off Admiralty Head, none are as extreme as on flood tide (Figure 4.11).

This behavior is not limited to the numerical simulation; it is seen in the data as well.

An example is shown in Figure 4.12. At this data location near Admiralty Head, peaks are

seen in the speed profile on both flood and ebb tides.

Vortices persisting into the next half-cycle were also seen in the idealized headland case,

as shown in Figure 3.1(b). In the figure, the old negative ebb vortex has persisted into the

flood tide to travel alongside the newly shed positive vortex. The strongest currents can be

found between the two counter-rotating eddies.

4.2.4 When is slack tide?

Slack tide is difficult to determine in such a dynamic system as Admiralty Inlet. There

are times when ebb and flood currents are simultaneously pushing, sometimes strongly, in

neighboring areas (Figure 4.13). In the figures shown, there is never a time when the entire

horizontal surface area is at slack tide. Often, the same is true vertically. For example,

Figure 4.14 shows a typical ebb-flood transition. Slack tide is different horizontally and

vertically, even in this small region near the headland.

4.2.5 Vertical Structure of Vorticity

Vorticity changes with depth due to bottom friction, changing bathymetry, and density

effects, among other possible causes. Looking at a case examined earlier in this section, it

is possible to see how significant the differences with depth can be.

A typical ebb tide was shown previously in Figure 4.6 using depth-averaged plots of

vertical vorticity. Figure 4.15 shows the vertical vorticity in depth near Admiralty Head at
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Negative 
flood 

vortex

Positive 
flood 

vortex

(a) Vorticity, 2:45AM: two oppositely signed vortices

on flood tide

Speed patch from 
positive vortex

Speed patch from 
negative vortex

(b) Speed, 2:45AM: speed pockets corresponding to

flood vortices

Persistent vorticity 
from flood tide

(c) Vorticity, 4:00AM: most northward old vortex

persists and advects with ebb tide

(d) Speed, 4:00AM: speed pocket corresponding to

old positive vortex

Figure 4.10: Example of speed surge and persistent vortices on ebb tide on 9/10/06, shown

at 10 meter depth. Note the lower color bar limits in these figures, for visual illumination.
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Figure 4.11: Speed peaks in model output due to old vortices advecting into the next tide

near Admiralty Head tend to be large on flood tide and small on ebb tide.
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Figure 4.12: ADCP data near the surface of the water column near Admiralty Head shows

evidence of complex vortex interactions in the system. Data from NNMREC, University of

Washington (2010).
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(a) 9/2/06, 10:00PM: flood and ebb competing (b) 9/3/06, 3:00PM: multiple directions of tides si-

multaneously

(c) 9/4/06, 8:15AM: flood tide does not come fully

into the channel

Figure 4.13: It can be flood and ebb tide at the same time, in many different ways. Shown

are snapshots at various times of the surface speed.
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Figure 4.14: Four slices of speed at constant depth shown near Admiralty Head, looking

northwest past the headland. Arrows show horizontal velocity vectors and color represents

horizontal speed. Note that the limits on the color bar are lower than typical to better see

this low-speed time in the flow field.
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the same time as shown in Figure 4.6(c). Much of the difference seen in the vorticity at

different depths is due to the increase in the size of Admiralty Head with depth, such that

the vortices hit the seabed and do not show up in the plots. The biggest difference in depth

seen for the vorticity is in its magnitude. The vorticity is stronger near the surface where

the pressure gradient established along the seabed is the largest (due to sharper headland

tip and stronger flows near the surface) and smallest nearer the seabed, where the speeds are

reduced due to bottom friction. Overall, the vortices are fairly coherent with depth because

the separation point of the flow past the headland does not have much vertical variation.

Vorticity on flood tide is less vertically coherent than the vorticity on ebb tide. Figure

4.16 shows vorticity on a typical flood tide. The flow moves quickly parallel to the headland

past the headland tip near the surface, strongly generating vorticity due to the strong

pressure gradient. Lower in the water column, the bathymetry is less sharp and the flow

tends to wrap around the headland more, generating less vorticity and generating it further

downstream around the headland. The vertical variation in vorticity on flood tide is due to

the vertical variation of the separation point, due to the headland bathymetry. This leads

to vorticity that is twisted in multiple dimensions.

4.2.6 Vertical Velocity

Upsloping and Upwelling Velocities

Significant vertical velocities are frequently seen near the headland, associated with fronts

and vortices. Vertical velocities can be roughly split into two categories: upsloping, wus,

and upwelling, wuw (Deleersnijder, 1989). Upsloping vertical velocity is bathymetrically-

induced. Upwelling vertical velocity is due to other effects such as vertical variations of

horizontal convergence or divergence. In ROMS, the upwelling velocity is solved for directly

due to the code’s use of terrain-following coordinates (omega is the variable name in ROMS

for upwelling vertical velocity). Upsloping velocity is the difference between the full vertical

velocity and the upsloping velocity: wus = w−wuw. The derivation of the upsloping velocity

and more example plots are given in Appendix A. Note that in a flat-bottomed channel, all

vertical velocity would be categorized as upwelling.
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Figure 4.15: Ebb vorticity at 3:45PM on 9/5/06, shown in four slices at constant depth

of vorticity near Admiralty Head, looking northwest past the headland. Ebb tide shown is

the same as in Figure 4.6. Note the lower vorticity color bar limits in this figure, for visual

illumination.
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Figure 4.16: Flood vorticity at 9:30PM on 9/4/06, shown in four slices at constant depth

of vorticity near Admiralty Head, looking northwest past the headland. Note the lower

vorticity color bar limits in this figure, for visual illumination.
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Figure 4.17: Domain bathymetry with slice location indicated

An along-channel slice of the mean magnitude of each designation of vertical velocity

is shown in Figure 4.18 to illustrate the difference in character between the upsloping and

upwelling velocities (the slice location is shown in Figure 4.17). The upsloping velocity

is correlated with the steepness of the slope along the slice. The largest values are seen at

the steepest bathymetric features, and every sloped area has increased values of upsloping.

The upwelling velocity is found mid-water column, away from the seabed and sea surface,

between the hills. More plots of upsloping and upwelling velocities can be found in Appendix

A. A comparison of the mean plots shown in this section and maximum/minimum plots in

Section A.2.1 indicates that upsloping velocity is generated more frequently that upwelling

velocity, but that upwelling velocity is stronger when it is present.

Causes of Upwelling Velocity

White and Wolanski (2008) found that vertical velocity near an island was caused by con-

verging or diverging flow in the presence of active bottom friction. The vertical velocity

studied in that research was exclusively upwelling velocity in order to distinguish generation
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(a) Upsloping Velocity

(b) Upwelling Velocity

(c) Vertical Velocity

Figure 4.18: Time-averages over 30-day simulation of the magnitude of various vertical

velocities. The north end of the slice is at the left end of the subplots.
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mechanisms of vertical velocity from simply topographic.

Figure 4.19 shows a diagram of possible behaviors seen in the study. In diverging flow

combined with bottom friction (to create a vertical shear profile), there is upwelling, whereas

in converging flow there is downwelling. The onshore flow case is similar to the converging

flow case but with a solid wall replacing one side of converging flow, and similarly results in

downwelling. Positive vertical velocity may be seen near a headland tip due to competing

mechanisms of the pressure gradient and the centrifugal acceleration.

These regions of upwelling and downwelling are strongest mid-water column, which

would typically be caused by an area on the surface of horizontal divergence or convergence

(divergence and convergence are strongest near the surface where the currents are typically

the strongest and the headland tip is the sharpest). Therefore, typically associated with

upwelling velocities are vertical gradients of vertical velocity of varying sign above and below

the upwelling region, and horizontal gradients of vertical velocity of varying sign on either

side of the region.

A snapshot for the example ebb tide shown for vorticity in Figures 4.6(c) and 4.15

is shown in Figure 4.20 for upwelling velocity. It is clear that velocity magnitudes tend

to be larger mid-water column, which is below the areas of strongest horizontal conver-

gence/divergance, and there are patches of velocity greater than 0.1 m/s. Some of the

patches of velocity have been labelled using the categories of mechanisms possibly leading

to upwelling and downwelling, as described in Figure 4.19. In particular, eddies generate

areas of diverging flow (A) at the “outside” of the circulation, and areas of converging flow

(B) where the flow turns back into itself, at the “inside” of the eddy. These areas lead

to upwelling and downwelling, respectively, in the presence of bottom friction. There also

appears to be convergence where the horizontal flow pushes against the headland (C), caus-

ing downwelling, and possibly curved flow near the headland tip (D), with a small positive

velocity signal. An additional comparison of the categories of vertical velocity can be seen

in Section A.2.2 of this plot.

Vertical velocity can also be seen associated with fronts in the simulation. This could

be due to several mechanisms. A front moving through the system typically carries fresher

water and is pushing through denser water. The density difference between the two could
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these cases, eddy and tip upwellings may be of similar strength
(Table 1).

In the case of Rattray, those considerations suggest that the
bathymetry and topography in the vicinity of the island should
be known as accurately as possible. The flow separation mech-
anisms are most likely the most important aspects of the
dynamics controlling the size, position and intensity of the
eddies as well as the intensity of eddy and tip upwelling.

The northern tip lies in deeper water than the southern tip.
Hence, bottom friction is enhanced close to the southern tip.
The geometry of the northern tip is also sharper. These topo-
graphical features help explain why the northern eddy is sys-
tematically bigger than the southern one, both at ebb and
flood (Fig. 4). The northern tip does not have the same geom-
etry facing rising and falling tide. For a northwestward flow,
the northern tip has a larger radius of curvature while for

Separation point

Eddy or
island’s tip

Pressure
gradient

Centrifugal
acceleration

Top view Side view

Diverging flow
Surface water depletion replaced by
upwelled water

Converging flow
Downwelling of accumulated water
near the surface

Onshore flow
Downwelling of accumulated water
near the surface + tilting of
sea surface (adverse pressure gradient)

Curved flow
Balance breakdown near the bottom
between pressure gradient and
centrifugal acceleration followed
by inward flow and upwelling

(a)

(b)

(c)

(d)

Fig. 6. Summary of mechanisms generating vertical motions in shallow-water flows interacting with topography. All vertical motions owe their existence to the
prevalence of bottom friction. Both eddy and tip upwelling arise in curved flows (see panel D).

Table 1
Characterization of secondary circulations depending on the idealized island’s
aspect ratio a, as defined by Eq. (3). The far-field speed is noted U. The length
of the island facing the current is noted l. As the island becomes sharper, the
eddy size, recirculation strength and eddy upwelling increase. For the largest
aspect ratio, flow separation occurs further downstream along the curved edge
and eddies barely develop. Tip upwelling is at its maximum. Eddy and tip
upwellings are of similar intensities for the smallest aspect ratio

Aspect
ratio

Eddy size Eddy intensity Tip upwelling
[mm/s]

Eddy upwelling
[mm/s]

0.05 l U 3e5 2e3
0.10 0.85l 0.8U 4e6 1e2
0.15 0.75l 0.6U 6e8 1
0.25 0.50l 0.2U 8e10 < 0.5

465L. White, E. Wolanski / Estuarine, Coastal and Shelf Science 77 (2008) 457e466

Figure 4.19: Summary of possible mechanisms for upwelling and downwelling flows when

bottom friction is an important factor. Each of these situations is possible near Admiralty

Head. From White and Wolanski (2008).
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Figure 4.20: Snapshot from an ebb tide on 9/5/06, showing slices in depth of upwelling ve-

locity, looking northwest past Admiralty Head. Areas of velocity are approximately labelled

using categories shown in Figure 4.19. Snapshot is at the same time as shown in Figures

4.6(c) and 4.15.
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push the fresher water up and/or the denser water down. Also, the front is made up of

stronger speeds pushing into slower-moving water. This could be considered to be similar

to category B or C in Figure 4.19 of converging flow.

These vertical velocities could have important ramifications for turbine siting near the

headland, as is explored further in Section 6.3.2.

4.2.7 Vortex Changes in Time

Vortices on consecutive similar tidal cycles (taking into account the diurnal inequality of

tidal cycles, such that “similar” tidal cycles are typically every other cycle) tend to be

similar to each other. Consecutive similar vortices change significantly on a weekly time

scale. Figure 4.21 shows snapshots of ebb vortices at their approximate half-cycle maximum

extent. The first two snapshots are from consecutive similar ebb tides, i.e., a lower low water

ebb tide, then skipping a higher low water ebb, and showing another lower low water ebb

tide. The two vortices are markedly similar. Over the subsequent few lower low water ebb

tides, the shape and size of the vortex maximum changes a little until about a week later

when they are significantly different on lower low water, as shown in Figures 4.21(c) and

4.21(d). This time scale of change in behavior is similar for higher low water ebb tides, and

flood tides as well.

4.3 Vertical Vorticity Governing Equation

Understanding the details of vorticity generation and dynamics requires beginning with the

governing equation itself. Vorticity equations have been derived many times in the past for

various situations. In this case, the vorticity governing equation is derived starting with the

horizontal momentum equations employed in this ROMS simulation, as stated in Chapter 2.

In addition to the typical ROMS terms, this modified form includes expressions to account

for truncation errors, in order to discover their level of effect in the analysis described in the

following section. The focus in this research is on the vertical vorticity, and this derivation

is for that component alone. First, scaling analysis will be discussed that stems from the

assumptions built into ROMS (the hydrostatic approximation and incompressibility) before

addressing the governing equation itself.
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(a) 9/1/06, 10:30AM (b) 9/2/06, 11:15AM

(c) 9/10/06, 8:00AM (d) 9/11/06, 8:45AM

Figure 4.21: Representative snapshots of the ebb vortex on two consecutive similar ebb

tides and two consecutive ebb tides a week later.
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4.3.1 Scaling Analysis of Vorticity

In order to perform scaling analysis on the definition of vorticity, we follow analysis in

O’Donnell et al. (1998) and begin with the hydrostatic approximation, which states

Dw

Dt
� 1

ρ

∂p

∂z
or

Dw/Dt

1/ρ∂p/∂z
� 1. (4.1)

Using characteristic scales U, W, L, D, and T=L/U for horizontal and vertical velocity,

horizontal and vertical length, and time scales, respectively, gives

Dw

Dt
=
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
(4.2)

= O
(
UW

L
,
W 2

D

)
. (4.3)

From the continuity equation,

ux + vy + wz = 0,

so that

U

L
= O

(
W

D

)
. (4.4)

Equations 4.3 and 4.4 together imply

Dw

Dt
= O

(
W 2

D

)
= O

(
UW

L

)
. (4.5)

A simple form of the u-momentum equation is

ut + (v · ∇)u− fv = −px
ρ0
.

Scaling analysis of these terms gives the balance

U2

L
= O

(
p

ρL

)
,

or p = O(ρU2), (4.6)

which is advective scaling.

Using Equation 4.6,

1

ρ

∂p

∂z
= O

(
ρU2

ρD

)
= O

(
U2

D

)
. (4.7)
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Overall, starting from the scaling balance from the hydrostatic approximation and com-

bining it with the scaling of the continuity equation, the material derivative of vertical

velocity, and the horizontal momentum equation, another scaling expression can be found:

Dw/Dt

1/ρ∂p/∂z
� 1, from Equation 4.1

UW/L

U2/D
� 1, using Equations 4.5 and 4.7

W/L

U/D
� 1. (4.8)

The definition of vorticity is

ω = (wy − vz, uz − wx, vx − uy) .

Scaling analysis of the vorticity using Equation 4.8 gives

wy
vz

= O
(
W/L

U/D

)
� 1

implying that

W

L
� O

(
U

D

)

so that

wy � vz,

and similarly, wx � uz. The vorticity can therefore be written approximately as

ω = (−vz, uz, vx − uy) or ω = ∇× u, (4.9)

where u = (u, v, 0). Equation 4.9 will be used as the definition of relative vorticity in the

following vorticity analysis. While the expression for vertical vorticity is not changed, the

expressions for the other two components of vorticity in the governing equation for vertical

vorticity are altered by the hydrostatic approximation and the incompressibility condition.
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4.3.2 Derivation of Governing Equation for Vertical Vorticity

The horizontal momentum equations derived in Section 2.6.3 are

ut + (v · ∇)u− fv = − 1

ρ0
px + (KMuz)z +

h

4
(uv)yy +

h

2
uyvy (4.10)

vt + (v · ∇)v + fu = − 1

ρ0
py + (KMvz)z +

h

4
(uv)xx +

h

2
uxvx, (4.11)

and the incompressible continuity equation is

ux + vy = −wz. (4.12)

Vertical vorticity is given as

ωz = vx − uy.

The vertical vorticity governing equation can be derived by taking the derivative with respect

to x of Equation 4.11, and subtracting the derivative with respect to y of Equation 4.10.

Rearranging, this gives

vtx − uty + (vx · ∇)v − (vy · ∇)u+ (v · ∇)vx − (v · ∇)uy + fux + fxu+ fvy + fyv

= [(KMvz)x − (KMuz)y]z +
h

4
[(uv)xxx − (uv)yyy] +

h

2
[(uxvx)x − (uyvy)y] .

Various groups of terms can be rewritten as follows:

• vtx − uty = ∂
∂t(ω

z + f), assuming that the space and time derivatives commute, and

adding in the constant (in time) Coriolis force for future convenience

• (vx · ∇)v − (vy · ∇)u = −(ω · ∇)w, using Equations 4.9 and 4.12 and rearranging

• (v · ∇)vx − (v · ∇)uy = (v · ∇)ωz

• fux + fvy = f(ux + vy) = −fwz, using Equation 4.12

• fxu+ fyv = (v · ∇)f

• [(KMvz)x − (KMuz)y]z =
[
∇× (∇ · τ

R
)
]
·n̂z, where n̂z is the unit vector in the vertical

direction
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• h
4 [(uv)xxx − (uv)yyy] =

[
∇× (∇ · τ

N
)
]
· n̂z

• h
2 [(uxvx)x − (uyvy)y] = (∇× T ) · n̂z

Two of these can change further:

(v · ∇)ωz + (v · ∇)f = (v · ∇)(ωz + f)

= (v · ∇)ωza

= ∇ · [vωza]− ωza(��
�*0

∇ · v),

using Equation 4.12 and defining the absolute vorticity as

ωa = (ωx, ωy, ωz + f).

Combining the above forms, the governing equation for the absolute vertical vorticity is

given by:

Rate-of-change︷︸︸︷
∂ωza
∂t

=

Tilting/stretching︷ ︸︸ ︷(
ωa · ∇

)
w −

Advection︷ ︸︸ ︷
∇ · (vωza)

+
[
∇× (∇ · τ

R
)
]
· n̂z︸ ︷︷ ︸

Reynolds stress generation

+
[
∇× (∇ · τ

N
)
]
· n̂z + (∇× T ) · n̂z︸ ︷︷ ︸

Numerical generation

(4.13)

4.3.3 Interpretation of Terms

The terms in the governing equation for vorticity can be interpreted following the interpre-

tations in Kundu and Cohen (2004). The left-hand-side in Equation 4.13 is the time rate of

change of the absolute vorticity. The first term on the right-hand-side (RHS) is the tilting,

rotating, and stretching of absolute vorticity. Tilting of vertical vorticity into horizontal or

vice versa neither creates nor destroys vorticity in the system but can significantly change

the amount in any one direction. Stretching of vorticity generates vorticity from angular

momentum conservation while contracting of vorticity reduces it. The second term on the

RHS is the advection of absolute vorticity. The rest of the terms on the RHS create and

destroy vorticity. The Reynolds stress term can result in vorticity generation or turbulent

diffusion of vorticity. The numerical terms similarly may generate vorticity or cause viscous
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eddy diffusion of vorticity. The Reynolds stress term and the numerical terms generate most

of the new vorticity in the system at closed boundaries, where horizontal gradients are the

largest.

4.4 Integrated Vorticity Dynamics in a Region

In Dong et al. (2007), a study on boundary vorticity generation in flow past a cylindrical

island in the deep ocean, the authors derive and use a diagnostic method for calculating the

vorticity generation at the sidewalls of the island. The same methodology will be employed

here using an integrated form of the governing equation for vorticity derived in the previ-

ous section in order to understand the various mechanisms influencing vorticity, including

boundary generation. The integration is performed over a domain that is bounded hori-

zontally by vertical sidewalls and is bounded vertically by two of the following: the seabed,

the free surface, and a constant depth level. The vertical sidewalls are aligned with the

coordinate axes and may cross active water grid cells or inactive land cells (in which case

the bounding wall to the active domain is the closed wall at the land-sea interface). Signifi-

cant vorticity generation is expected at the boundaries because, as shown in Panton (2005),

vorticity is generated at boundaries in the presence of pressure gradients and unsteady flow,

both of which occur strongly in Admiralty Inlet, especially near the headland.

4.4.1 Analysis

The 3D divergence theorem states that

˚
(∇ · F )dV =

‹
F · n̂dS,

where n̂ is the unit normal outward from the surface, F is a vector function of x, and dS is

a differential surface along the boundary of the volume. Stokes’ theorem states that

˛
F · d` =

¨
(∇× F ) · n̂zdS,

where d` is a differential length along the circumference of a horizontal surface and n̂z is a

unit normal in the vertical direction.
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In this analysis, the volume integral of the governing equation for ωza, Equation 4.13,

is first taken, and then the result is examined term-by-term. This integration is done over

three-dimensional sub-domains of the entire numerical domain. Multiple domains will be

analyzed.

Using the Leibniz rule to address the first term of the volume integral of Equation 4.13

gives:

˚
∂ωza
∂t

dt =
d

dt

˚
ωzadV −

¨
ζ
ωza(vb · n̂)dA (4.14)

where the second integral on the RHS is over the free surface, vb is the velocity of the free

surface, and n̂ is the unit normal outward from the surface. The second integral on the RHS

is zero for the surfaces of the analysis domain other than the free surface because none of

the other boundaries are time-dependent.

The integral of the first term on the RHS of Equation 4.13 could be presented in an

alternative form using the divergence theorem, but the original form is preferred in this

case, for ease of interpretation. Splitting between horizontal and vertical vorticity terms

gives

˚
(ωa · ∇)wdV =

˚ (
ωx
∂w

∂x
+ ωy

∂w

∂y

)
dV +

˚
ωza
∂w

∂z
dV.

The first volume integral is the tilting between horizontal vorticity and vertical vorticity,

which does not create nor destroy vorticity but does change its directionality, and the second

volume integral is the the stretching and shrinking of vertical vorticity, which does create

and destroy vorticity.

Using the divergence theorem, the integral of the second term on the RHS in Equation

4.13 can be written, for a general analysis domain, as

−
˚
∇ · (ωzav) dV = −

‹
ωza(v · n̂)dS

= −
¨
o
ωza(v · n̂h)dS −

¨
z
ωza(v · n̂z)dS −

¨
ζ
ωza(v · n̂ζ)dS, (4.15)

where the surface integral has been broken into integrals over different surfaces with n̂ as

the unit normal outward from a general surface, n̂h as the horizontal unit normal outward,

n̂z as the vertical unit normal outward, and n̂ζ as the unit normal outward from the free
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surface. The subscripts z, o, and ζ indicate taking the integral at the vertical and horizontal

open analysis boundaries and the free surface, respectively. The surface terms along the

closed sidewall and seabed are zero due to the impermeability condition. The terms along

the vertical open analysis boundaries represent the advection of vertical vorticity into and

out of the analysis domain. Due to the kinematic boundary condition at the sea surface,

the normal component of the fluid must be equal to the velocity of the boundary normal to

itself. That is, at the free surface,

v · n̂ζ = −vb · n̂ζ ,

and the expression in Equation 4.15 can be rewritten as

−
˚
∇ · (ωzav) dV = −

¨
o
ωza(v · n̂h)dS −

¨
z
ωza(v · n̂z)dS +

¨
ζ
ωza(vb · n̂ζ)dS (4.16)

Comparing Equations 4.14 and 4.16, it can be seen that the final term from Equation 4.14

is equal and opposite to the sea surface term here and they cancel, leaving only the terms

at the vertical open boundaries in this expression.

The integral of the third term on the RHS in Equation 4.13, using Stokes’ theorem, can

be rewritten as

˚
∇× (∇ · τ

R
) · n̂zdV =

ˆ ˛ (
∇ · τ

R

)
· d`dz

=

ˆ ˛ (
KM

∂2u

∂z2
+

(
0, 0,

∂u

∂z

∂KM

∂x
+
∂v

∂z

∂KM

∂y

))
· d`dz

=

ˆ ˛
KM

∂2u

∂z2
· d`dz

=

ˆ ˛
KM

(
∂2u

∂z2
d`x +

∂2v

∂z2
d`y

)
dz

=

ˆ ˛
KM

∂2u

∂z2
· ˆ̀d`dz,

where d` = (d`x, d`y, 0) is the differential unit vector in the counterclockwise direction along

the horizontal boundary and ˆ̀ = (`x, `y, 0) is the unit tangent vector clockwise around the

boundary. In analogy with the eddy-viscous flux terms in Dong et al. (2007), the term

on the RHS represents vertical vorticity generation due to Reynolds stresses at the closed

boundaries, and represents the eddy-viscous flux of vertical vorticity at the open boundaries.
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This indicates that the vertical vorticity generation due to the Reynolds stresses can be

determined by integration along the boundary walls instead of by integration throughout the

volume. That is, Stokes’ theorem allows us to deal with the full analysis domain indirectly

by dealing with the sidewalls. This integral will be split into two parts for analysis: one

part along the closed sidewalls/sloping seabed, which are the boundary generation terms,

and the other part representing the diffusive flux through the open analysis boundaries, and

will be written as

ˆ ˛
KM

∂2u

∂z2
· ˆ̀d`dz =

ˆ ˛
o
KM

∂2u

∂z2
· ˆ̀d`dz + ωRbg,

where the subscript o indicates integration over the open boundaries and the second term

on the RHS represents the boundary generation of vorticity due to the Reynolds stress. The

second term will be solved for indirectly.

Applying Stokes’ theorem to the integral of the fourth term on the RHS in Equation

4.13 gives

˚
∇× (∇ · τ

N
) · n̂zdV =

ˆ ˛ (
∇ · τ

N

)
· d`dz

=
h

4

ˆ ˛ (
∂2(uv)

∂y2
,
∂2(uv)

∂x2
, 0

)
· d`dz

=
h

4

ˆ ˛ (
∂2(uv)

∂y2
d`x +

∂2(uv)

∂x2
d`y

)
dz

=
h

4

ˆ ˛ (
∂2(uv)

∂y2
,
∂2(uv)

∂x2
, 0

)
· ˆ̀d`dz.

The terms can be interpreted as horizontal numerical eddy viscous generation of vertical

vorticity at the walls and eddy viscous-flux across the open boundaries. Accordingly, the

terms will be split between the wall and open boundary terms in a similar manner to the

Reynolds stress terms, and written as:

h

4

ˆ ˛ (
∂2(uv)

∂y2
,
∂2(uv)

∂x2
, 0

)
· ˆ̀d`dz =

h

4

ˆ ˛
o

(
∂2(uv)

∂y2
,
∂2(uv)

∂x2
, 0

)
· ˆ̀d`dz + ωN1

bg ,

where the second term on the RHS represents the boundary generation of vorticity due to

the first numerical mixing term.
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Stokes’ theorem is applied once again, this time to the integral of the fifth term, to find
˚

(∇× T ) · n̂zdV =

ˆ ˛
T · d`dz

=
h

2

ˆ ˛ (
∂u

∂y

∂v

∂y
,
∂u

∂x

∂v

∂x
, 0

)
· d`dz

=
h

2

ˆ ˛ (
∂u

∂y

∂v

∂y
d`x +

∂u

∂x

∂v

∂x
d`y

)
dz

=
h

2

ˆ ˛ (
∂u

∂y

∂v

∂y
,
∂u

∂x

∂v

∂x
, 0

)
· l̂d`dz.

This term will be split into parts along the walls and parts along the open analysis bound-

aries, and this term, like the previous, contributes to vorticity generation at the seabed and

sidewalls and viscous flux across the open analysis boundaries. This term will be written as

h

2

ˆ ˛ (
∂u

∂y

∂v

∂y
,
∂u

∂x

∂v

∂x
, 0

)
· l̂d`dz =

h

2

ˆ ˛ (
∂u

∂y

∂v

∂y
,
∂u

∂x

∂v

∂x
, 0

)
· l̂d`dz + ωN2

bg ,

where the second term on the RHS represents the boundary generation of vorticity due to

the second numerical mixing term.

The overall form for the volume-integrated equation for ωza is now

Rate-of-change of total volume vorticity︷ ︸︸ ︷
d

dt

˚
ωzadV =

Tilting throughout volume︷ ︸︸ ︷˚ (
ωx
∂w

∂x
+ ωy

∂w

∂y

)
dV +

Stretching throughout volume︷ ︸︸ ︷˚
ωza
∂w

∂z
dV

−

Advection through walls︷ ︸︸ ︷ˆ ˛
o
ωza(v · n̂)d`dz +

Reynolds viscous flux along walls︷ ︸︸ ︷ˆ ˛
o
KMuzz · `d`dz + ωRbg

+

Numerical viscous flux along walls︷ ︸︸ ︷
h

4

ˆ ˛
o

((uv)yy, (uv)xx, 0) · ˆ̀d`dz + ωN1
bg

+

Numerical viscous flux along walls︷ ︸︸ ︷
h

2

ˆ ˛
o
(uyvy, uxvx, 0) · l̂d`dz + ωN2

bg ,

(4.17)

where the o subscripts represent surface integrals across or along the open analysis bound-

aries (horizontal or vertical), and the ωbg terms represent sources of boundary generation

of vorticity at the closed boundaries and are unknown. Vertical vorticity generation at the

closed boundaries can be found diagnostically by solving for the boundary generation terms

ωbg = ωRbg + ωN1
bg + ωN2

bg in Equation 4.17.
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Figure 4.22: The vertical sidewalls have a no-slip condition imposed whereas the seabed has

a quadratic drag law and so are considered separately.

4.4.2 Results

To perform the calculations of the various terms in Equation 4.17, model output was read in,

then interpolated onto a fixed three-dimensional grid with 65 meter horizontal resolution,

as in the actual horizontal grid, and a very highly resolved vertical grid. The fixed grid was

necessary to be consistent in time since ROMS has terrain-following coordinates vertically

which change each time step due to the changing free surface. The vertical grid spacing

of the fixed grid is ∆z = 0.2 meters, which is the smallest vertical layer thickness found

in the domain, and occurs where the twenty simulation layers are divided evenly (in this

simulation) into the minimum vertical thickness of four meters (see Figure 4.22). This was

done to preserve the information found at the sidewalls.

A few example tide half-cycles will be examined in detail in this section in order to

understand the interacting dynamics in time and various possible behaviors of the terms in

Equation 4.17. Analysis was done for the larger encompassing box shown in Figure 4.23 as

well as for the sub-domains, numbered 1 through 6. The sub-domains were chosen to learn

the source of boundary generation at a better spatial resolution than the larger analysis
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Figure 4.23: Zoom-in of Admiralty Head with lines indicating location of main analysis box

(thicker line) around Admiralty Head, which is subdivided into smaller boxes 1 through

6 starting at the north and counting down and to the right. Analysis can be for the full

domain, the subdomains, or for bounding walls in a domain, as referred to by geographic

direction (North, West, South, and East).

domain, but still contain enough points to have a meaningful calculation.The encompassing

box will be referred to as the large box and is the default analysis domain. The sub-

domains will be referred to by their box number. Each domain that is used for analysis

has four bounding walls; these will be referred to by their relative position in the box:

north, east, south, or west. Plots of the terms in Equation 4.17 are shown below with

subplots of the local free surface, the volume-integrated vorticity, and the surface speed at

a point near Admiralty Head. The vertical vorticity discussed throughout the section is the

absolute vertical vorticity, though the Coriolis force is not significant in the simulations.

The horizontal axis is labelled with the time and date of the model output. Terms in the

following analysis are referenced using a descriptor of their role in the governing equation for

vorticity as noted in Equation 4.17 (e.g., advection, tilting, and Reynolds stresses). Terms

also include the sign given in Equation 4.17.
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Comparison of Seabed and Sidewall Generation Rates

The vorticity generation rate at the vertical no-slip sidewalls and the vorticity generated

at the seabed are compared, as illustrated in Figure 4.24, since the boundary conditions

applied in the code are different for these two cases (see Section 2.3.2). From a numerical

simulation perspective, it is important to know the sensitivity of a simulation in ROMS to

the minimum depth prescribed in a simulation as well as how a flat-bottomed channel may

alter the amount of vorticity present in a system. Figure 4.24(a) appears to show that the

vorticity generation rate is largely due to the seabed rather than the sidewalls. However,

much more of the domain is bounded by the seabed instead of the sidewall, since in this case

the sidewall is four meters deep. Looking instead at the generation rate at the sidewall and

seabed as normalized per unit volume, as shown in Figure 4.24(b), the sidewalls and seabed

are actually generating vorticity at about the same rate. Therefore, changing the minimum

depth in the system by small amounts should not significantly affect the vorticity generation

rate, and having a flat-bottomed channel, such that all frictional walls are sidewalls instead

of seabed, should produce a comparable rate of vorticity as a similar simulation with any

vertical seabed area. Note that despite this, the characteristics of the vorticity produced

in a flat-bottomed tidal channel as compared with a simulation with realistic bathymetry

would certainly be different, since, for example, the slope of the bathymetry can have a

large effect on the tilt of a vortex tube.

Case I: Basic Flood Tide

Plots at a few snapshots in time during a typical diurnal flood tide on September 3, 2006, at

higher high water are shown in Figure 4.25. Figure 4.26 shows the terms, in time, from the

governing equation, volume-integrated throughout the large analysis domain shown overlaid

in the flow figures. The resulting headland-generated vortex is medium in size, relative to

those in other ebb tides. Note that the Reynolds stress and numerical viscous flux terms play

a only a small role here. Also note that the total integrated vertical vorticity in the analysis

domain peaks just before the speed peaks, and just before the advection of vorticity out of

the system peaks (as shown in the top subplot in Figure 4.26). The vorticity generation
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Figure 4.24: Vertical vorticity generation rate in main analysis domain due to the sidewall

and the seabed, shown with and without normalization by the volume.
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(a) Vorticity, 6:15PM: initial advection of vorticity (b) Vorticity, 9:30PM: advection of vorticity

(c) Density, 9:30PM: density front develops (d) Vertical velocity, 9:30PM: downwelling with con-

vergence

Figure 4.25: Surface vorticity and density and 10 meter depth vertical velocity snapshots

from 9/4/06. The first two vorticity images show how the vorticity develops during this flood

tide. The density and vertical velocity are shown at the same time as the second vorticity

snapshot to correlate related fields. Dashed lines indicate transect locations discussed in

Section 4.4.2.
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Figure 4.26: Case I free surface, integrated vorticity, surface speed, and terms in the vorticity

governing equation for the main analysis domain.

rate peaks earlier in the cycle and decreases for the rest of the tide.

The free surface and speed curves in Figure 4.26 give timing and context to the various

terms in Equation 4.17 given in the bottom subplot. As the flood tide in Case I begins,

boundary generation of positive vorticity increases, followed shortly by the advection out

of the analysis domain of positive vorticity. During the second half of the tide, tilting and

stretching are significant effects: the positive vorticity is stretched, generating more vorticity,

but is also tilted into horizontal vorticity. Generation due to stretching of vorticity is larger

than the boundary generation at times. The Reynolds stresses and numerical terms have

been combined together and are not important to the dynamics, but are associated with a

small amount of positive vorticity reduction.

This analysis gives an overall perspective of the interplay of terms in the vorticity govern-

ing equation around Admiralty Head, but misses details since the analysis is over a domain

with many complexities. To understand the terms in better spatial detail, the larger anal-
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ysis domain was split into six subdomains (Figure 4.23), as shown in the following sections

describing the relevant terms. Note that the advection of vertical vorticity is examined as

movement through the open bounding walls of the analysis domains, whereas the stretching

and tilting terms, for example, are integrated over the domain or sub-domain.

Generation and Advection Figure 4.27 shows the volumetric vorticity generation rate

for each sub-domain box, and also shows the advection of vorticity through each bounding

wall, along with the free surface signal and surface speed for context. The generation rate

subplot shows that boundary generation starts in box 4 at the tip of Admiralty Head. While

most of the boundary generation occurs in box 4 through the first half of this half-cycle,

vorticity is also generated in boxes 6, 5, 3, 2, and 1, in that order in terms of magnitude and

time, as the tide progresses. As described in Section 4.2.1, the vorticity follows a pattern

in which it first reaches to the east (Figure 4.25(a)), and in this case, in the absence of

noticeable persistent old vortices, has a smooth transition to reaching toward the south as

it is advected by the horizontal currents (Figure 4.25(b)). It is the first reach out to the

east that is associated with an increase in generation in box 6, due to the flow over the

bathymetry in the area generating tilted vorticity with a vertical component. The reach

to the south is associated with increased boundary generation in boxes 3 and 5 due to the

tidal flow’s changing direction.

There are rapid changes in generation in box 5. These appear to be due to the horizontal

velocity field oscillating at the south bounding wall, causing the advection term at the south

bounding wall to rapidly oscillate. In turn, the generation rate term in box 5 has the same

oscillating behavior since it is determined diagnostically from the other terms in Equation

4.17. The oscillations appear much more dramatic in the generation rate plot than the

advection plot due to the different span of the axis limits. These oscillations are probably

not meaningful but are rather a function of the calculation. Also note that they are much

less noticeable in Figure 4.26, which is calculated for the larger analysis domain.

Advection of vorticity into and out of the analysis domain boundaries is shown in the

bottom subplot of Figure 4.27. This term first shows a small amount of persistent negative

vorticity from the previous ebb tide exiting the analysis domain out the south bounding
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wall. The first reach of vorticity to the east is evident in this plot when there is a small peak

showing positive vorticity exiting the system via the east bounding wall (Figure 4.25(a)).

Most of the advection in the system is of positive, newly generated vorticity exiting the

analysis domain out the south boundary (Figure 4.25(b)), though there is some positive

vorticity generated outside the analysis domain that enters via the north and west bounding

walls.

Tilting and Stretching The main increase in tilting of vorticity and stretching of vertical

vorticity corresponds to the presence of a downwelling convergence zone in the system where

flood pushes past Admiralty Head while a large eddy in Admiralty Bay begins to push

into the main flood flow. In the convergence area, vertical vorticity and negative vertical

velocities, which increase with depth to mid-water column, are collocated. The two fields

mostly stay in the same location while the flood tide pushes on and prevents the ebb tide

from coming out from Admiralty Bay, but the ebb tide slows pushes west. Meanwhile,

the tilting term is converting vertical vorticity into horizontal due to horizontal gradients

of vertical velocity while the stretching term is strengthening the vertical vorticity. This

can be seen directly in the governing equation for vertical vorticity, Equation 4.13. Figure

4.28(a) shows vorticity and Figure 4.28(b) shows vertical velocity in depth to demonstrate

the collocation of vertical vorticity and vertical velocity.

Transects in depth at the time and location indicated in Figure 4.25 are shown in Figure

4.29 to more specifically show the mechanisms. The magnitude of the horizontal velocity,

shown in the first plot, has spatially varying vertical and horizontal gradients on flood

tide. This can be more readily seen in Figure 4.30. The surface flow pushes past a sharp

headland tip and has a strong gradient associated with the separation point. Lower in the

water column, the headland is less steep and the gradient near the separation point is less

strong.

The shear feature in the speed dominates the behavior in each other field shown in

Figure 4.29. The downwelling vertical velocity is located mid-water column, below the area

of strongest convergence near the surface. The (positive) vertical and negative horizontal

vorticity are perpendicular components of a relatively cohesive region of three-dimensional
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Figure 4.28: Vorticity and upwelling velocity snapshots in depth at 9:15PM on 9/4/06,

illustrating the increase of vorticity with increasing negative upwelling velocity. Note the

lower vorticity color bar limits in these figures, for visual illumination.



121

D
ep

th
 (

m
)

D
ep

th
 (

m
)

D
ep

th
 (

m
)

ω in 3D, follows shear profile

Horizontal gradient 
stronger near surface due 

to sharp headland tip

Vertical shear 
stronger near seabed

Horizontal 
convergence 

leads to negative 
vertical velocity

Bending of +ω 
and -ω due to 

varying 
horizontal 

gradient of w

Stretching and 
contracting of 

-ω due to 
varying 
vertical 

gradient of w

D
ep

th
 (

m
)

Some horizontal baroclinic 
generation due to ρ gradient

Figure 4.29: Case I transects at the location shown in Figure 4.25 at 9:30PM on 9/3/06.

Shown in order from left to right, top to bottom, are the horizontal speed; vertical ve-

locity; vertical vorticity; vertical vorticity tilting; the horizontal vorticity, where ωh+ =√(
ωx+
)2

+
(
ωy+
)2

and ωh− =
√(

ωx−
)2

+
(
ωy−
)2

; vertical vorticity stretching; horizontal baro-

clinic generation rate (with positive and negative calculated analogously to the horizontal

vorticity); and the density.
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to gentler headland 
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Figure 4.30: Constant depth slices of speed at 9:30PM on 9/3/06 in Case I, looking northwest

past Admiralty Head. The horizontal and vertical gradients in the speed vary lee of the

headland due to changing sharpness of the headland with depth.
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vorticity. The positive horizontal vorticity in the main flow channel (left side) is probably

due mainly to the typical shear in the tidal flow over the seabed. The negative horizontal

vorticity in the recirculation area (right side) is probably generated by the recirculation flow

over topography.

The stretching of the vertical vorticity near the surface, increasing the vertical vorticity,

is due to the collocation of the vertical vorticity and a positive vertical gradient of vertical

velocity near the surface. There is a hint of contracting of the vertical vorticity decreasing

the vertical vorticity near the seabed at the low end of the vorticity trail, due to a negative

vertical gradient of vertical vorticity. The negative tilting of vorticity in the main channel

flow (left side of plot) is due to the positive horizontal vorticity being tilted into negative

vertical vorticity by the negative horizontal gradient of vertical velocity. The negative tilting

of vorticity in the recirculation area (right side of plot) is due to the negative horizontal

vorticity being tilted into negative vertical vorticity by the positive horizontal gradient of

vertical velocity on the right side of the vertical velocity region.

There is a strong horizontal density front that is approximately coincident with the other

features. This generates negative horizontal vorticity, as shown in the seventh plot, which

shows the horizontal baroclinic generation rate. This vorticity generation appears to be a

secondary effect relative to the other mechanisms due to the main tidal flow and convergent

downwelling.

Volume-integrated tilting and stretching of vorticity in the subdomain boxes for Case I

are shown in Figure 4.31. The tilting and stretching are usually observed to follow the typical

behavior described in the previously paragraph; that is, stretching of the vertical vorticity

near the surface that is collocated with a positive vertical gradient of convergent down-

welling, and tilting decreasing the magnitude of the vertical vorticity due to the horizontal

gradient of convergent downwelling that is aligned with oppositely-signed horizontal vortic-

ity. There is some different behavior initially in the flood tide, in which newly-generated

positive vorticity contracts in box 6 in the shallower Admiralty Bay with the first reach

of vorticity east, because it is collocated with positive vertical velocity that increases with

depth such that ∂w/∂z < 0 (not shown), decreasing positive vorticity. Simultaneously, the

vorticity moving into box 6 tilts upward given the horizontal vertical velocity gradient, con-
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verting horizontal vorticity into vertical vorticity. As the vorticity moves south, it follows

typical behavior. It stretches and increases in the presence of the positive vertical velocity

gradient near the surface in boxes 5, 4, 3, 2, and 1, in that order, while it decreases due to

tilting at the same time as it is pushed west down the slope south of the headland.

Case II: Double Peak due to Previous Tide and Persistent Eddies

The semi-diurnal flood tide examined in this case produces a large vortex from the headland.

Overall analysis details are shown in Figure 4.32. The relative sizes of the terms are different

and generally smaller than in Case I. In the previous case, stretching was the largest term and

advection was just smaller (though oppositely-signed), and boundary generation and tilting

were about the same magnitude and oppositely-signed. In this case, boundary generation

and advection are the most comparable and oppositely-signed, stretching is a smaller affect

overall than in the previous case, and tilting is insignificant. As before, the numerical and

Reynolds stress flux terms are insignificant but do slightly reduce the positive vorticity.

A few of the terms show a double peak pattern. The stretching and tilting terms both

have two peaks, and the advection shows a complex pattern. This will be explored further

in the following paragraphs.

A notable feature in this case is the double peak in speed accompanied by a dip in total

vorticity present in the domain. This double speed peak was explained by examining plots

of vorticity in Section 4.2.3 to be the result of persistent vortices associated with speed

pockets. The size of these double peaks is related to the size of the previous negative ebb

vortex. In Case I, the amount of negative vorticity generated during the previous ebb tide

was small, leading to a small, barely noticeable surge of water pushed around the headland

at the start of the next flood tide (see the right-hand column of Figure 4.9). In this case,

Case II, the amount of negative vorticity from the previous ebb is larger, leading to a large

initial peak in speed followed by a secondary peak in speed, each of which is associated with

advection of vorticity in the system (see the left-hand column of Figure 4.9). The effect of

the persistent vortices can be understood by examining the terms from Equation 4.17.

The advection terms for each bounding wall for this case are shown in Figure 4.33, along
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Figure 4.32: Case II free surface, integrated vorticity, surface speed, and vorticity governing

equation terms
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Figure 4.33: Case II free surface, integrated vorticity, surface speed, advection by bounding

wall, and stretching and tilting by box.
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with stretching and tilting by box, since each of these terms shows the effect of the persistent

vortices. In the subplot of advection terms, the first two peaks in time are due to residual

vorticity from the previous tide. The negative vortex from the previous ebb tide, shown in

Figure 4.9(a), persists into this tide. It continues advecting with the beginning flood tide

through the analysis domain via the west and south bounding walls, bringing with it a surge

of speed and negative vorticity (Figure 4.9(c)). The large advection peak shows that as the

typical flood tide begins, the positive vortex streaming from the headland exits the analysis

domain via the south bounding wall, as expected. There is also some positive vorticity that

is generated outside the analysis domain that is advected into the system through the north

and west bounding walls, but it is small relative to the amount of positive vorticity advected

out the south bounding wall.

The peaks in vorticity and speed are noticeable in the subplots of the stretching and

tilting terms, as well, as shown in Figure 4.33. These terms are much smaller in this case

as compared with Case I. In these plots, two “bumps” are referenced: the first is due to

the initial burst of new positive vorticity that is associated with the speed surge from the

previous strong ebb vortex, and the second is due to the main flow of the flood tide. While

the advection terms show the presence of the persistent old negative vorticity, the stretching

and tilting are most affected by the surge of new positive vorticity that is generated due to

the initial surge of speed past the headland tip. This new positive vorticity is collocated

with spatial gradients of negative vertical velocity near the headland such that stretching

and tilting is possible, unlike the old negative vorticity which passes through the corner of

the analysis domain, opposite the headland tip. This is shown in Figure 4.34. Therefore, the

effect of the previous tide on this half-cycle in terms of tilting and stretching is to generate

an initial, additional surge of positive vorticity in the presence of vertical velocity gradients

before the typical tilting and stretching of the positive vorticity generated with the main

tidal flow. Because both of vortices that are stretched and tilted are the same sign, the sign

of the bumps in the stretching and tilting terms have the same sign.

The dynamics of the tilting and stretching in this second flood case are similar to those

described in Section 4.4.2. The stretching term in the various boxes for the second bump

shows the same ordering of boxes around the headland contributing to the stretching term
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Initial surge

Old negative vorticity not 
collocated with vertical velocity

New positive vorticity is 
collocated with vertical velocity

(a) Vorticity

New positive vorticity is 
collocated with vertical velocity

Initial surge

(b) Vertical velocity

Figure 4.34: Vorticity and upwelling velocity snapshots in depth at 9:15PM on 9/9/06, illus-

trating that initial new positive vertical vorticity due to an initial speed surge is collocated

with a vertical velocity gradient in depth, but the old negative vorticity is not. Note the

lower vorticity color bar limits in these figures, for visual illumination.
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as was seen in the stretching term in Case I. The stretching for the second bump starts first

in boxes 4 and 5 before moving more southward, showing the same vortex movement as in

Case I. The first bump has the opposite timing of boxes contributing to the stretching term.

The reason for this difference in timing of the location of stretching in the boxes is that the

vorticity is initially generated at a different location around the headland in each case, then

moves at a different angle near the headland. As shown in Figure 4.2(b), the initial positive

vorticity in generated north of the headland tip, whereas vorticity generated by the main

tidal flow is located near the headland tip.

The effect of the two phases of vorticity mechanisms is less distinguishable in the tilting

subplot than in the stretching subplot, but it is still there. There are two negative peaks

in roughly the same order as described for the stretching term. There is also an isolated

positive peak in the tilting term for box 6 that is possiblys due to movement of the vorticity

into shallow Admiralty Bay, as was seen in Case I.

As a final note, the noticeable dip in volume-integrated vorticity in the analysis do-

main is due to the advection through the system of the previous oppositely-signed vortex

temporarily canceling out some of the positive vorticity in the volume integration.

Case III: Basic Ebb Tide

This diurnal ebb tide produces a negative vortex of moderate size. Terms from the volume-

integrated governing equation for vorticity are shown in Figure 4.35. At the beginning

of the tide, boundary generation begins, along with advection out of negative vorticity.

Around peak ebb, stretching and tilting become major contributors, with negative vorticity

generation through stretching and a decrease in negative vertical vorticity due to tilting.

There is some decrease in negative vorticity due to the Reynolds stresses and numerical

terms, but they are, again, not significant to the dynamics. Note that the signs of the terms

in the ebb tides are expected to be opposite those in flood tides since the sign of the newly

generated vorticity is opposite in each case.

Generation and Advection The rate of boundary generation in each sub-domain, along

with details of advection of vorticity in and out of the analysis domain, are shown in Figure
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Figure 4.35: Case III free surface, integrated vorticity, surface speed, and vorticity governing

equation terms
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Figure 4.36: Case III free surface, integrated vorticity, surface speed, volumetric generation

rate by box, advection by bounding wall of large analysis domain (bottom subplot)

4.36. Boundary generation is clearly accomplished primarily in box 4 during this half-cycle,

unlike in the flood cases. This difference in where boundary generation takes place on

ebb and flood is probably due to the asymmetry of the headland and surrounding channel

geometry. The flow past Admiralty Head on a typical ebb tide mostly pushes past just

the tip of the headland, whereas on flood tide the flow often pushes alongside the headland

before the tip. See Figures 4.37(a) and 4.37(b) for examples. There is also some positive

vorticity generated at the seabed near the coastline that is apparent in box 3, as seen in

Figure 4.38(b).
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On flood tide, flow 
moves alongside 

headland

(a) Flood tide, 9/3/06 7:30PM

On ebb tide, headland tip 
pushes into flow channel

(b) Ebb tide, 9/5/06 2:15PM

Figure 4.37: Typical surface speed flow past the headland on flood and ebb tide show the

asymmetry of the headland and channel geometry, which lead to vorticity being generated

at the boundary in different locations on each tide.

Vorticity reenters 
domain via north wall

(a) 3:15PM

Positive induced 
vorticity

(b) 5:15PM

Figure 4.38: Sample 10 meter depth vorticity snapshots on 9/5/06 for Case III.
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The advection into and out of the domain in Figure 4.36(c) shows the primary movement

of newly generated negative vorticity moving out of the analysis domain, first through the

north bounding wall with the first reach, then through the west bounding wall. As the

vortex shifts counter-clockwise, directing the negative vorticity mainly westward, some of

the vortex overlaps with the north analysis open boundary, such that the negative vorticity

temporarily reenters the domain before exiting again out the west bounding wall, as shown

in Figure 4.38(a).

Before these movements of vorticity through the open bounding walls, there is some

positive vorticity that exits the west bounding wall. This positive vorticity is not obviously

apparent in any of the other plots. The source of this positive vorticity exiting the domain

is not clear.

Tilting and Stretching Similar tilting and stretching behavior is seen on ebb tide as

was seen on flood tide in Section 4.4.2. Snapshots of surface vertical vorticity and ten

meter depth vertical velocity are shown in Figure 4.39 for context, and to indicate the

time and position of transects shown in Figure 4.40. The mean speed in the transect is

shown in the first subplot of Figure 4.40. It is clear from this plot and the rest that there

is different behavior between the west (left) and east (right) sides of the horizontal speed

gradient. As in Case I, downwelling is found at the convergence of the main tidal flow and

the recirculation area of the ebb eddy (more easily seen in Figures 4.39(a) and 4.39(b)).

The horizontal and vertical vorticity can be aligned between the two subplots: negative

positive vertical vorticity with negative horizontal vorticity, and positive vertical vorticity

with positive horizontal vorticity. Negative horizontal vorticity is generated on the west side

of the transect due to the main tidal flow over the seabed whereas the positive horizontal

vorticity on the east side of the transect is generated by the recirculation flow that moves

opposite the main flow, in the eddy.

The main negative vorticity is stretched, strengthening it, near the sea surface, and

contracted near the seabed, weakening it. Each are due to the collocation of the vertical

vorticity with gradients in the vertical velocity. The positive vertical gradient of vertical

velocity near the surface leads to stretching while the negative vertical gradient of vertical
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(a) Vorticity (b) Vertical velocity

Figure 4.39: Surface vorticity and vertical velocity at 10 meters below the mean sea level

near peak ebb at 3:45PM on 9/4/06. Transect location discussed in Figure 4.40 is indicated.

velocity near the seabed causes contracting.

As was seen in Case I, the vertical vorticity tilting term is the same sign on both sides

of the main vorticity region. The negative horizontal vorticity on the west side is tilted

by a negative horizontal gradient of vertical velocity such that it is converted into positive

vertical vorticity, reducing the magnitude of the negative vertical vorticity. On the east

side, the positive horizontal vorticity is tilted by the positive horizontal gradient of vertical

velocity, leading to the conversion of the positive horizontal vorticity into positive vertical

vorticity, again reducing the magnitude of the main region of negative vertical vorticity.

There is some horizontal baroclinic generation present due to a horizontal gradient of

density, as shown in the bottom subplots of Figure 4.40. However, it is not clear how large

effect this is relative to the other dynamics. Additionally, any generation that is occurring

baroclinically is to the side of the main vorticity dynamics.

The volume-integrated tilting and stretching terms are shown in Figure 4.41. As de-

scribed in the previous paragraphs, the stretching near the headland is dominantly negative,

increasing the negative vertical vorticity, and the tilting is dominantly positive, decreasing
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Figure 4.40: Case III transects at the location shown in Figure 4.39 at 3:45PM on 9/4/06.

More details on plot can be found in Figure 4.29.
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the main negative vertical vorticity. One of the exceptions in the plot is the contracting of

the negative vorticity in box 1. This is due to a negative vertical gradient of the vertical

velocity, as shown in Figure 4.42.

Case IV: Double Peak due to Previous Tide and Persistent Eddies

This semi-diurnal ebb tide, whose terms in the vorticity governing equation are shown in

Figure 4.43, produces a huge headland-generated eddy, shown previously in Figure 4.7(d).

The terms each clearly have two peaks, which, as will be shown in the following sections,

are due to persistent vortices from the previous flood tide. Boundary generation is large in

two distinct peaks throughout the cycle, as is the advection term. The tilting and stretching

terms are both characterized by two peaks, but change sign partway through the half-cycle.

Each of these four terms is of considerable size. An initial speed surge associated with a

persistent vortex was noted in Case II and was particularly noticeable in the speed curve. It

also had small but noteworthy same-signed double peaks in the terms in the equation for ωza.

In this case, the speed curve shows only small bumps, hinting at the complex interactions

occurring, but the analysis terms show that they are dramatically affected. Details of these

effects are given in the following section.

Advection of vorticity in and out of the analysis domain bounding walls, along with

tilting and stretching of vorticity, integrated throughout the analysis sub-domains, are shown

in Figure 4.44 for Case IV. This more detailed examination of the advection of vorticity,

made by distinguishing between advection through each bounding wall, allows for greater

understanding of the processes. Looking at the previous tide helps to understand what is

happening on the south bounding wall. The previous flood tide pushed a jet of water down

Admiralty Inlet that was squeezed between Admiralty Head on the east, and Port Townsend

and northeastern Marrowstone Island on the west. This jet induced a vortex on either side,

each with opposite sign, as shown in Figure 4.45(a). As the tide switches direction, these

eddies are advected northward and propagate back through the Inlet. In doing so, they

pass through the south bounding wall of the analysis domain: first the more northward

positive vortex and then the more southward negative vortex. The first appears in Figure
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Figure 4.41: Case III free surface, integrated vorticity, surface speed, and tilting and stretch-

ing by box.
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(a) 10 meter depth upsloping velocity

Vertical velocity at 20 meters 
depth is larger than at 10 

meters depth

(b) 20 meter depth upsloping velocity

Vorticity is collocated 
with vertical velocity

(c) 10 meter depth vorticity

Figure 4.42: Contracting of negative upsloping vorticity from Case III is seen in box 1,

the most northward box, due to increasing positive vertical velocity with depth. Upsloping

velocity and vorticity snapshots are shown from September 5 at 1:45PM
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Figure 4.43: Case IV free surface, integrated vorticity, surface speed, and vorticity governing

equation terms
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Figure 4.44: Case IV free surface, integrated vorticity, surface speed, advection by bounding

wall, and stretching and tilting by box.
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4.44 as positive advection at the south bounding wall when the old positive vorticity enters

(Figure 4.45(b)), and negative at the west bounding wall when it exits. Shortly afterward,

the second, old negative vorticity from the previous flood tide advects through the south

bounding wall, causing the advection term at the south wall to be negative in sign. In the

mean time, newly generated negative vorticity streams from the headland tip out the north

bounding wall (Figure 4.45(c)), then out the west bounding wall (Figure 4.45(d)). Some of

the negative vorticity that exits out the west bounding wall reenters the analysis domain

via the north bounding wall.

In Case II, there were two peaks in all of the terms due to an initial surge of speed moving

past the headland followed by the normal tidal flow. In the stretching term, both peaks were

positive and in the tilting term, both peaks were negative (with a small positive peak in-

between). In this case, Case IV, there is complex behavior with two peaks in the stretching

and tilting terms due to persistent vortices; however, the peaks switch sign midway through

the half-cycle. As seen in the stretching term in Case IV, first there is contraction of newly-

generated negative vorticity with a negative vertical gradient of upsloping velocity near the

headland tip (box 4), shown in Figure 4.46, causing the stretching term to be positive.

This contraction due to the vorticity moving into a shallower area, with the associated

velocity gradient, also tilts horizontal vorticity into vertical vorticity (causing a negative

tilting term). The stretching term continues to be positive due to stretching of old positive

vorticity that enters the analysis domain that coincides with a positive vertical gradient of

convergent downwelling velocity (Figure 4.47).

The second peak of the stretching term is negative, as typical, and the behavior is

similar to as described in Case III. Newly-generated negative vorticity coincides with a

positive vertical gradient of downwelling velocity due to convergence with bottom friction,

which stretches the negative vorticity, as shown in Figure 4.48. The horizontal vorticity is

also tilted as in Case III, turning vertical vorticity into horizontal vorticity.
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Negative 
flood 

vortex

Positive 
flood 

vortex

(a) 2:45AM: Eddies linger after flood tide

Persistent vorticity 
from flood tide

(b) 4:00AM: Old positive vorticity advects through

analysis domain

(c) 5:00AM: Negative vorticity reaches north first (d) 7:00AM: Negative vorticity reaches west second

Figure 4.45: Behavior modification on ebb tide in Case IV on 9/10/06 with persistent old

vortices and strong initial surge. Shown are snapshots of vorticity at a depth of 10 meters

below mean sea level. Note the lower vorticity color bar limits in Figures 4.45(a) and 4.45(b),

for visual illumination.
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(a) Vorticity

Negative vertical gradient of 
vertical velocity that coincides 

with vertical vorticity

(b) Upsloping velocity

Figure 4.46: Depth slices of vertical vorticity and upsloping velocity near Admiralty Head

at 3:30AM on 9/10/06. A negative vertical gradient of upsloping velocity right at the

headland tip (in box 4) as the flow moves around the headland causes contracting of the

negative vertical vorticity. Note the lower vorticity color bar limits in these figures, for

visual illumination
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(a) Vorticity

Positive vertical gradient of vertical 
velocity that coincides with old 

positive vertical vorticity

Some possible contraction of 
negative vorticity near the 

surface

(b) Upwelling velocity

Figure 4.47: Depth slices of vertical vorticity and upwelling velocity near Admiralty Head

at 4:15AM on 9/10/06. A positive vertical gradient of downwelling velocity west of the

headland tip causes stretching of the old positive vorticity. Note the lower vorticity color

bar limits in these figures, for visual illumination
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(a) Vorticity

Positive vertical gradient of vertical 
velocity causes typical stretching of 

vorticity

(b) Upwelling velocity

Figure 4.48: Depth slices of vertical vorticity and upwelling velocity near Admiralty Head

at 7:00AM on 9/10/06. A positive vertical gradient of downwelling velocity west of the

headland tip (boxes 3 and 4) causes stretching of the new negative vorticity. Note the lower

vorticity color bar limits in these figures, for visual illumination. Snapshots are from the

same time as shown in Figure 4.45(d).
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4.5 Summary and Discussion

4.5.1 Summary

There are many effects of the complex interactions of vortices in Admiralty Inlet. In this

chapter, the presence of jetting through Admiralty Inlet on flood tide was discussed (Figure

4.3), along with fronts pushing past Admiralty Head on ebb tide (Figure 4.8). It was learned

that vortices can persist long enough to advect through the subsequent tidal cycle, and can

be accompanied by speed packets that significantly affect the flow fields (Figure 4.9 and

seen in the speed signal of Case II). Vorticity is also associated with increased turbulence,

which is shown in Figure 6.26.

The behavior of the horizontal currents is made complex by the presence of vorticity.

Currents are increased or decreased, directions change, and sharp gradients are often found

in different regions of an eddy field. Additionally, secondary eddies of the opposite sign from

the main eddy can be induced near the coastline, which affect another region of horizontal

currents (Figure 4.2(a)). These sharp gradients in eddy fields are areas of convergence

which, combined with bottom friction, lead to patches of negative vertical velocity around

the system, in space and time, and occasional patches of positive vertical velocity (Figure

4.20). The vertical velocity increases in strength with depth up to around mid-water column,

below the area of strongest convergence near the surface. Vertical velocity can also be caused

by flow over bathymetry, though vertical velocity generated this way near Admiralty Head

tends to be smaller than vertical velocity due to convergence. Vertical velocity can be

split by generation mechanism: upsloping velocity, which is topographically-induced, and

upwelling velocity, which is caused by other effects, like horizontal convergence or divergence

(Section 4.2.6).

Using a derivation of the equation for the absolute vertical vorticity describing the

fluid movement simulated in ROMS, along with analysis employing an integral form of the

equation, the behavior of vorticity in the vicinity of Admiralty Head was examined in detail.

The most important terms in the vorticity equation were found to be boundary generation,

advection, stretching, and tilting, though they had different relative magnitudes in different

half-cycles.
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Tilting and stretching/contracting of vertical vorticity were significant mechanisms of

increasing and decreasing vertical vorticity. Typically, there were positive vertical gradients

of vertical velocity near the surface, due to convergence, which stretched the vorticity, while

near the seabed there were negative vertical gradients of vertical velocity collocated with

vertical vorticity, causing contracting. Simultaneously, the collocation of horizontal vorticity

with horizontal gradients of vertical velocity led to tilting of the horizontal vorticity, typically

reducing the magnitude of the dominant sign of vertical vorticity. Upsloping and upwelling

velocity were found to cause tilting and stretching in various cases, though downwelling

was typically present and was strongly negative near the headland (due to convergence).

Contracting of vertical vorticity was occasionally seen when an eddy moved into a shallower

area and encountered a negative gradient of upsloping velocity.

It was most often newly-generated vorticity at the headland tip that was tilted and

stretched/contracted during a half cycle. However, two cases were examined in which there

was a noticeable presence of old, oppositely-signed vorticity. In one of these cases (Case II),

old negative vorticity was present near Admiralty Head but it was still the newly-generated

positive vorticity that coincided with a positive vertical gradient of vertical velocity, which

stretched and tilted the vorticity. In another case (Case IV), it was the old vorticity which

primarily coincided with a gradient of vertical velocity. The same typical pattern of vorticity

stretching and tilting occurred in this case, but it was noteworthy because the vorticity

primarily involved was of the opposite sign as would typically be seen in its half-cycle.

The ability to calculate the advection of vertical vorticity through a bounding wall en-

abled the determination of the persistence of the vortices beyond their half-cycle. Advection

of vorticity into and out of the analysis domain and boundary generation were both signifi-

cant features in the behavior of vortices in Admiralty Inlet. Reynolds stress and numerical

truncation error terms did not play a significant role in the vorticity dynamics near Admi-

ralty Head.

Boundary generation occurred primarily at the tip of Admiralty Head, where the bathymetry

is steepest. This was particularly true on ebb tide, when the channel flow pushes most

strongly past only the tip of Admiralty Head. On flood tide, generation also occurred along

the headland north of the headland tip, but was largest at the tip itself. After being gen-
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erated, the vorticity was then affected by other mechanisms previously described: it would

be stretched or contracted, tilted, and advected out of the region.

4.5.2 Tidal Turbine Placement

Each of the effects of vortices could be pertinent for turbine siting. The flood jets have an

increase in speed in the areas through which they push. The fronts move through the system,

particularly near Admiralty Head, and are associated with relatively sharp gradients in

speed and density, which could matter for turbine survivability as well as power production.

This will be discussed further in Chapter 6. Vorticity reaching from the headland tip can

be associated with vertical velocity, mostly negative, which may affect turbine operation

(Section 6.3.2). Vortices advecting around the area cause a change in directionality of the

horizontal currents. The vortices are associated with an increase in turbulence, which is

known to decrease turbine efficiency as well as increase stress on the turbines (Section 1.4.3).

Vortices also can lead to multiple peaks in the speed profiles in the affected areas, which

would then affect power production. It is possible that the effects of the vortices could be

mitigated, avoided, or even utilized, but in any case, they need to be understood. These

effects will be summarized and averaged into the metric maps presented in Chapter 6.

4.5.3 Pilot Site

According to the simulation, among the many complexities passing through the pilot project

site are vortices that can be persistent, traveling back with the subsequent tide, speed

surges associated with vortices, and density and speed fronts pushing through the area.

These features can be associated with increased turbulence levels as well. In particular, the

simulation shows eddies moving through the pilot site on both flood and ebb for certain half-

cycles, as shown in Figures 4.49(a) and 4.49(b). Figure 4.49(c) shows that strong patches

of vertical velocity may move through the pilot site as well. In the discussion of simulation

performance in Chapter 3, the true vertical velocity was found to be an order of magnitude

larger than what was seen in the simulation. In this case, the vertical velocities in the pilot

region could be significant.
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(a) Vorticity on ebb tide (b) Vorticity on flood tide

(c) Vertical velocity (d) Turbulent kinetic energy (10 meter depth)

Figure 4.49: Snapshots at 30 meter depth showing the pilot project location. Clearly the

pilot project may be affected by some of the significant flow features near Admiralty Head.



151

4.5.4 Comparison with Dong et al Paper

In Dong et al. (2007), a previous vorticity generation study, the authors found that the

vorticity generation rate remained relatively constant in time as the other two terms, ad-

vection out of the analysis domain and rate-of-change of vorticity in the system, balanced

each other out. Results were very different in the present case, because the situation is very

different. In the previous study’s simulation, the flow was steady in time and was forced

from a single direction. The authors employed a flat-bottomed channel and a cylindrical

island with vertical sidewalls. Because of this setup, they did not need to consider many of

the terms that were retained in this study (Reynolds stress, implicit numerical viscosity in

explicit form, tilting/stretching of vertical vorticity). On the other hand, the Coriolis term

played an important role in their study but is much smaller than the size of the relative

vorticity in this case.

The tilting of vorticity between horizontal and vertical and the stretching/shrinking of

vertical vorticity are found here to play a significant role in the dynamics. This significance

may have been related to the complex bathymetry in this simulation domain, and may

not have been important in the Dong, McWilliams, and Shchepetkin’s example. The main

source of vertical velocity causing tilting and stretching was convergent downwelling, which

was not caused by the bathymetry in this simulation. It is not clear whether or not a similar

feature was seen in Dong et al. (2007).

The Reynolds stresses and implicit numerical viscosity did not play an important role in

this simulation, in terms of the fluxes of vorticity across the open boundaries of the analysis

domains. This is good in terms of the truncation error not playing a significant role at the

open boundaries here.

In Section 4.4.2, it was shown that much less vertical vorticity was generated at the

four meters of sidewall at the top of the water column than the rest of the water column

in contact with the seabed. This means that the size of the minimum depth chosen for a

simulation should not significantly alter the amount of vorticity generated in the system.

It was additionally shown that when the boundary generation rate is normalized by the

volume it has been integrated over, a comparable amount of boundary generation occurs at
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the sidewall as at the seabed. This may mean that a flat-bottomed simulation which relies

solely on sidewall generation will see the same order of vorticity generation as a comparable

simulation with realistic bathymetry.

As mentioned earlier from Panton (2005), vorticity generation at boundaries is due to the

unsteadiness of the flow and pressure gradients set up due to friction along the boundary. In

Dong et al. (2007), the vorticity generation was due to pressure gradients since the flow was

steady. In the present research, the vorticity generation is due to both mechanisms. The

unsteadiness in the velocity field in this simulation was an integral part of the dynamics.

This led to a changing vorticity location in space and time as well as allowed for vortex

interaction from one tide to the next. None of this would be seen in a steady simulation.

Additionally, as noted in Signell and Geyer (1991), unsteadiness leads to stronger vorticity

and recirculation than seen in steady flows.
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Chapter 5

PERFORMANCE OF TURBULENCE CLOSURE SCHEME

5.1 Introduction

The topics covered in this document are interconnected. Vortices correspond to areas of

increased turbulence, and both pertain to turbine placement. Multiple high quality field

data sets were gathered in the region of interest for turbine siting to determine baseline

turbulence levels. With a numerical model covering the same region, it is possible to compare

various quantities, such as turbulent kinetic energy and turbulent dissipation rate, to see how

well the model performs at the data locations. Understanding how well the turbulence model

performs allows informed application of turbulence properties obtained using the model to

aid in turbine siting throughout the domain. It also presents an excellent opportunity to

further understand how well the ocean modeling code ROMS performs on the difficult task

of turbulence modeling. Very few studies exist where field turbulence data is compared to

the turbulence output from ROMS simulations. The existence of the field data sets allow

such a comparison. These model-data comparisons will be presented in Section 5.2.

In addition to direct model-data comparisons of turbulence properties, two approaches

will be outlined and followed in order to account for a difference between the turbulent

kinetic energy in the model output and the data. A proposed method of inferring turbulent

kinetic energy from other quantities computed in the simulations, and based on properties

of the field data and on an extension of Kolmogorov’s theory is provided in Section 5.3.

Additionally, described there is a method for accounting for the inherent numerical mixing

in the system that is not included in the turbulent closure scheme. Summary of the results

and discussion of relevant questions and applications to tidal energy can be found in Section

5.4.
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5.1.1 Data Sets

Multiple data sets of the currents in Admiralty Inlet were taken in 2010 and thoroughly

analyzed and discussed in Thomson et al. (2011). Two sets of acoustic Doppler current

profiler (ADCP) data were gathered near Admiralty Head in February 2010 and May to

June 2010. One acoustic Doppler velocimeter (ADV) set and one ADCP set were gathered

near Nodule Point on Marrowstone Island in February 2010. Data locations are shown in

Figure 5.1. The ADV data, taken at a projected turbine hub height of 4.7 meters above

the seabed, have less noise (error) in the measurements than the ADCP data, and are thus

the most trusted source for comparison. The ADCP gives data with depth. In order to use

the ADCP data as well at the ADV data at Nodule Point, the ADCP data is “pinned” to

the ADV data such that data taken at approximately the same height above the seabed

by the two systems have approximately the same values for the turbulent kinetic energy

and for the turbulent dissipation rate. In other words, the ADCP data at Nodule Point is

multiplied by a single factor (the ratio of the average value from the ADV over the average

value from the ADCP at hub height) for each turbulence parameter in order to match the

hub height ADCP data to the hub height ADV data. In addition, the method presented in

Section 3.3.2 of aligning non-coincident time series is used to find meaningful comparisons

between the simulation run in 2006 and the data from 2010. Both data sets from Nodule

Point are used, but only the Admiralty Head set from May to June is used. The data sets

include measures of speed, turbulent dissipation rate, and horizontal and vertical turbulent

kinetic energy for both sites at hub height, as well as for a 20 meter profile above the seabed

(from the ADCPs). In addition, the ADV set has a measurement of Reynolds stress.

The data are taken at the sampling rate of 1 to 32 Hz, then split into five minute

turbulent averaging windows. The horizontal currents are rotated onto the principal axes

for each window, with the mean flow pointing in the major principal axis direction and the

turbulent velocity fluctuations as deviations around the mean flow and major principal axis

direction. There is Doppler noise error associated with each device in the measurement of

horizontal currents, and the error is much smaller for vertical velocities. When examining

the frequency spectrum of the ADV data, the velocities are analyzed in three overlapping
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Nodule 
Point

Admiralty 
Head

Figure 5.1: Map of Admiralty Inlet with turbulence data locations indicated.

sub-windows of 128 seconds, which are then averaged together to reduce confidence intervals

in the five minute period analysis.

The turbulent kinetic energy is largely contained along the u′ axis, which is in the

major principal direction for each 5-minute window. However, the energy contained in the

perpendicular direction, v′, will also be considered, given the high resolution data at Nodule

Point from the ADV.

5.1.2 Turbulence Overview and Terminology

Kolmogorov theorized about the behavior of spectral energy transfer in turbulent flows. He

understood energy to be input into a flow system at large scales (e.g., in this case via the

tides or large headland eddies). With increasing wave number, at and above some critical

wave number, the spectral energy density in the system is approximately a function of only

the wave number, the turbulent dissipation rate, and the viscosity. This region is called the

equilibrium range and can be subdivided into two regions: the inertial subrange and the

viscous subrange. In the inertial subrange, the energy can be interpreted as eddies which

degenerate into eddies of smaller scale (or larger wave number), cascading the energy to
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smaller and smaller scales at the turbulent dissipation rate, ε, without the influences of

viscosity. In this region, Kolmogorov’s theory says that the spectral energy density is a

function of only the wave number and the turbulent dissipation rate (and is independent of

the viscosity). Dimensional analysis dictates that the relationship be

E(κ) = αε2/3κ−5/3,

where E is the turbulent kinetic energy spectral density, κ is the horizontal wave number,

α is a universal constant whose approximate value has been found experimentally, and ε is

the turbulent kinetic energy dissipation rate. The turbulence is three-dimensional in nature

and the three components of the root-mean-square velocities are assumed to be isotropic in

the inertial range. The viscous subrange is at higher wave numbers where viscosity becomes

important, and in which energy is removed from the system at the turbulent dissipation

rate.

For analysis of the turbulence data and model output, it is desirable to use Kolmogorov’s

theory. However, his work is in terms of the wave number, whereas the data being used

are found as a function of frequency f . In order to relate the two, Taylor’s frozen field

approximation is utilized, which assumes that the turbulence is advected without distortion

over the length L at the mean speed of the horizontal motion, u, in the major principal axis

direction. The relationship between f , L, and u is

L = u/f.

Using this expression, it is possible to find the form for Kolmogorov’s theory in terms of

frequency as follows, where the wave number κ is given in terms of L as κ = 2π/L:

E = αε2/3κ−5/3

= αε2/3

(
2π

L

)−5/3

= αε2/3

(
2πf

u

)−5/3

=
α

(2π)5/3
ε2/3u5/3f−5/3. (5.1)

Figure 5.2 shows the time-averages of major principal axis, minor principal axis, and
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Figure 5.2: Mean horizontal turbulent kinetic energy density (solid) and vertical turbulent

kinetic energy density (dashed) vs. frequency for data at Nodule Point at hub height of 4.7

meters. Individual occurrences of data in time spread around the mean half to a full order

of magnitude but follow the same trend. Data from Thomson et al. (2011).
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vertical components of the turbulent kinetic energy density data at Nodule Point from

Thomson et al. (2011), compared with the function f−5/3. There are three distinct areas

of behavior in this plot. The lower frequencies, below 0.1 Hz, show a distinct deviation

between the horizontal and vertical components of turbulent kinetic energy spectral density

in frequency space, with the u component an order of magnitude larger than the vertical,

and the v component in between. This illustrates highly anisotropic turbulence, where

there is different behavior for horizontal versus vertical motions, indicating large, energetic,

horizontal eddies dominating the energy. Energy may be input directly into the system at

these or larger scales. The middle frequencies, from about 0.2 to 2 Hz, make up the classical,

shear flow turbulence range where all three root-mean-squared components of the turbulent

velocities are similar and approximately follow Kolmogorov’s law in frequency form. The

turbulent kinetic energy calculated from this frequency range will be referred to as from the

classical turbulence range. The far right of the plot shows the level of Doppler noise where

the horizontal component average flatlines (Thomson et al., 2011). The vertical component

of the turbulent kinetic energy has less error and continues downward at about the same

rate as in the middle frequency range.

An analogous spectrum plot is not available at Admiralty Head. The spectra at Admi-

ralty Head and throughout the region are expected to behave similarly to those of Nodule

Point, though with the frequency/length scale at which the vertical motions plateau with

lower frequency to depend on location. This is discussed further in Section 5.2.3.

The spectrum shown in Figure 5.2 for the field data is at a much higher temporal

resolution than has been output from the simulation. Similarly, the spatial resolution of the

grid used in the simulation limits the ability of the model to capture the scales seen in this

spectrum. The turbulence closure scheme attempts to address the resulting deficiency in

the spectral energy density of the model output, but there remains a gap between the scales

captured in the model and those modeled with the closure scheme. An attempt to address

this is pursued in Section 5.3 by inferring a form to extend the spectral density function.
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5.1.3 Data Considerations

High quality data from the ADV are available for all components of the velocity field at hub

height for the Nodule Point location. The horizontal components have been projected onto

a major and a minor principal axis for each five minute averaging window. The relative

ratio of the horizontal components from the ADV data set at Nodule Point is used to infer

the size of the off-axis component for the ADCP data sets. The ratio of the minor to the

major principal axis turbulent kinetic energy is approximately 1.64, over the full frequency

range included in the data sets. This will be used in the comparisons for turbulent kinetic

energy between data and model output for the Admiralty Head location and for the Nodule

Point comparisons that are at multiple depths (as the Nodule Point data from the ADV at

hub height already includes both components).

This may be a low estimate for the relationship between v′ and u′ at Admiralty Head

since the flow behavior there is different from the behavior at Nodule Point, with evidence

that the major and minor principal axes are similar in size over a larger frequency range

than at Nodule Point (see discussion in Section 5.2.3).

The turbulent kinetic energy in the classical, approximately isotropic range is found

by integrating the turbulent kinetic energy spectral density data using values from only

the frequencies in the range 0.2 < f < 2 Hz (ranges described in Section 5.1.2). The full

turbulent kinetic energy calculations use the full range of frequency data included in the

128-second averaging window. Only the ADV data set at Nodule Point has detailed spectral

information, so all references to limiting frequency bands for analysis are accomplished only

at Nodule Point.

For more details of the data gathering and analysis see Thomson et al. (2011).

5.1.4 Calculations

Expressions used to calculate turbulent properties from the field velocity data can be found

in Thomson et al. (2011). This section details the expressions used for the model output,

given parameterizations used in the simulation. Note that the turbulence closure scheme

itself is detailed in Section 2.4.
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The Reynolds stress component for the principal axis horizontal direction and the vertical

direction, u′w′, is given in the Nodule Point ADV data set. For the turbulence data, u′ and

v′ are the turbulent velocity fluctuations along the major and minor principal axes and w′

is in the vertical direction. For the model output, the magnitude of the two components

of the Reynolds stress tensor, u′w′ and v′w′, are calculated using the parameterization in

ROMS and combined for comparison with the principal axis data:

u′w′ = −KM
∂u

∂z

v′w′ = −KM
∂v

∂z

Reynolds stressmodel =

√
u′w′

2
+ v′w′

2

= KM

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

where KM is the vertical eddy viscosity defined in Equation 2.9.

Shear production is given by

Ps = −u′w′∂u
∂z
− v′w′∂v

∂z
,

and is a measure of turbulence produced due to vertical shear in the water column. Com-

bined with the parameterization of Reynolds stress in ROMS, it is calculated for model

output as

Ps = KM

[(
∂u

∂z

)2

+

(
∂v

∂z

2)]
.

Buoyancy production is given by

PB = − g

ρ0
ρ′w′,

which in ROMS is calculated using the parameterization for the turbulent scalar flux as

PB = KH
g

ρ0

∂ρ

∂z

= −KHN
2,

where KH is the vertical eddy diffusivity defined in Equation 2.10 and N is the buoy-

ancy frequency. The buoyancy production measures turbulent kinetic energy exchange with

turbulent potential energy.
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Turbulent kinetic energy from the model is compared with data alternately with just

horizontal and with both horizontal and vertical components (as noted in figures). The

turbulent kinetic energy that is output directly from the model is assumed to include all three

components and to be approximately isotropic, in the absence of distinguishing information

about the individual velocity fluctuation components. Therefore, to compare with horizontal

data using only horizontal scales from the model output, the full turbulent kinetic energy

from the model is multiplied by 2/3, to account for two of the three components.

The effect of turbulence on a turbine is typically calculated using the turbulence intensity

metric used in wind energy analysis. This metric is given by the level of turbulent velocity

fluctuations divided by the mean velocity. In the field data analysis, this is calculated for

the principal horizontal velocity fluctuation component, and is assumed to approximately

account for both horizontal components. A similar calculation should be used for the model

output. To do so, the velocity fluctuation u′ is found in terms of turbulent kinetic energy, the

quantity output from the turbulence closure scheme: k = 1
2(u′2+v′2+w′2) ≈ 1

2(3u′2) = 3
2u
′2,

so u′ =
√

2k
3 . A turbine rotor face would encounter a single directional component of

turbulence intensity, and the model output turbulent kinetic energy has no directional

preference. Therefore, for the model output, the turbulence intensity is calculated as I =

u′/s =

√
2k/3

s . In presentation of turbulence intensity, values corresponding to currents

below the cut-in speed are removed because the mean speeds approach zero. A cut-in speed

of 0.8 m/s is used for this purpose for both the data and model analysis (Thomson et al.,

2011).

5.2 Model Output-Data Comparisons

5.2.1 Nodule Point

A comparison in time of turbulence data with model output at hub height at Nodule Point

is shown in Figure 5.3, with data in black and model output in red. The top panel shows

the free surface agreement using the previously-discussed comparison method for two non-

coincident time series (Section 3.3.2). Given the known errors in turbulence modeling, the

mean speed, turbulent dissipation rate, and Reynolds stress in the field data and model
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Figure 5.3: Turbulence comparison between data (black) and model (red) at hub height of

4.7 meters at Nodule Point. Both model and data turbulent kinetic energy include vertical

and horizontal components.
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Figure 5.4: Hub height 1-1 comparisons of types of turbulent kinetic energy at Nodule Point.

Blue shows model turbulent kinetic energy compared with the full turbulent kinetic energy

data. Green shows the model turbulent kinetic energy compared with the turbulent kinetic

energy data taken only over the classical turbulence frequency range. Both model and data

turbulent kinetic energy include vertical and horizontal components.

output are in reasonable agreement (Pope, 2000). The latter two turbulence parameter

model predictions are each within a factor of two of the field data, on average.

Turbulent kinetic energy

The turbulent kinetic energy predicted by the model does not compare particularly well

with the data; in the data, turbulent kinetic energy is three times larger than the model

predictions. However, following the frequency classifications of the data suggested in Figure

5.2, the turbulent kinetic energy data can be split into two main classes: the anisotropic

lower frequency, higher energy values, and the classical higher frequency, roughly isotropic,

lower energy values, as described in Section 5.1.2. Two comparisons between the classical

and model turbulent kinetic energy data are shown in Figure 5.4. In blue, the turbulent

kinetic energy comparison shown originally in Figure 5.3 is presented on a one-to-one log-log
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Figure 5.5: Turbulence comparison between data (black) and model (red) at hub height of

4.7 meters at Nodule Point. The turbulent kinetic energy comparison has been made here

between the model (red) and data restricted to the classical frequency range (blue), giving

a much better agreement. Both model and data turbulent kinetic energy include vertical

and horizontal components.

plot. It is clear that the data values are larger than the model output values. However,

when the turbulent kinetic energy data is calculated using only data from frequencies in the

classical turbulence range, from about 0.2 < f < 2 Hz, the model output-data comparison

is greatly improved, as shown in green in Figure 5.4.

This is consistent with the output from ROMS being the classical turbulent kinetic en-

ergy. This is reinforced in Figure 5.5, which shows a comparison of turbulence properties

at hub height for Nodule Point, updated with the comparison for turbulent kinetic energy

between model output and classical-range data. The large discrepancy in the comparison
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of turbulent kinetic energy shown in Figure 5.3 is due to the fact that the data set includes

length scales (or frequencies) larger than what is included in the classical turbulence sub-

range. For example, frequencies between 10−2 and 10−1 s−1, which are included in the

data turbulent averaging window, correspond roughly to length scales of 100 and 10 meters,

respectively. These are too large to be considered classical turbulence, especially given the

very strong anisotropy in the kinetic energies shown in Figure 5.2. Because of this, a better

comparison between the data and the turbulence model, which is intended to model classi-

cal turbulence, is to restrict the turbulent kinetic energy data to frequencies in the classical

range. An attempt will be made in Section 5.3 to address in the model the gap in classical

and “full” turbulent kinetic energies seen in the data.

Variation of turbulent dissipation rate with depth

Data from the ADV set at hub height for Nodule Point is the most reliable available.

However, the ADCP data at the site can be used to examine the variation in turbulent

dissipation rate with height above the seabed. Because there is so much more noise in the

ADCP data compared to the ADV data (causing the ADCP data to be always larger than

the ADV data) to correct the ADCP output, the bottommost ADCP data level is pinned

to the ADV data at almost exactly the same height. To roughly connect the two data sets

and perform a basic shift, the ADCP turbulent dissipation rate at hub height is multiplied

by the time-average of the ADV dissipation rate and divided by the time-average of the

ADCP dissipation rate at hub height. Time-averages are performed over the comparison

period shown in the figures. The results for the turbulent dissipation rate with depth at

Nodule Point are shown in Figure 5.6. The bottommost comparison is at about hub height

and shows reasonable agreement, as was also obtained with the ADV data. Moving up the

water column, the same patterns continue, though, as seen in the time-mean profile on the

right; the data switches from being larger than the model prediction on average to smaller

on average, but the two quantities are fairly close.
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Figure 5.6: Turbulent dissipation rate comparisons between data (black) and model (red)

at Nodule Point for the same time as Figure 5.3 but at multiple depths. The comparison

depths are indicated, in order, as blue dashed lines on the time-mean profile of the turbulent

dissipation rate profiles on the right side of the figure.
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Performance of turbulence model

There is a known horizontal speed deficiency in the model (Section 3.3.2) such that the

mean speed predicted by the model is on average about 75% the mean speed measured in

the data. This can be seen in this speed comparison in Figure 5.3. This deficiency is also

expected in the turbulence values, which may help to partially explain why the turbulence

fields predicted by the model are somewhat low in comparison to the data. In this particular

time series comparison, the speed predicted by the model, averaged over the time series, is

78% the value of the speed found in the field data. Classical turbulence theory indicates

that the turbulent dissipation rate is expected to scale approximately with the cube of the

speed (Pope, 2000). This is close to what is seen in the comparison: the model prediction

of the dissipation rate at about 56% the size of the field data dissipation rate (as measured

by a time-average at hub height of each quantity), which is slightly larger than the direct

cube of the model speed size relative to the data, 0.783 = 0.47. Therefore, the turbulent

dissipation rate predicted by the model is low as compared with the field data by a factor

of about two, and this is roughly consistent with the known speed deficiency in the model.

Classical turbulence theory indicates that the turbulent kinetic energy is expected to ap-

proximately scale with the square of the speed. The horizontal components of the turbulent

kinetic energy predicted by the model for this time period, at hub height, are, on average,

about 25% the size of the horizontal components of the turbulent kinetic energy from the

field data. This is lower than the deficiency in turbulent kinetic energy that is expected,

based on a scaling with velocity squared, which would give 0.782 = 0.61. However, as is

discussed in Section 5.2.1, the turbulent kinetic energy predicted by the turbulence closure

scheme is limited to the classical turbulence range, whereas the turbulent kinetic energy

from the field data includes energy from a larger frequency range. Thus, there are two

distinct sources of the deficiency for the turbulent kinetic energy from the model output:

less energy in the system due to a speed deficiency, and the limited intended frequency

range of the turbulence model. Both are expected to be contributing to the deficiency in

the model-predicted turbulent kinetic energy. In Section 5.3, an approximation is made to

infer the energy in the model over a larger frequency range of the turbulent spectrum than
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in the turbulence model itself. This adjusted calculation does improve the match between

the model output and data for the horizontal turbulent kinetic energy, such that the model

output is, on average, about 84% the size of the data. The inferred calculation (that will be

discussed in detail in Section 5.3) addresses, and even over-predicts, the source of deficiency

in the model prediction of the turbulent kinetic energy due to differing frequency ranges of

spectral energy in the model and the data. However, the inferred turbulent kinetic energy

is still low relative to the data due to the remaining deficiency in speed in the system.

The dissipation rate versus depth (from the ADCP data) is shown in Figure 5.6. The

ADCP data was pinned to the ADV data at hub height using a simple ratio of their relative

magnitudes because the data from the ADCP is noisier than the data from the ADV (see

Section 5.2.1). Accordingly, the relative behaviors of the model and ADCP data dissipation

rate time series at hub height in the bottom panel of Figure 5.6 are similar to the model and

ADV data behaviors seen in Figure 5.3. However, this is a simple shift of the data by an

order of magnitude at all depths based on a comparison of data sets at hub height (the only

depth comparison between the data sets that is possible) and it may have over-corrected

the ADCP data higher in the water column where the dissipation rate is lower. This is

difficult to verify because the ADV data is only available at hub height and comparative

mean vertical profiles between the ADV and ADCP data cannot be examined to find if the

ratio between the two datasets is consistent with depth.

Flow features

The speed curves from both the model output and the data in Figure 5.3 or 5.5 show two

peaks for some half-cycles, but do not always show the same behavior. This is likely due to

the smoothed, imperfect bathymetry in the simulation, altering the trajectory of vortices,

along with the fact that the two surface signals are only approximately matched, but are not

actually coincident. Regardless, more can be learned about what is occurring in the region

by examining times when there is similar behavior in the speed curves from the model and

data. For example, near hour 40 into the Nodule Point model-data comparison, there is a

double peak in the simulation and the data speed signals. This is due to behavior described
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in Section 4.2.3. An eddy from the previous ebb tide (Figure 5.7(a)) is associated with a

patch of increased speed, which passes by Nodule Point at the beginning of flood tide (Figure

5.7(b)), followed by the main flood tide a few hours later (Figure 5.7(c)). Turbulent kinetic

energy is also increased following a similar pattern as the increased speed (not shown).

5.2.2 Admiralty Head

Comparisons of turbulence quantities versus time at Admiralty Head are shown in Figure

5.8. The alignment in the data and model time series is not as good as in the Nodule Point

case, as shown in the more pronounced mismatch in the free surface signal. The comparisons

are reasonable between the model output and data. The turbulent kinetic energy from the

model output is lower than from the data set, but not as low as at Nodule Point. This

will be discussed further in Section 5.2.3. The comparisons of speed and dissipation rate

between the data and model output are similar to those from Nodule Point. As in the

Nodule Point case, it is important to keep in mind that the speeds are low throughout the

domain, which will lower the magnitude of the turbulence properties accordingly.

Variation of turbulent dissipation rate with depth

Comparisons for the turbulent dissipation rate at Admiralty Head with depth are given in

Figure 5.9. Shown on the left side of Figure 5.9 are data-model comparisons for the same

time period shown in Figure 5.8, but at various depths. These depths are indicated on

the plot of the right side of the figure of the time-average of the dissipation rates over the

comparison period. There is a feature clearly visible in the model output around hour 35,

which appears to correspond to a similar feature in the data (though shifted in time due to

misalignment of the free surface signals). This feature is explored in the following section.

In general, the time series comparisons are similar at each depth and the mean profiles agree

very well.
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Ebb vortex

(a) Vorticity, 37.25 hours into comparison

Initial speed 
packet

(b) Speed, 39 hours into comparison

Typical 
flood tide

(c) Speed, 42 hours into comparison

Figure 5.7: Surface fields from around 40 hours into the comparison showing the progression

of an ebb vortex near Nodule Point that causes a double speed peak on the subsequent flood

tide.
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Figure 5.8: Turbulence comparison between data (black) and model (red) at hub height

of 8.1 meters at Admiralty Head. Both model and data turbulent kinetic energy include

vertical and horizontal components.
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Figure 5.9: Turbulent dissipation rate comparisons between data (black) and model output

(red) at Admiralty Head for the same time as Figure 5.8 but at multiple depths. The

comparison depths are indicated, in order, as blue dashed lines on the time-mean profile of

the turbulent dissipation rate profiles on the right side of the figure.
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Performance of Turbulence Model

The relative behavior of the model predictions to the field data was examined in detail for

Nodule Point in Section 5.2.1. The deficiencies seen in the model predictions for turbulence

parameters were largely explained by the known speed deficiency as well as a difference in

the frequency range of the modeled turbulence spectrum, which models classical turbulence,

compared with the larger frequency range of the field data (see Section 5.2.1). Similar

arguments are difficult to make in the model-data comparisons at Admiralty Head. The

energy spectrum at Admiralty Head may behave differently than at Nodule Point (see

Section 5.2.3), in such a way that the turbulence model is better able to represent the

turbulent kinetic energy in the system. Additionally, the only data available at Admiralty

Head are from Acoustic Wave and Current Profilers (AWACs), which are similar to ADCPs

and have more noise than ADVs. Because of this, the data available at Admiralty Head

is less reliable than the ADV data at Nodule Point. While it is still useful to compare the

Admiralty Head data with model output, it is more difficult to explain nuanced behavior

in the system based on the noisier AWAC data.

Flow features

The ebb tides shown in the data in Figure 5.8 at approximately hours 10 and 35 into the

comparison both have double peaks in speed. While the first speed peak in each ebb tide

data is seen in the model output, the second peak is not. In Section 4.2.3, persistent eddies

and associated speed surges were discussed in detail. It was shown that eddies that persisted

from flood tide into ebb tide were not as strong, and therefore not as noticeable, as those

persisting from ebb tide into flood tide. However, the data shown here indicates that there

can be a notable effect on the speed due to persistent vortices from flood tide lasting into

ebb tide. While multiple speed peaks are not evident in the model speed at hub height, they

are present higher in the water column, as shown in Figure 5.10. These peaks are also seen

in the turbulent dissipation rate and turbulent kinetic energy in Figure 5.8. Section 4.2.5

showed that vorticity decreases with depth. The vorticity in the simulation is expected to

be weaker than in reality due to a combination of smoothed bathymetry, lack of resolution,
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Evidence of multiples eddies near surface in speed

Evidence of multiples eddies near seabed in dissipation rate

Figure 5.10: Model speed and turbulent dissipation rate at hub height and near the surface.

The effect from multiple eddies are not seen in the model speed at hub height but are

seen higher in the water column. The eddies are seen the turbulent dissipation rate signal

throughout the water column.

and weaker overall horizontal speeds, leading to weaker vortex persistence. Thus, it may be

that the vorticity is weaker overall in the simulation, or that it dissipates more quickly, as

compared with reality, but evidence of the persistent vortices in the form of speed increases

can still be seen near the surface. It is compelling that similar behavior is seen both in the

model output and data.

5.2.3 Comparison of Turbulent Kinetic Energy at Nodule Point and Admiralty Head

The turbulent kinetic energy comparisons are different between the data and model output

at Nodule Point and Admiralty Head. At Admiralty Head, turbulent kinetic energy from
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Figure 5.11: Cartoon with a possible explanation for the difference in comparisons at Nodule

Point and Admiralty Head between data and model. It is possible that the turbulence at

Admiralty Head behaves more as classical turbulence to a lower frequency than at Nodule

Point, so that the turbulence closure scheme is able to capture more of the energy.

the model aligns with the data closer than at Nodule Point (at Admiralty Head the model

to data horizontal turbulent kinetic energy ratio is, on average, 0.41, while at Nodule Point

it is 0.25). This may be due to a difference in the energy spectrum behavior at each site.

Referencing the only spectrum available, which is at Nodule Point and shown in Figure 5.2,

the data has a classical range from about 0.2 < f < 2 Hz. It was also found that the model

output compared well with turbulent kinetic energy in the classical range. If this is true

at Admiralty Head as well, then the fact that the data-model comparison is better may

imply that the classical range at this site spans a broader frequency range (see Figure 5.11

for an illustration of this). The larger classical turbulence frequency range at Admiralty

Head may be because it is a deeper site, allowing larger vertical scales (this is mentioned

in Thomson et al. (2011)). The larger depth at Admiralty Head could extend the band

of frequencies included in the classical range out further into larger scales, improving the

comparison between the model and data accordingly.
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Figure 5.12: Hub height shear production compared with dissipation rate at Nodule Point

5.2.4 Comparison of Terms in the Governing Equation for Turbulent Kinetic Energy

Figure 5.12 shows a one-to-one log-log plot of shear production versus the turbulent dissi-

pation rate for the data and model output. The spread in the data is much larger than in

the model output. This spread was interpreted in the data analysis as indicating important

turbulent kinetic energy transport at the location due to eddies shedding from the headland

(Thomson et al., 2011). While both data and model predictions line up somewhat along the

one-to-one dotted line, the model output does not show the same scatter at larger values.

Buoyancy production is positive in unstable stratification and negative in stable stratified

flows. In this simulation, the buoyancy production is almost always negative, which means

that the mean density profile is almost always stable. When PB < 0, the constant cε3 =

−1, which is multiplied with PB in the governing equation for the turbulent dissipation

rate (Equation 2.20), making the term positive overall. In the governing equation for the

turbulent kinetic energy (Equation 2.19), PB has no multipliers and remains negative. In

the case of stable stratified flows, then, PB is a sink for the turbulent kinetic energy and

a source for the available potential energy. In other words, the effect of buoyancy in the
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turbulence closure scheme is of the loss of kinetic energy to background mixing. In a stable

flow, the buoyancy term is actually typically a destruction term, but it commonly referred

to as a production term. Because the buoyancy production is negative, the absolute value

has been taken in order to plot on a logarithmic axis.

Figure 5.13 shows the relative size of the shear production term and the buoyancy

production term, two terms in the governing equation for the turbulent kinetic energy

(Equation 2.19). Results from both Admiralty Head and Nodule Point are included. At

both locations, the shear production dominates the buoyancy production, except at low

values, where buoyancy production dominates. Buoyancy production may dominate when

there is less energy in the system because when the speed is lower, the ratio of the buoyancy

force to the inertial force is larger.

There is more spread in the comparison at Admiralty Head than at Nodule Point,

perhaps indicative of the more active eddy field at Admiralty Head. Both sites show a

further preference toward shear production nearer the seabed, moving closer to the one-to-

one line away from the seabed. This indicates the bottom friction near the seabed generating

more shear as well as increased likelihood of buoyancy effects higher in the water column.

The “tail” seen in Figures 5.12 and 5.13 indicates a minimum value in the turbulent dis-

sipation rate and the buoyancy production, but not in the shear production. The limitation

is imposed to limit mixing in stable stratification (Warner et al., 2005b).

5.3 Addressing the Turbulent Kinetic Energy Gap with An Extension of Kol-
mogorov Theory

The turbulent kinetic energy from the data depends heavily on the averaging time period

being used. The previous section showed that the model output and data for turbulent

kinetic energy agree well when the frequency range used for calculating the turbulent kinetic

energy in the data is limited to the classical turbulence range. From this it may be concluded

that the model may be performing well in terms of classical turbulence, and this may well

be the most important measure for tidal turbines (see a discussion on this at the end of the

chapter). However, there are cases when it is important to find the total effective turbulent

kinetic energy in the model as well, out to the smaller frequencies included in the data. One
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(a) Nodule Point (b) Admiralty Head

Figure 5.13: Model shear production compared with buoyancy production at multiple

depths. The absolute value of buoyancy production is shown because it is less than zero in

this simulation.

such reason to find the total effective turbulent kinetic energy from model output could be

for understanding and predicting pollutant dispersal. One approach is followed to address

the gap in turbulent kinetic energy predicted by the model compared with that found in

the data.

In this approach, two facts are used: that (i) the model dissipation rates and velocity

fields compare reasonably well with the data, and (ii) the behavior of the data suggests an

extension of the Kolmogorov spectrum to lower wave numbers than for classical turbulence.

In this way, the turbulent kinetic energy is calculated from other, more reliable sources in

order to find a better representative turbulent kinetic energy for the system.

5.3.1 Behavior of Data

An overview of Kolmogorov’s approach to turbulence was given in Section 5.1.2. He the-

orized that the spectral energy density is a function of only wave number and turbulent

dissipation rate in the inertial subrange. As described previously, Taylor’s frozen field ap-
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Figure 5.14: Mean horizontal turbulent kinetic energy density (solid) and vertical turbulent

kinetic energy density (dashed) vs. frequency for data at Nodule Point at hub height of

4.7 meters. This plot shows an extension of the behavior shown in Figure 5.2. Data from

Thomson et al. (2011).

proximation can be used to express Kolmogorov’s result in terms of frequency. The data

indicate that, for the principal horizontal component of the energy spectral density, this

relationship extends beyond the classical subrange into the range of quasi-horizontal mo-

tion, extending the equilibrium subrange to lower frequencies. Therefore, we propose to

extend Kolmogorov’s law over a larger range of frequencies than used in his original the-

ory. This approach is indicated in Figure 5.14, which has been updated from Figure 5.2

for this extension. The empirical behavior of the data is used to infer a relationship for

the kinetic energy spectrum that captures a greater range of frequencies than intended in

Kolmogorov’s original theory. This approach will help to improve the comparison between

the data and model output seen in the turbulent kinetic energy in Figure 5.3. Some support

for this extension can be found for flows where the vertical velocity is suppressed by density

stratification or the free surface (Chickadel et al., 2011), and is discussed further in Section
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5.4.1. In our case, the vertical velocity is suppressed at horizontal scales of the order of, or

greater than, the water depth.

5.3.2 Analysis

The Kolmogorov theory predicts that

E = αε2/3κ−5/3, (5.2)

where E is the turbulent kinetic energy spectral density, α is a constant taken from literature

and, from the data analysis, taken to be 0.5, ε is the turbulent dissipation rate, and κ is the

horizontal wavenumber. Note that the value of α used is for the spectrum of the velocity

which is transverse to the measurement direction. The viscosity is absent since the energy is

postulated to be independent of the viscosity in the inertial subrange. Taylor’s frozen field

approximation, L = u/f , can be used to connect the length scale in κ to the local mean

horizontal speed and the frequencyf as

κ =
2π

L
=

2π

u/f
=

2πf

u
. (5.3)

From Equation 5.3, a change of variables can be performed in the integral over frequency f .

Integrating over the same range of frequencies as are included in the Nodule Point spectral

data in order to find an expression for the turbulent kinetic energy gives

ˆ ∞
κ1

αε2/3κ−5/3dκ =

ˆ ∞
f1

αε2/3
(

2πf

u

)−5/3 2π

u
df

=

ˆ ∞
f1

αε2/3

(
2π

u

)−2/3

f−5/3df

=
α

(2π)2/3
(εu)2/3

ˆ ∞
f1

f−5/3df

=
α

(2π)2/3
(εu)2/3

[
−3

2
f−2/3

]∞
f1

=
3

2

α

(2π)2/3
(εu)2/3f

−2/3
1 , (5.4)

where f1 = 1/T1 is the lowest frequency included in the data analysis averaging time period,

T1. These spectra were calculated from the data using three 128-second sub-windows of the
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five-minute turbulent averaging window, so f1 = 1/128 s. Equation 5.4 gives an alternative

expression for the turbulent kinetic energy, calculated as a function of turbulent dissipation

rate and mean local horizontal speed. This will be referred to as the “inferred” turbulent

kinetic energy.

Equation 5.4 gives an expression that approximates the energy contained in only the

principal horizontal component of velocity. The principal component, u′, is the component

which best follows an extension of Kolmogorov’s theory to smaller frequencies (Figure 5.14).

This expression could be compared with the turbulent kinetic energy data from the principal

component only. However, in this analysis, the inferred turbulent kinetic energy is multiplied

by the factor to account for the off-axis horizontal turbulent kinetic energy, a multiplier

of 1.64 (see Section 5.1.3). In this way, the inferred signal accounts for both horizontal

components and will be compared with both horizontal components in the data. The same

could be done to account for the vertical turbulent kinetic energy, but is not shown here.

5.3.3 Adjusted Comparisons

Hub Height Turbulence Kinetic Energy

Figure 5.15 shows turbulent kinetic energy comparisons at hub height at Nodule Point and

Admiralty Head, including the turbulent kinetic energy from the ROMS model output, the

data, the inferred turbulent kinetic energy, and the data computed over only the classical

turbulence range. The inferred turbulent kinetic energy calculation improves the comparison

significantly at Nodule Point and moderately at Admiralty Head, although in the latter case

less improvement is needed. As discussed in Section 5.2.3, the comparisons between the

model output and full data turbulent kinetic energy are better at Admiralty Head without

modification, possibly because of a broader classical range at Admiralty Head relative to

that at Nodule Point.

Turbulent Kinetic Energy in Depth

Comparisons for turbulent kinetic energy are given at multiple depths at Nodule Point in

Figure 5.16. As before when showing dissipation rate with depth from the ADCP data, the
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Figure 5.15: Hub height time series comparison with inferred turbulent kinetic energy at

Nodule Point and Admiralty Head. At Nodule Point, “classical” and “model” turbulent

kinetic energy include vertical and horizontal components, and “inferred” and “data” tur-

bulent kinetic energy include only u and v energy. At Admiralty Head, all turbulent kinetic

energy signals include only horizontal components.
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turbulent kinetic energy data from the ADCP are shifted by multiplying by a factor of the

ratio of the average ADV hub height value to the nearest ADCP depth mean value. The

inferred signal for turbulence kinetic energy matches very well with the data nearest the

seabed and continues to improve the model output-data comparisons higher in the water

column, but less so than nearer the seabed. This larger increase in the inferred signal closer

to the seabed and lesser higher in the water column can be readily seen in the time-mean

profiles of the ROMS model output, the inferred turbulent kinetic energy, and data on the

right side of the plot. Given that the turbulent dissipation rate is largest nearest the seabed,

it is expected that a calculation based on it would have this behavior.

Figure 5.17 shows a similar comparison at Admiralty Head. The second time series plot

from the bottom is approximately at hub height. Though the Admiralty Head turbulent

kinetic energy comparisons were already fairly good, the inferred turbulent kinetic energy

matches the data better for most of the time series. The time-mean vertical profiles on the

right side of the figure show great improvement over the turbulent kinetic energy from the

ROMS model. The improvement is throughout the depths shown in the time series on the

left. However, near the seabed, the inferred model prediction is much too large. This may

be expected since the inferred model is a function of the turbulent dissipation rate, which

is very large near the seabed. For the purpose of tidal turbine siting using this model, a

mismatch in values very near the seabed is acceptable since potential hub heights are higher

in the water column.

Turbulence Intensity

Turbulence intensity using the unadjusted model output turbulent kinetic energy is calcu-

lated as shown in Section 5.1.4. A slightly different expression should be used for the case

when using the inferred turbulent kinetic energy, because it represents only the horizon-

tal components of the turbulent kinetic energy. The turbulent kinetic energy field directly

output from the model represents all three components. Therefore, the expression for tur-

bulence intensity as calculated from the inferred expression for turbulent kinetic energy is
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Figure 5.16: Turbulent kinetic energy comparisons between data (black), model output

(red), and inferred model calculation (green) at Nodule Point for the same time as Figure

5.3, but at multiple depths. The comparison depths are indicated, in order, on the time-

mean profile of the turbulent kinetic energy profiles on the right side of the figure as blue

dashed lines. All turbulent kinetic energy curves include only horizontal components.
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Figure 5.17: Turbulent kinetic energy comparisons between data (black), model output

(red), and inferred model calculation (green) at Admiralty Head for the same time as Figure

5.3 but at multiple depths. The comparison depths are indicated, in order, on the time-

mean profile of the turbulent kinetic energy profiles on the right side of the figure as blue

dashed lines. All turbulent kinetic energy curves include only horizontal components.
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Figure 5.18: Turbulence intensity comparison between ADV data, model output, and in-

ferred model output at hub height of 4.7 meters at Nodule Point and Admiralty Head. The

time period is the same as in all of the Nodule Point comparisons.

given by

I = u′/s =
√
kinf/s,

where kinf is the inferred turbulent kinetic energy.

The turbulence intensity is shown for hub height at Nodule Point in Figure 5.18(a).

Inferred model values compare well with the data, but the ROMS model output itself

underestimates the turbulence intensity. Thus, the inferred model calculation gives an

improved estimate of turbulence intensity.

Figure 5.18(b) shows the turbulence intensity for Admiralty Head. The spread in both

data and model output is larger at this location than at Nodule Point, but the comparison

is reasonable. The ROMS model output compares well with the field data, but the inferred

model calculation compares better.
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5.4 Summary and Discussion

Model-data comparisons are shown here between output from a high resolution model of

Admiralty Inlet employing a two-equation turbulence closure scheme and high-quality tur-

bulence measurements at several locations within Admiralty Inlet. The comparisons em-

phasize the behavior at hub height in order to understand how well the model performs

at the depth that pertains most to turbine siting. Comparisons for turbulent dissipation

rate, Reynolds stress, and classical turbulent kinetic energy between the data and model

output suggest that the model performs reasonably well. The turbulent dissipation rate and

Reynolds stress from the model prediction are lower than the data values but within a factor

of two. The deficiency in the model prediction can largely be explained by the known speed

deficiency in the model. Given relatively accurate values for the classical-range turbulent

kinetic energy and dissipation rate from the turbulence closure scheme, a significant amount

of information can be gained. Other parameters can be solved for using these variables, in-

cluding the turbulence time scale, τ = k/ε, and the Kolmogorov time scale, τη =
√
ν/ε.

Assuming a specific form for the kinetic energy spectrum consistent with the field data, e.g.,

κ−5/3, can enable even more information about the turbulence of the area being modeled

to be inferred.

The model output compares well with the data for turbulent kinetic energy when the

data are restricted to the classical turbulence range. However, the averaging period used

in the data analysis includes a larger spectral range than is assumed in the turbulence

model. The turbulent kinetic energy predicted by the model is lower than the full turbulent

kinetic energy found in the data set. One approach to address the gap between the predicted

turbulent kinetic energy and the data was to examine the effect of numerical truncation error

on the energy equation. This magnitude of this effect was compared with the magnitude

of the shear production and turbulent dissipation rate in the model. At both Nodule Point

and Admiralty Head, the numerical dissipation tended to be much lower than the shear

production and dissipation rate.

Another attempt to reduce this difference in model predictions and data for turbulent

kinetic energy was to extend Kolmogorov’s result to lower frequencies than the inertial
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subrange, using an argument based on the spectral behavior of the field data. This extension

was then used to estimate the turbulent kinetic energy in terms of the turbulent dissipation

rate and mean velocity field, whose model predictions compared fairly well with the data.

The model output-data comparisons were improved by this inferred calculation of turbulent

kinetic energy, particularly at Nodule Point.

This latter method could be used to improve estimates of the turbulent kinetic energy

in other similar situations as well as some other somewhat different situations, as several

turbulence data sets from other types of problems show similar quasi-horizontal behavior

at low wave numbers (see discussion in Section 5.4.1).

In the extension presented in this work, the energy spectrum and the frequency are

assumed to be related by f−5/3. However, there are other functions that could be used

to approximate the extension of the inertial subrange. The data in the spectrum starts

to roll off at the lowest frequencies (Figure 5.2 or 5.14), such that the f−5/3 relationship

is an overestimate at those frequencies. In another study, more sophisticated estimates of

energy density data was found using Kaimal curves (Walter et al., 2011). These reproduced

the roll-off at lower frequencies seen in the data, and were found to be more appropriate

in locations that are limited by depth, as in Admiralty Inlet. It would be worthwhile to

try a range of methods for capturing the spectral behavior of the energy as a function of

frequency.

5.4.1 Behavior of Turbulence Spectrum

The data examined in this chapter contained a regime of classical turbulence behavior, in

the middle frequency range. The lower frequency region had quasi-horizontal behavior. In

this lower frequency region, there are a few possible contributing factors to the behavior

of the energy spectrum. It is clear that the vertical energy component is smaller than the

horizontal components. This may be because of the small aspect ratio of the system at

lower frequencies; the depth is shallow relative to the horizontal length scales. This in turn

limits the vertical components to a smaller scale than the horizontal components, leading

to the distinct differences in the size of the component energies seen in the data between
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the components.

Quasi-horizontal behavior in the frequency spectrum has been seen in other cases. For

example, in a shallow tidal river system at another location in the Puget Sound, the energy

density spectrum has similar behavior as at Nodule Point (Chickadel et al., 2011). There

is a region of roughly isotropic behavior, representing classical-type turbulence. At lower

frequencies there is quasi-horizontal behavior, similar to Nodule Point, with the horizontal

component energies two orders of magnitude larger than the vertical component energies,

and the horizontal spectral energy density approximately following an f−5/3 trend. In this

situation, the vertical motions probably are suppressed by close proximity to the flat surface

of the river.

From these situations and others, there is a growing body of literature indicating that

when there is a factor limiting the vertical component of motion, there can be a region of

quasi-horizontal behavior in the energy spectrum at frequencies lower than and including

the classical range. The energy in this region may follow the f−5/3 trend predicted by Kol-

mogorov’s theory, when combined with Taylor’s frozen field approximation, which indicates

that the energy for the horizontal components is a function of only the turbulent dissipation

rate, mean velocity, and frequency. Essentially, the horizontal components behave according

to an extension of the inertial subrange to lower frequencies.

5.4.2 Application to Tidal Hydrokinetic Energy

The turbulence property comparisons in this chapter give confidence that turbulence pa-

rameters being output from the numerical model are representative of real situations. For

wind and tidal turbine siting, a commonly-used turbulence metric for assessing a site is

turbulence intensity, described in Section 5.1.4. Turbulence intensity at hub height for

Nodule Point (Figure 5.18(a)) and from Admiralty Head (Figure 5.18(b)) both compared

well between the inferred model output and the data.

Table 5.1 summarizes the mean values in time of the turbulence intensity at each location,

and gives further evidence that the inferred calculation for the turbulence intensity gives

a good estimate of the measured values. Turbulence intensity maps throughout Admiralty
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I, Data (%) I, Model (%) I, Inferred Model (%)

Nodule Point 8.5 4.9 9.3

Admiralty Head 8.9 6.1 9.2

Table 5.1: Average turbulence intensity values for the comparison time periods from the

data and the model output.

Inlet will be shown in Chapter 6.

Many measures of turbulence do not differentiate between the scales of the turbulence

at a site, but rather average over a wide spectrum of scales. However, there is evidence that

not all turbulent length scales have the same effect on a turbine. In one study, researchers

found that increasing the turbulence intensity increased the load on a wind turbine, but

they also found that decreasing the length scale increased the load (Thomsen and Sørensen,

1999). It is possible that it is actually the smaller, higher frequency motions that are most

detrimental to a turbine, though presumably this would also depend on the specific turbine

design characteristics. These are the scales in the classical range, and that appear to be

most accurately captured by the turbulence closure model examined here. In this regard,

it may be helpful to consider a turbine siting metric that includes energy from only smaller

length scales/higher frequencies/larger wave numbers, as the most relevant measure for a

turbine. One such metric, the fractional turbulence intensity, which gives the turbulence

intensity as a function of length scale, has been suggested (Thomson et al., 2011)
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Chapter 6

SITE CHARACTERIZATION METRICS

6.1 Introduction

Site characterization metrics are used to evaluate how viable a potential tidal energy devel-

opment site is for turbine placement. The metrics can be split into two general categories:

those that quantify the resource available, i.e., how strong the resource is, and those that

qualify it, i.e., how extractible the resource is. Mean kinetic power density and electrical

power metrics are examples of quantification metrics (Polagye and Thomson, 2011). This

type of metric provides an important primary examination of the site since a resource of

which to take advantage is the primary requirement for generating electricity. Qualification

metrics include measures such as the bi-directionality of the flow, which potentially can

affect both the power that can be captured by a turbine in the location, and the lifetime of

the turbine if affected by the increased stress of speed gradients across its face. Both power

production rate and life of the turbine will affect the overall cost. The Admiralty Inlet

simulation provides an opportunity to quantify the metrics throughout Admiralty Inlet.

In Section 6.2, some design characteristics of turbines will be explained. Next, Section

6.3 will define the metrics used and give motivation for their purpose. Section 6.4 compares

metrics calculated from field data and from model output for assessment of model perfor-

mance. Domain metric maps at hub height of the model output will be shown in Section

6.5. The last section will summarize the results, then demonstrate an approach for turbine

siting based on design characteristics.

6.2 Turbine Design Considerations

A few considerations that may go into tidal turbine designs can also help to motivate site

characterization metrics. The larger the cross-sectional area of a turbine, the more power

produced, but also the more capital cost. Some turbine designers consider a cross-sectional
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area of at least 300 m2 to be necessary for a tidal turbine to be economic (Fraenkel, 2009).

For a single rotor turbine, this is about 20 meters in diameter, or for a dual rotor, as in

the Marine Current Turbines design (Marine Current Turbines, 2010), this is two 14 meter

diameter rotors. Considering that areas with good characteristics for turbine siting may be

limited in spatial extent, the sizing of turbines is important to consider.

A horizontal-axis turbine utilizes currents that are incoming normal to its face. However,

currents may approach at an angle at different times through the tidal cycle. Some turbine

designs are static and are best placed in areas with largely bi-directional flow. Others are

able to yaw with the currents and therefore can align themselves with the direction of the

flow, though this design would be more complex than a fixed-axis turbine, possibly making

it more susceptible to failure and causing it to cost more to build.

The choice of hub height depends on many factors. A pilot project run by the Public

Utility District No. 1 of Snohomish County that is going into Admiralty Inlet will have fixed,

horizontal axis turbines from Open Hydro placed at a hub height of 10 meters (Public Utility

District No. 1 of Snohomish County, 2012). The optimum hub height depends on many

factors, including resource location in the water column and capital costs of the turbine

foundation. Higher speeds tend to be higher in the water column, but the higher the

turbine is in the water column, the more it costs in materials (Kawase and Beba, 2010).

For this chapter, a nominal hub height of ten meters above the seabed is used for all hub

height plots.

A turbine has a few basic properties. The cut-in speed of a turbine is the speed below

which there is too much friction for the turbine to rotate and above which power is produced.

The rated speed of a turbine is the speed at which the power produced by a turbine reaches

a plateau, so that any increase in speed above the rated speed does not produce additional

power. The turbine also has an efficiency for producing power. For current magnitudes

between the cut-in and the rated speed, the power density in the flow field that could be

utilized by a generic turbine is given by

P =
1

2
ρs3η,

where η is the turbine efficiency. The cross-sectional area of the turbine has been neglected in
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Wind turbines have a fourth operating regime defined by a cut-out speed, above which the turbine 

blades are feathered to avoid damage during periods of extremely high winds. Since tidal currents 

are largely predictable, there is no tidal analogue to extreme weather. The possible exception to 

this is a tsunami event, which is not generally considered in the design of a tidal turbine. 
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Figure 1.3 – Representative turbine power curve. Region I is below the cut-in speed and the turbine 
extracts no power. In Region II, power is extracted in proportion to the kinetic power incident on the 
rotor swept area. Region III is above the rated speed and power extraction is constant. 

Device utilization is quantified by the capacity factor, defined as the ratio of average power 

extracted to power extracted at rated speed. Feasibility studies indicate that the lowest cost of 

energy for in-stream tidal turbines would be achieved with capacity factors between 30 and 40% 

[6] depending on the particulars of the tidal regime. Therefore, the selection of the rated speed is 

an economic decision. 

1.4. Available Resource 
While the similarities between tidal and wind energy are obvious and striking, there are also 

important differences. Even the largest wind turbines extend no more than a few hundred meters 

into the air, while the characteristic length scale for the atmosphere is measured in kilometers. For 

most tidal energy sites, the characteristic length scales of the device and resource are comparable 

(e.g., 20 m rotor in 40 m water) and the extracted power may constitute an appreciable fraction of 

the total power in the system. As will be discussed in this dissertation, kinetic power extraction 

from tidal streams has the effect of increasing the frictional resistance to flow. Since tidal streams 

are generally subcritical, the effect of increasing friction is felt estuary-wide. While small 

increases in friction due to extraction may be indistinguishable from natural friction, large-scale 

Figure 6.1: Illustration of turbine design properties. In this example, no power is produced

below the cut-in speed of 1 m/s, and power production plateaus above the rated speed of

2.5 m/s. From Polagye (2009).

order to keep results general, but the power density can be multiplied by the cross-sectional

area of a turbine face in order to calculate the producible power at a location. The turbine

parameters chosen here are taken from a study on field data analysis for turbine siting

in the same region (Polagye and Thomson, 2011). The efficiency is taken to be constant,

as η = 0.45. This can be considered to be a combination of the performance coefficient

of the rotor and the efficiency of the power train used in Polagye and Thomson (2011).

In this analysis, the density is set equal to ρ = 1.024kg/m3. Data sets do not typically

include the density throughout the water column in time, and the variation in values seen is

insignificant compared to this nominal value. The cut-in speed is taken as 0.7 m/s and the

rated speed is taken as 2.25 m/s (giving a rated power of 2.6kW/m2) in order to attain an

economically-viable capacity factor (Polagye and Thomson, 2011). An illustration of some

of these properties is shown in Figure 6.1.
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6.3 Metric Definitions

6.3.1 Resource Quantification

Mean Speed and Kinetic Power Density

The mean speed is the measure of the magnitude of the horizontal tidal currents over a time

period. It is calculated as

sM (x, y, z) =
1

T

ˆ T

0
s(x, y, z, t)dt, (6.1)

where s =
√
u2 + v2 is the magnitude of the horizontal velocity and T is the time period.

The averaging time period would ideally be chosen as an integer number of cycles, but given

that a real tidal signal continuously modulates in time, such a cycle is not easily defined.

A previous study of tidal current data found that averaging over 30 days of observations

results in reasonable mean statistics (Polagye and Thomson, 2011). For the Admiralty Inlet

simulation, a time period of 30 days is used. For the idealized headland simulation, an

integer number of cycles (six are used) can be chosen because the simulation is forced by

only the M2 tide and so the flow field is approximately periodic.

While mean speed gives information about the tides themselves, the local kinetic power

density, D, gives a measure of power resource at a location and reflects the difference that a

small amount of speed change can make in available resource due to the cubic relationship

between speed and power. It is calculated as

D(x, y, z, t) =
1

2
ρs3(x, y, z, t), (6.2)

where ρ is the fluid density and s is the speed.

The primary requirement of a tidal hydrokinetic energy site is to have strong enough

currents to produce a viable amount of power. This can be quantified by calculation of

the mean kinetic power density. A mean kinetic power density of 1 kW/m2 and higher is

considered economically viable (Bedard et al., 2006).
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Mean Power

The electrical power is the water-to-wire electricity production by a turbine when accounting

for several turbine characteristics. The power density P is calculated as the kinetic power

density (Equation 6.2) times an efficiency. Below the cut-in speed, no power is produced

and above the rated speed, power production remains constant. The power density can be

found as

P (x, y, z, t) =


0 if s < scut−in,

1
2ρs(x, y, z, t)

3η if scut−in ≤ s ≤ srated,
1
2ρs

3
ratedη, if s > srated,

(6.3)

where s is the speed, scut−in is the cut-in speed, srated is the rated speed, and η is the

efficiency. To obtain the instantaneous power for a specific turbine of diameter d, multiply

P by the area of the turbine, πd2/4. The mean electrical power density is the average of the

instantaneous electrical power density over time. This calculation is more realistic than the

mean kinetic power density because of the incorporation of a few of the realities of turbine

energy production.

Operation Timing

The fraction of turbine operating time, top, is calculated using the cut-in speed as an in-

dicator for the percent of time a turbine would operate. Time in which the speed at a

location is greater than or equal to the cut-in speed contributes to the turbine operation

time. This metric indicates how much of the time power would be produced by the turbine

as well as how much of the time the area would be affected by the turbine’s movement. One

relevant example of the importance of this metric is that harassment of marine mammals

and increase of environmental stressors by tidal turbines may be increased when the turbine

is operating (Polagye and Thomson, 2011).

Capacity Factor

The capacity factor is defined as the averaged power produced divided by the rated power

(the power generated assuming the incoming speed to the turbine is constant and equal to
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the rated speed of the turbine). A capacity factor of 30% is considered to be economically

viable for tidal turbines (Bedard et al., 2006).

6.3.2 Resource Qualification and Turbine Survivability

Resource qualification includes metrics that may affect the extractability of the resource

available, and turbine survivability metrics measure flow field qualities that may add undue

stress on turbines, potentially causing early failure. These two areas of turbine siting met-

rics are closely related because many of the metrics in one category are also in the other.

For example, directionality of the horizontal flows and shear can affect the cross-sectional

resource seen by a turbine face. These metrics can each also add additional stresses on the

turbines. Increased turbulence can both decrease the efficiency of a turbine and increase

the stresses on it.

Asymmetry of Flow

The asymmetry of the tidal currents between ebb and flood tide can significantly affect the

resource that a turbine rotor face will encounter and be able to utilize.

At a single (x, y, z) location, the horizontal currents change in time in both magnitude

and direction. For example, Figure 6.2 shows plots of the u and v velocities at an (x, y, z)

location plotted against one another. Each marker represents a separate measure of the

horizontal velocity vector in time. Throughout multiple tidal cycles, a pattern is developed.

In these examples, it is relatively clear that markers in the one general direction are flood tide

and the other, ebb. However, depending mainly on layout of the coastline and bathymetry,

both of which can severely alter the flow from a simple back-and-forth motion with the tide,

the pattern can be anything from very spread out and circular, to falling along a line.

The asymmetry of flow can be characterized using several measures: bi-directionality;

directional deviation, or the “spread” of directions on each flood and ebb; and the strength

of speed and power generation on ebb versus flood tides. Each of these calculations relies on

a method to separate one tidal direction from the other. The principal axis decomposition

is used to accomplish this.
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(a) Low bi-directionality, large directional deviation (b) High bidirectionally, small directional deviation

Figure 6.2: Tidal asymmetry example points from Admiralty Inlet simulation. Weighted

mean angles are indicated in each tidal direction with a solid black line. Dashed black

lines indicate the directional deviation of the angles, shown in each direction from the mean

angle.
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Principal Axis Decomposition The principal axis decomposition is an algorithm that

identifies the direction of the main axis of flow that is described by the u- and v-velocities.

Generally, this is in the along-channel direction of the flow, though in some cases large

bathymetric and coastline features can significantly alter the flow direction. The rotation

of the horizontal velocities onto the principal axis is used to differentiate between ebb and

flood tide. The specifics of the algorithm are available in Boon (2004).

In this work, tidal currents are available everywhere in the domain, including areas that

are difficult to decompose because of channel features. Therefore, for this analysis, currents

are broken into separate half-cycles, but no attempt is made to distinguish flood from ebb

tide and vice versa. In other words, the analysis splits the velocity vectors into two sets,

and these sets can then be analyzed for the following asymmetry metrics; but rather than

identifying one set as ebb and one as flood, velocity sets are just kept as separate half-cycles.

This helps to avoid difficulties in eddy fields in which nearby locations can sometimes have

flow directions that are 180◦ out of phase.

Bi-directionality and Directional Deviation A quantitative measure of the bi-directionality

of tidal flow at an (x, y, z) point can be calculated by finding the mean direction of flow

on ebb and on flood tide, then finding the difference. In order to accomplish this, a princi-

pal axis decomposition is first used to categorize the flow at each point into separate tide

directions. Next, the angle of each (u, v) vector is found and weighted based on the magni-

tude cubed of the velocity vector (the functional relationship of power to speed). Then the

mean of the ebb and flood angles, θM,ebb and θM,flood, are calculated separately. Normalized

weights for each (u, v) pair are found as follows:

wi =
|s3
i |∑N

i=1 |s3
i |
, (6.4)

where si is the horizontal speed for time i and N is the number of times over which the sum

is made. The weighted average is then

θM =
N∑
i=1

wiθi, (6.5)
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for ebb and flood tide separately, where θi is an angle representing the horizontal velocity

vector for each time i. The bi-directionality parameter can then be calculated as:

a = |θM,ebb − θM,flood − 180◦|. (6.6)

From this definition, if a flow is perfectly bidirectional, a = 0.

Closely linked to the bi-directionality parameter is the spread in direction of the hor-

izontal currents, Θ, called the directional deviation. After calculating the weighted mean

angle for each (x, y, z) point on ebb and flood, the standard deviation of that mean angle,

θstd,ebb and θstd,flood is calculated, giving another measure of bi-directionality throughout a

tidal cycle. This is also weighted:

Θ =

√√√√ N∑
i=1

wi(θi − θM )2, (6.7)

where the wi are given above, and there is a separate value for Θ for ebb and for flood

tide. The maximum value of Θ between ebb and flood is used for the values of Θ at a given

location.

This is not how these asymmetry parameters have been calculated in other research

(Gooch et al., 2009; NNMREC, University of Washington, 2010; Polagye and Thomson,

2011). In other works, there have been no weighting factors, and currents below cut-in

speed have been removed before analysis. This did not seem to be the best option in this

research given that the simulation predicts the horizontal speeds throughout the domain,

whether or not they are large. Preemptively discarding all values below a cut-in speed leaves

the domain with much less information available. While these locations may not be best

suited for tidal siting, combining these metrics with quantitative resource metrics will give

a full picture of the flow fields. Regardless, by including a weighting on the angles based

on the speed cubed, the relative importance of each velocity vector is maintained in the

analysis such that more energetic measures are given more weight than less energetic points

at a given location. More details of the effect of different weighting and cut-in speed choices

for these calculations are available in Appendix B.1.

These two parameters, bi-directionality and directional deviation, are illustrated to-

gether in Figure 6.2. The mean angle on each tide is indicated by a solid line and the
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standard (directional) deviation is shown relative to the mean angle in each direction. The

first plot shows a location with a moderate spread in directionality as well as a “kink” in

the pattern, the latter of which is probably due to a nearby coastline feature redirecting the

flow. The second case is a more typical back and forth tidal flow that is largely unobstructed

by other effects. The first case has a larger directional deviation and is less bidirectional

than the other.

A fixed axis turbine would perform better in a bidirectional flow since it cannot align

itself with the currents and is aligned just when placed on the seabed. However, ebb

and flood tide are often not 180◦ out of phase with each other, mainly because of coastline

features, in which case a turbine that can align itself with the flow may be more appropriate.

Additionally, the flow may approach the turbine face perpendicularly, with low directional

deviation, or may have components that are parallel to the face, which would be indicative

of a higher directional deviation. This sort of flow may not be as effectively utilized even

by a turbine that can yaw if the changes in direction are too rapid.

A horizontal tilting of the flow away from the direction perpendicular to the turbine

face, as calculated in these asymmetry metrics, leads to a reduction in power due to reduced

incoming normal velocity to the turbine. The velocity is reduced by cos θ, where θ is the

angle off-axis of the flow, since that will give the projection of the velocity perpendicular

to the rotor disc. That is, stilt = s cos θ. The relationship for power is P = 1
2ρAs

3, where

ρ is the density of the water, A is the cross-sectional area of the turbine rotor, and s is

the horizontal speed that is perpendicular to the rotor face. Then power from horizontally

tilted flow is given by

Ptilt =
1

2
ρAs3

tilt

=
1

2
ρA(s cos θ)3

=
1

2
ρAs3 cos3 θ

= P cos3 θ.

Therefore, there is a geometric power reduction factor of cos3 θ for incoming flows at an

angle of θ from normal-flow to the turbine face.
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Figure 6.3: Power reduction factor due to yaw angle; adapted from Madsen (2000). The

author has added in a cos3 θ line for comparison and left out numerical results.

Experimental results for wind turbines show similar but not identical results (Madsen,

2000). Figure 6.3 shows reproduced experimental results with a line for cos3 θ added for

comparison. The authors of that study found the function cos2 θ to describe the set of

experimental data and simulation output. However, at smaller angles (up to nearly 20

degrees) the cos3 θ line matches better, and has the advantage of being geometrically derived.

It is possible that a smaller tilt angles, the effect on the power production is controlled

primarily by the reduced normal component of horizontal speed, while some mitigating effect

occurs at larger tilt angles. Regardless, the affect on power reduction of tilted horizontal

flows is well-approximated by a factor between cos2 θ and cos3 θ. Figure 6.3 and these

relationships show that even a moderate tilting of 15◦ reduces power production to about

87% of full power, and a more extreme angle of 40◦ reduces power production to 59% of full

power. Clearly this sort of power reduction cannot be ignored, particularly since it would

be present through at least half the tidal cycles and not an atypical occurrence.

Mean Speed and Power Generation Bias Another measure of asymmetry of tidal

direction is power generation on flood versus ebb tide. This is calculated by splitting the
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horizontal velocities into separate tidal directions. Mean kinetic power density, DM , is

calculated, for each tidal direction, then a ratio is formed between the two as follows:

Pb(x, y, z) = 1−
min(DM,ebb, DM,flood)

max(DM,ebb, DM,flood)
. (6.8)

Pb is a measure of the deviation from equal power production on flood and ebb tide. As

Pb approaches 0, power is produced evenly throughout the tidal cycle at that location. As

Pb approaches 1, the power production at that location becomes more biased toward either

flood or ebb tide.

The same calculation can be made for speed bias through the tidal cycle, given as

sb(x, y, z) = 1−
min(sM,ebb, sM,flood)

max(sM,ebb, sM,flood)
. (6.9)

These two metric calculations have been altered from their form in previous studies in

order to give a linear parameter between 0 and 1. Additionally, distinction is not made

between whether the location is biased toward ebb or flood, but instead gives the devia-

tion from a resource that is balanced throughout tidal cycles. Because these two metric

calculations have been altered from previous usage, more details in reasoning are given in

Appendix B.2.

Mean Vertical Velocity

The mean vertical velocity is calculated using the magnitude of the vertical velocities, as

wM (x, y, z) =
1

T

ˆ T

0
|w(x, y, z, t)|dt. (6.10)

Vertical velocities in a potential development area are significant due to their possibly impact

on a turbine. One study about wind turbines described a site with a vertical velocity that

was at times on the same order of magnitude as the horizontal velocity, which could induce

dynamic stall effects on the blade (Hansen and Butterfield, 1993). If a potential development

area for turbines frequently has vertical velocities, a turbine placed there should be designed

accordingly to anticipate stresses from a different angle than the typical horizontal.
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Shear and Turbulence

Vertical shear and turbulence both fatigue a turbine, but each has distinct behavior. Shear

is a measure of the change in strength of the horizontal speed over the water column. An

individual turbine blade that is rotating with the flow encounters changing forces in time due

to the vertically varying strength of the flow, resulting in a periodic force in time (Figure

6.4).The forces on a turbine due to turbulence are stochastic in nature (Figure 6.5). A

previous study about the failure of wind turbines modeled the loads on a turbine as a result

of periodic and stochastic sources (Madsen and Frandsen, 1984). The authors found that the

relative magnitude of the effects of the periodic and stochastic loads on turbine in an example

case depended on the type of response. Flapwise blade bending moments were found to be

equally due to periodic and stochastic sources whereas chordwise bending moments were due

primarily to periodic forces, except at the highest wind speeds encountered, in which case

the effect of turbulence accounted for nearly half the size of the moment. The turbulence

was the major source of fluctuations caused in the response of the rotor thrust. Note that

the example calculations were performed for a specific turbine design in which gravity was

a major source of stresses to the blade, which enter into the periodic term, and the model

environment was that of the actual examined data site. While the major source of periodic

forcing in this example may be due to gravity, the differentiation made between periodic

and stochastic loads holds as a distinction between the effect of shear and turbulence on a

turbine.

The shear is calculated as the magnitude of the vertical shear in each horizontal com-

ponent, or

sz =

√(
∂u

∂z

)2

+

(
∂v

∂z

)2

.

The shear in the incoming flow to a turbine should be accounted for when calculating the

potential power available if an effective speed is used to approximate the flow over the

turbine face, which is commonly done in wind energy (Martin, 2011).

Turbulence intensity is found from the model output as

I =

√
kinf

s
· 100,



204

u

z

Figure 6.4: The blades of a horizontal-axis turbine in a flow field with vertical shear will

encounter varying forces in time as the blades rotate.
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model, x2 The model implies that the damage during N time 
segments each with n i sinusoidal cycles having a stress range 
AS i becomes: 

N (ASitm 
D = E ni \ - ~ [ /  (29) 

i = 1  

in which S~ and m are the material constants for the S-N 
curve. For the complex signal Y(t)  the first question is how 
to define a cycle. For a complex signal with a known time 
history the rainflow counting procedure by Matsuishi and 
Endo, ~a which counts cycles and ranges, gives good results. 
It is, therefore, the goal for an analytical approach to yield 
similar results. 

As Y(t) is a stochastic signal, it follows that statistics for 
a number of  cycles and stress ranges must be determined to 
calculate the expected damage rate, i.e. the damage per unit 
time. For a narrow-band Gaussian process with zero mean 
X(t) ,  the realizations resemble sinusoids with slowly varying 
amplitudes. In this case the rises and falls are distributed as 
an envelope, i.e. Rayleigh distributed, n The expected 
damage rate can then be written: 

e { D }  = .0  (30) 

where the number of  cycles are represented by Vo, which 
is the characteristic frequency of  the process in Hz. 
In the case of  a pure stochastic signal, Vo is: 

f Vo = ~.fxx(0,  .~) d.~ = -- ]~-2/xo (31) 
27r 

o 

where .fx£ is the joint probability function of  X(t) and its 
time derivative. The associated stress range AS is: 

AS = 2 X/~Ox p(1 + m/2)  1/m (32) 
where P(  ) is a gamma function. For a combined sinusoid 
and a narrow-band stochastic process with a centre fre- 
quency equal to the frequency of  the sine wave, Rice m 
has determined the mth  moment  of  the distribution of  the 
rises and fails. Using these results the stress range AS 
becomes: 

A S  = 2V~Ox [P(1 + m / 2 ) M ( - - m / 2 ,  1, _~2)]~/m (33) 
in which M( . . . . .  ) is the confluent hypergeometric func- 
tion and: 

R 
= 2 X/~ o ~  (34) 

Wind-induced failure o f  wind turbines: P. H. Madsen and S. Frandsen 

in terms of  the range of  the sinusoid R and the standard 
deviation of  the stochastic part. 

For a Gaussian stress signal which is not narrow-banded, 
Wirsching and Light 14 proposed an equivalent stress range 
of the form: 

AS = g(a ,  m) 2 X/2o x P(1 + m/2) '/m (35) 

where g(a ,  m) is an empirically determined correction 
function, which depends on the material parameter m 
and a: 

a = po/V= (36) 

v m is the expected number of  maxima given by: lo 
o 

/ 1 
~m = E l 2 2  (0, 2) dx = - -  ~ (37) 

2~ 

In independent simulation studies, is a better agreement 
was found for multi-modal spectra of  the stress signals, 
when the damage computed with the rainflow algorithm 
was correlated to m and the parameter: 

),1 8 - - -  (38) 

Based on a regression analysis a correction function was 
proposed of the form: 

g(~i, m) = 1.0 + (0.66 -- 0.045m) (8 -- 1) (39) 

For a combined periodic and stochastic wide-band signal 
a similar model based on a correction to the narrow-band 
expression, equation (33), was suggested) s Basing the 
central frequency Uo and the bandwidth parameter ~ on 
spectral moments of  iche combined signal: 
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(1984)
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Figure 6.6: ADCP comparison points on topography/bathymetry map of domain, labelled

in order from north to south in the domain.

where kinf is the inferred turbulent kinetic energy expression as found in Chapter 5 and s

is the horizontal speed.

The turbulence intensity measures the velocity fluctuations in the flow as normalized by

the mean speed. Turbulence intensity has been found to correlate with both the fatiguing of

turbine materials and decreased efficiency in wind (Frandsen, 2007; Madsen and Frandsen,

1984; Sheinman and Rosen, 1992; Thomsen and Sørensen, 1999; Wagner et al., 2010) and

tidal (Maganga et al., 2010) turbines. Neglecting turbulence was found to result in an

over-estimation of power production of up to 10% in Sheinman and Rosen (1992), but the

decrease in efficiency changes with the level of turbulence intensity (Maganga et al., 2010).

6.4 Admiralty Inlet Simulation Metric Performance

6.4.1 Quantitative Metrics

A map of comparison points used to assess model performance in computing metric values

is shown in Figure 6.6. These data were also used to assess model performance in Section

3.3.2. The comparisons for these metrics are shown in order in each set of plots below,

moving south through the domain.
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Figure 6.7: Mean speed profiles in order of comparison locations shown in Figure 6.6. Model

output (red), data (black), and adjusted model output (green) are compared. The adjusted

model output speeds are multiplied by a factor of 1.33, the ratio of the averaged model

output mean speed to that of the data.

The mean speed profiles from the model output are, on average, 75% of the value of the

data profiles, due to the known speed deficiency in the model, as discussed in Section 3.3.2.

In order to roughly account for this, a multiplication factor, F , of the reciprocal, or 1.33,

is used to shift the model output. Model output calculations involving speeds that have

been multiplied by this factor are referred to as “adjusted” model output. The model-data

comparisons of speed along with the adjusted model output are shown in Figure 6.7. The

mean speed profiles are much improved by this adjustment at most of the locations shown.

The comparisons around Marrowstone Island, though, are different than near Admiralty

Head, and the mean speeds are too large after multiplying in the extra factor, as seen in

subplots 12 through 15 in Figure 6.7. This over-compensation would be concerning in terms

of understanding the dynamics themselves using this simple multiplication factor, but in

this case the point is to have a reasonable representation of the resource in the system as it

pertains to turbine siting. Given that the area of interest is primarily Admiralty Head and

because the speeds are lower near Marrowstone Island, their relative importance is less.

The mean kinetic power density profiles, shown in Figure 6.8, display the model output

as even lower relative to the data than in the speed. This is expected due to the cubic

relationship of speed to power, which emphasizes the deficiency. To adjust the model, the
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Figure 6.8: Mean kinetic power density profile comparisons. Details as in Figure 6.7.

same factor from the speed comparison is used to calculate the kinetic power density, as

DM,adj = F 3DM , where DM,adj is the adjusted mean kinetic power density and F is the

factor derived from the relative data and model speeds. These adjusted quantities are shown

in the plots and match well with data near Admiralty Head.

Comparisons between the prediction of the model, adjusted model output, and field data

are not shown for any following quantitative metrics. Speed and power density calculations

from model output were shown to respond well to the adjustment factor. Given that the

rest of the quantitative metrics are also based on the speed (and are similarly deficient for

model output due to the known speed deficiency), similar results are found.

6.4.2 Qualitative Metrics

Comparisons between model and data bi-directionality and directional deviation are shown

in Figures 6.9 and 6.10, respectively. Both metrics agree well. The hub height comparisons,

at nominally 10 meters above the seabed, are very good in directional deviation, though

the comparisons deviate somewhat higher in the water column. The bi-directionality metric

comparisons are reasonable, with most of the comparisons are within five degrees at hub

height.

Speed and power bias comparisons are shown in Figures 6.11 and 6.12. They agree

moderately well, and no alterations are made to the model output maps.

Mean shear profile comparisons are shown in Figure 6.13. The model shear matches the
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Figure 6.9: Bi-directionality profile comparisons. Comparison locations are shown in Figure

6.6.
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Figure 6.10: Directional deviation profile comparisons. Comparison locations are shown in

Figure 6.6.
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Figure 6.11: Speed bias profile comparisons. Comparison locations are shown in Figure 6.6.
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Figure 6.12: Power bias profile comparisons. Comparison locations are shown in Figure 6.6.
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Figure 6.13: Mean shear profile comparisons. Comparison locations are shown in the order

numbered in Figure 6.6.

data well except near Marrowstone Island.

6.5 Results and Discussion

6.5.1 Resource Quantification

The simulation of Admiralty Inlet provides an opportunity to evaluate a region for tidal

turbine siting. In order to leverage the model output as much as possible, the quantitative

metric results are adjusted to reflect the magnitude of the data. In doing this, we provide

as realistic of values of the metrics as possible across the model domain.

All of the quantitative metrics are based on the magnitude of the speed. In an effort

to make the most basic adjustment to the model output as possible, as well as address the
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(a) Mean Speed (m/s) (b) Mean Kinetic Power Density (W/m2)

Figure 6.14: Mean speed and kinetic power density at hub height from the idealized headland

model shown in both color and contours. x- and y-axis units are meters.

known deficiency in the model, a multiplication factor is used on the model’s horizontal

speeds (this is also discussed in Section 6.4). A single factor, as opposed to an adjustment

factor for each metric, is used also in order to reduce any ambiguity in this adjustment.

Additionally, the factor is generated as simply as possible. The ADCP data available are

time- and depth-averaged together to find a single mean speed. Model output for the same

locations as the data is also averaged in depth and over the length of the simulation to find

a single mean speed. The factor used to shift the model predictions of speed is the ratio of

the data mean speed to the model mean speed. This factor, F , is used to adjust each of the

quantitative metrics. Note that F is not used to alter model output as a function of time,

but, rather, the already time-averaged model output. For example, the mean kinetic power

density calculation from the model is multiplied by F 3 for the speed adjustment.

Mean Speed and Kinetic Power Density

Mean speed and mean kinetic power density plots are shown for the idealized headland

case in Figure 6.14. The mean speed and, therefore, power are largest near the tip of the

headland, a constricted area. The resource is also increased along the walls on each side

of the headland, where large eddies that reach across the width of the channel lee of the

headland cause increased speeds.

Maps of these metrics at the hub height of 10 meters for the domain are shown in Figure
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(a) Mean Speed (b) Mean Kinetic Power Density

Figure 6.15: Mean speed and kinetic power density (KPD) at hub height from the model

shown in both color and contours, with speeds multiplied by 1.33 to account for the known

velocity deficiency. In the mean kinetic power density plot, a thick contour at 1 kW/m2

indicates areas with the largest resource.

6.15. This model output has been adjusted as described with the factor to account for the

known speed deficiency in the model. With this adjustment, the maps can be seen as an

approximate tool for the assessing the resource at a nominal hub height throughout the

domain. Some of the domain in the plots at hub height is empty since the free surface at

these locations is shallower than hub height. For reference, a thicker contour marks the

areas with mean kinetic power density greater than 1 kW/m2.

As was seen in the idealized headland simulation, each promontory in the domain is

associated with an area of increase in the mean speed, which is transformed into a tighter,

sharper peak of mean kinetic power density. The headland case also shows some increased

resource to the side of the headland. This is not found in the Admiralty Inlet case, possibly

because of the changes in bathymetry in space, in which the shallower sides of the channel

funnel the faster-moving flow away from the coastline. The peaks of resource near headland

tips may be in the midst of eddy fields, which will be explored in Section 6.3.2. There are a
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(a) Mean Power (b) Turbine Operation Time Fraction

Figure 6.16: Mean power and turbine operation time fraction at hub height from the model

with cut-in speed sc = 0.7 m/s and rated speed sr = 2.25 m/s, shown in both color and

contours, adjusted by speed factor.

few other areas of large resource available, particularly in the middle of the channel between

Point Wilson and Admiralty Head. This area is located over a sill, the most likely cause for

the increase in speed.

Mean Power and Operation Timing

Mean power results from the model at hub height with the speed adjustment are shown in

Figure 6.16(a). The plot shows the same pattern as the mean kinetic power density, but is

a more realistic representation of the actual power accessible to a turbine.

Turbine operation time fractions are shown in Figure 6.16(b). Generally, a turbine

would operate for more time at higher-speed locations, where power can be more readily

produced. The locations in which a turbine would operate for the largest fraction of time

are approximately the same as the locations with the largest amount of power available.

However, if the speeds at a location are right around the chosen cut-in speed, adjusting the

cut-in speed could significantly affect the turbine operation time.
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Capacity Factor

The capacity factors throughout the domain at hub height are shown for three different

rated speeds in Figure 6.17. When the capacity factor is calculated using a lower rated

speed, as shown in Figure 6.17(a), the area just north of Point Wilson, which has the

highest power density in Admiralty Inlet, has capacity factors of over 30%, which may be

higher than economically viable. As the rated speed increases, the capacity factor north of

Point Wilson decreases. Oppositely, in regions with lower power density, such as between

Point Wilson and Admiralty Head, there is a desirable capacity factor of 30% with the

lowest shown rated speed, but increasing the rated speed decreases the parameter to very

low levels.

6.5.2 Resource Qualification and Turbine Survivability

Bi-directionality and Directional Deviation

Figure 6.18 shows the bi-directionality metric a for the idealized headland case. The flow

is most asymmetric at the tip of the headland and to the sides. On each tide, the flow

leaves the tip of the headland approximately parallel to the headland angle, such that near

the headland tip, the flow is not bi-directional. Eddies lee of the headland also cause large

asymmetry. Approximate directions are indicated in the plots with arrows for each tidal

direction to help explain the size of the parameter around the domain.

The bi-directionality a and directional deviation Θ parameters are shown in Figure 6.19

for model output at hub height; no adjustment has been made to the model output in

these cases. Clearly the velocity fields are less bi-directional in areas near headlands where

the eddy fields are most prominent, as was seen in the idealized headland case. However,

the behavior around different headlands is quite variable. Around Admiralty Head and

Point Wilson, there is less bi-directionality than in the middle of the channel, for example,

but these areas are still much more bi-directional than around Marrowstone Island and in

Admiralty Bay. North of Admiralty Head is an area that consistently has an active eddy

field on ebb tide, but it has reasonably good bi-directionality and low directional deviation,

whereas the area east of the northeast corner of Marrowstone Island is highly asymmetric
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(a) sr = 1.75 m/s (b) sr = 2.25 m/s

(c) sr = 2.75 m/s

Figure 6.17: Capacity factor with varied rated speed at hub height from the model shown

in both color and contours, adjusted by speed factor.
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Flood Ebb

Figure 6.18: Mean bi-directionality at hub height from the idealized headland model shown

in both color and contours. x- and y-axis units are meters. Arrows indicate approximate

directionality at a few points on different tides: orange for flood and green for ebb. The

headland is shown in white point south from the north side of the channel.

and increased directional deviation. Arrows on the plots show approximate directionality

at several locations.

It appears that the vortices in and of themselves have a secondary impact on the direc-

tionality. This is particularly true with the calculation being weighted by cubic speed, since

the recirculation in eddies in regions where there is significant change of direction often also

has low speeds. This asymmetry depends most strongly on the channel geometry. North

of Admiralty Head, for example, there is often a strong eddy on ebb tide. The strongest

currents associated with the eddy are parallel to the channel: in the ebb direction in the

main part of the channel and in the opposite direction nearer the coastline (Figure 6.20(a)).

The eddy currents are approximately parallel to flood tide (Figure 6.20(b)), which leads to

the flow in the area being highly bi-directional. While there are areas where the currents

are turning in the eddy field, on the downstream side of an attached eddy, the speeds are

relatively low and unimportant to power production considerations and thus do not signif-

icantly influence this metric. These areas may not matter significantly for turbine siting

since they are low energy.
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Figure 6.19: Asymmetry properties in degrees at hub height from the model shown in both

color and contours. Arrows on bi-directionality plot indicate approximate directionality at

a few points on different tides: orange for flood and green for ebb.

Strong currents 
in eddy field end 

up parallel

(a) End of flood tide. (b) Flood tide.

Figure 6.20: Surface speed snapshots. In some eddy fields, the flow is not necessarily largely

asymmetric if large eddy field currents are approximately parallel on flood and ebb tide.



217

(a) Flood tide. (b) Ebb tide.

Figure 6.21: Surface speed snapshots. A patch of highly asymmetric flow east of Marrow-

stone Island is largely caused by flow direction caused by the channel layout.

Opposite to this example are areas where the channel geometry causes the flow to be in

significantly different directions on ebb and flood tide. One of the most noticeable patches

of non-bi-directional flow is east of Marrowstone Island. This area is an active eddy field;

however, a large part of the cause of the significantly non-bi-direcional angle is the fact that

on flood tide, the channel pushes the flow to the southeast through the Inlet whereas on ebb

tide in the same area it is pushed mainly north (Figure 6.21). The channel layout causes

the most asymmetric areas, with bi-directionality of over 40 degrees. Eddy fields tend to

cause the patches with values between 15 and 40 degrees. These areas of moderate values

can be better understood using the in-depth analysis from Chapter 4. Given that the areas

of highest resource are located near headland tips, the areas most affected by the eddy fields

are potentially of the most importance for turbine siting, but it is important to understand

the variety of values seen around the domain.
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(a) Speed

Even power 
in time

Biased 
power

(b) Power

Figure 6.22: Bias properties at hub height from the model shown in both color and contours.

Lower values show areas with the most consistent property through tidal cycles and values

closer to one are biased toward one flow direction.

Mean Speed and Power Generation Bias

Model output maps for bias comparisons are shown in Figure 6.22. The two maps are similar

to each other, and they show that the areas with the most consistent power availability

throughout the tidal cycle are near the tips of headlands, where there is an increase of tidal

currents on each direction. Among the least consistent power areas is the north end of

Admiralty Bay. In this area, currents are slow for most of flood and ebb tide, but are briefly

stronger at the beginning of ebb tide as the recirculation area for the large Admiralty Bay

eddy speeds up and pushes past Admiralty Head to start the tide.

6.5.3 Mean Vertical Velocity

The vertical velocities in this hydrostatic simulation are not expected to be necessarily

representative of the actual values of vertical velocities seen in Admiralty Inlet. Comparisons

indicate that the difference between the data and model, particularly in highly dynamic
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Figure 6.23: Mean vertical velocity at hub height

areas, may be as much as an order of magnitude (Section 3.3.2). However, the model does

provide a means by which to see what areas may have significant vertical velocities and why.

For example, a negative vertical velocity was found to be a common feature associated with

convergence in the region and particularly near fronts in Chapter 3. Because of this, large

vertical velocities may be found in areas of significance for turbine siting.

Despite the question of the realism of the absolute values of the vertical velocity output

by the simulation, the location of the velocities in time and space may be important infor-

mation for future development. The mean magnitude of vertical velocity is shown in Figure

6.23. The largest mean velocities are not near the coastlines but more toward the centers of

the channels in the region. The largest values are in relatively small patches, and medium

values are in much larger areas.

A method for splitting the vertical velocity into upsloping, or topographically-caused,

and upwelling velocities was described in Section 4.2.6. Plots of mean and maximum/minimum

vertical velocity split into upwelling and upsloping categories are shown in Section A.2.3.

Those plots indicate that the largest values of mean vertical velocity are due to upsloping

velocity in areas of steep bathymetry. This is in contrast with what was discussed in Sec-

tion 4.2.6, in which upwelling velocities were larger than upsloping. In that case, the larger
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Figure 6.24: Mean model shear at hub height compared with bathymetry from the model

shown in both color and contours

upwelling velocities were higher in the water column, but nearer the seabed, as in these

plots, the upsloping velocity is larger.

6.5.4 Shear and Turbulence

The mean shear as output from the model at hub height is shown in Figure 6.24, along

with the domain bathymetry. The highest mean shear areas correspond to areas where the

bathymetry changes from deeper to shallower in the flow direction, drastically changing the

speed profiles if the bathymetry gradient is steep enough.

In Chapter 5, turbulence intensity was found to compare well with data when using the

inferred values for the turbulent kinetic energy. Turbulent kinetic energy was also compared

in Chapter 5. Model turbulent kinetic energy was found to compare well with the classical

turbulence data. This scale of turbulence has been found to be an important factor to

consider for turbine siting due to a study finding that decreased turbulence length scales

correlated with increased turbine load (Thomsen and Sørensen, 1999). Because of this, the

mean turbulent kinetic energy from the model can be used to represent the energy contained



221

Figure 6.25: Mean turbulent kinetic energy at hub height from the idealized headland model

shown in both color and contours.

in the mean small-scale turbulence in the domain. The turbulent dissipation rate was found

to compare well between the model and data, often off by a factor of two; however the

direct application to turbine siting is not as clear with the turbulent dissipation rate as

with turbulence intensity and turbulent kinetic energy.

The mean turbulent kinetic energy for the idealized headland case is shown in Figure

6.25. The highest levels of turbulence are in the areas with the largest mean speeds (Figure

6.14) near the tip of the headland and to the sides. The area near the headland tip therefore

has both the largest resource available and the highest levels of turbulence, on average.

Turbulence properties turbulent kinetic energy, k, and turbulent dissipation rate, ε, for

the model simulations are shown in Figure 6.26. A comparison between these metrics and

the turbulence intensity (Figure 6.27(a)) shows they each have different emphasis. The mean

turbulent kinetic energy and turbulence dissipation rate are highest near the most energetic

headlands where there are also often strong currents. This was also seen in the idealized

headland case (Figure 6.25). An additional area of high k and ε is toward the southern end

of the flood tide jet (Figure 4.3(b)) that is accompanied by eddies on either side and has

complicated dynamics. On the other hand, the turbulence intensity is a relative measure and

headland tips do not necessarily have large values since, while they have more turbulence,

they also have higher speeds. The areas of largest turbulence intensity are locations that
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(a) Turbulence Dissipation Rate, ε

Increased values near 
headland tips and jet 

area

(b) Turbulent Kinetic Energy, k

Figure 6.26: Mean turbulence properties at hub height from the model shown in both color

and contours

have relatively moderate to high mean k but lower speeds. In the wind energy industry,

10% is a commonly-found turbulence intensity value (Thomson et al., 2011).

The mean turbulent kinetic energy, calculated using the “inferred” expression of turbu-

lent kinetic energy as a function of turbulent dissipation rate and mean velocity (Section

5.3), is shown in Figure 6.27(b). The behavior is similar in this plot and in the directly out-

put mean turbulent kinetic energy values shown in Figure 6.26(b). However, it was found in

Section 5.3 that the inferred expression of mean turbulent kinetic energy compared better

with data than the original model output. The inferred mean turbulent kinetic energy is

shown in Figure 6.27(b).

6.6 Summary and Implications

6.6.1 Summary

Maps at hub height for the metrics have been shown throughout this chapter, along with

detailed presentations of the metrics themselves. Metrics have been split into two categories:
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Admiralty Head 
not emphasized

Areas of 
moderate k and 
slower speeds 
emphasized

(a) Mean turbulence intensity (b) Mean turbulent kinetic energy

Figure 6.27: Mean turbulence properties at hub height from the model using the inferred

calculation for turbulent kinetic energy shown in both color and contours. White spaces

inside the contours of the domain in Figure 6.27(a) indicate that the area is shallower than

hub height and that the speed never exceeds the cut-in speed. This calculation of the mean

turbulent kinetic energy has similar behavior as the mean turbulent kinetic energy output

by the model itself (Figure 6.26(b)), but is a better representation of the values seen in the

data.



224

resource quantification and resource qualification. Resource quantification metrics present

the amount of resource available at a given location. Resource qualification metrics present

the extractability of the resource, and are presented in conjunction with metrics that affect

turbine survivability since these two categories are intertwined.

Due to a speed deficiency in the prediction of the numerical simulation, the model speeds

used to calculate resource quantification metrics were adjusted by a factor calculated as the

ratio of the average of data mean speed profiles to model mean speed profiles, and was

found to be about 1.33. With this adjustment, the model metrics compared well with data

at most locations, though typically the data and model output around Marrowstone Island

behaved differently. Resource qualification metrics compared well between the data and

model output without adjustment to the model output.

A turbine model implemented in ROMS is combined with a high resolution idealized

headland simulation to study the effects of turbines on flow field quantities. This is presented

in Appendix C.

6.6.2 Implications for Turbine Placement

One of the next logical steps to this work is how a turbine developer might use this informa-

tion to site a turbine array. The reality is that there is no one answer as to where to place a

turbine, and it depends on a number of factors. The most important factors revolve around

the turbine design specifics (yaw ability, cut-in speed, rated speed, diameter, resistance to

various stressors), but other factors may include acceptable distance for transmission lines

and depth for the turbines, end location for the transmission lines, how many turbines and

therefore how much space is required, economic viability, and any zones where turbines are

not allowed for recreational, environmental, political, or other reasons. In this study, the

focus is on several possible factors based on turbine design to illustrate possible turbine

placement strategies using this information.

For example, if the chosen turbine design is fixed-axis, the developer may want to place

the turbine in flow that is largely bi-directional, say, with bi-directionality a < 15 degrees.

If the turbine can yaw with the flow, then bi-directionality may not be a major concern;



225

Areas with high mean 
KPD and bi-directionality

Also small area 
near headland

Figure 6.28: Map of mean kinetic power density as color with a black contour line at 1

kW/m2 and bi-directionality as cyan contours at 15 and 40 degrees. Some areas with high

power density and low asymmetry are indicated.

however, with the additional required moving parts for such a design, sensitivity to stresses

in the flow field may be a more significant consideration than it would be to a fixed-axis

turbine. In this case, choosing a region with low turbulence properties may be best. In

both cases, a large resource would be a prerequisite.

Figure 6.28 shows a combined metric map of mean kinetic power density in color with

a black contour indicating 1 kW/m2, which is a possible cut-off for minimum resource to

make a site worthwhile (Bedard et al., 2006). Also plotted are cyan contours of the bi-

directionality at 15 and 40 degrees. A fixed axis turbine should possibly be sited in an area

with bi-directionality less than 15 degrees. When bi-directionality limitations are combined

with the areas of high resource, a few areas stand out as potential options. The headland

areas are largely too asymmetric by this measure, though a few small areas near Admiralty

Head and NE Marrowstone Island have large enough resource and low enough asymmetry
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to fit this requirement. The larger areas of interest are in the middle of the channel between

Point Wilson and Admiralty Head, and just north of Point Wilson. The area in the middle

of the channel is far enough away from the headlands to be largely bi-directional and is

located above a sill, which increases the resource. North of Point Wilson, the flow is fast-

moving coming in from the Strait of Juan de Fuca and squeezed by the point, creating high

velocities in the area. It is also shallow, causing more speed up, but this can cause problems

for turbine siting as well. The area is up to around 40 meters of depth. With a turbine

diameter up to 20 meters, this location may not be appropriate despite the large resource.

Turbulence properties are overlaid on the mean kinetic power density in Figure 6.29.

A yaw turbine may be more sensitive to additional loads than a fixed-axis turbine due to

additional necessary moving parts. Turbulence intensity contours, in Figure 6.29(a), are

indicated at values of 7%. A turbulence intensity of 10% has been typically found in wind

energy locations. Areas with large resource and low turbulence intensity are indicated. By

this measure, many areas are available to turbine placement, including near each headland

and in the middle of the channel. A possible problem with using turbulence intensity as

a metric is that, while it is true that the turbulent kinetic energy in the system when

normalized by the large speeds near the headlands is lower than other areas, that does not

change the fact that there is still considerable turbulence there. Perhaps a better measure

of turbulence would be the mean turbulent kinetic energy, as overlaid on mean kinetic

power density in Figure 6.29(b). In this case, the areas around the headlands are generally

collocated with high levels of turbulence. However, there are a few areas in which there is a

large resource available and lower turbulence levels; these regions happen to align well with

the bi-directionality case shown in Figure 6.28. It will be important for turbine developers

to further identify the most relevant measure of turbulence at a site.

The two areas that have come up repeatedly in this section are the areas north of Point

Wilson and in the channel between Point Wilson and Admiralty Head. The region north

of Point Wilson may not be realistic for siting due to its shallow depths, though with a

small diameter turbine, a successful power plant could potentially be developed given the

magnitude of the resource. This could be better suited as a resource for the communities

on the west side of the channel to minimize transmission cable lengths.
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Areas with high MKPD and 
low turbulence intensity

(a) Turbulence intensity contours at 8%

Areas with high MKPD 
and low mean TKE

(b) Turbulent kinetic energy contours at 2.75 × 10−3 and 4 × 10−3

m2/s2

Figure 6.29: Map of mean kinetic power density as color and mean turbulence properties

(both using the inferred calculation for turbulent kinetic energy) as red contours. Some

areas with high power density and low turbulence are indicated.
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The area in the middle of the channel avoids many of the issues that may be detrimental

for turbines since it is away from the coastline and associated features. Turbines in the area

would require longer underwater transmission lines, but the depths in the area are 50 to 60

meters, which may be a good balance between enough depth for large turbines but not too

deep that the turbines are inaccessible. While the center of Admiralty Inlet is designated

as the federal shipping channel, it has been previously determined that allowing a clearance

depth of 15 to 25 meters is adequate to avoid contact between ships at the surface and

turbines near the seabed (Polagye et al., 2010).

This kind of analysis can be improved with further understanding of turbine design

considerations. Also, having functional relationships between each metric and its affect

on both turbine lifetime and power production could lead to a map of the effective mean

power density; this could be generated for a given turbine design with each metric already

taken into account. For example, it was found that a fixed axis turbine would have a

power reduction factor of between cos2 θ and cos3 θ due to horizontal tilting of the incoming

flow to a turbine face, and this could be taken into account on a map combining mean

kinetic power density and the effect of bi-directionality on mean kinetic power density. More

information is needed, though, to know the degree to which different levels of turbulence

intensity and other metrics reduce turbine efficiency. From a power utilization perspective,

too, knowledge of how power production bias matters for a utility company could help with

siting considerations. This information could be gathered in time from lab experiments and

numerical models of turbines with various in-flow conditions to determine the effects on

power production and turbine stresses.
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Chapter 7

SUMMARY AND FUTURE WORK

There is potential for tidal hydrokinetic energy to play a role in a future of sustainable

energy-independence. Admiralty Inlet, in the Puget Sound estuary in western Washington

state, is a strong candidate for commercial-scale turbine placement based on its proximity to

a sizable population and strong tidal currents over a large area. Given that there is limited

underwater space with necessary conditions for turbine deployment, further understanding

of the area and issues involved with turbine siting is needed in order to move forward with

this technology. This research contributes to this need in multiple areas. First, a high

resolution, realistic model of Admiralty Inlet was established to understand oceanographic

issues that are pertinent to turbine siting. Second, vortex generation and travel around the

region was studied, since vorticity has been identified as a potentially significant effect on

turbine placement. Next, model output was compared with high quality turbulence data.

This latter effort was intended to determine the regions with high turbulence levels, to

investigate the accuracy of the turbulence closure scheme used in modeling the turbulence

in the region, as well as to improve the modeling. Knowledge of the scheme’s performance

enables better use of the model output for siting purposes. Finally, metric maps of the

region were generated for large-scale turbine siting.

7.1 Methodology

A numerical model of Admiralty Inlet was developed using the ROMS code and was shown

to perform satisfactorily according to many of the necessary measures. The model output

reproduced sharp gradients and flow field changes seen in eddy fields. Turbulence fields

were largely reproduced to within a factor of two (though turbulent kinetic energy was

addressed separately; see summary in Section 7.3). Tidal free surface and velocity phases

were consistent with data through Admiralty Inlet; however, amplitudes were low. This
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deficiency in speed was inherited from the forcing regional model and resulted in model

horizontal velocity magnitudes that were approximately 75% of the value of data speeds,

on average. Model output and data metrics matched well when the deficiency was adjusted

for in the quantitative metrics. Many of the relevant flow features were also present in the

numerical simulation. Vortices were seen being generated with the tides off every headland in

the region. Fronts were seen throughout the region, but in particular near Admiralty Head.

The fronts were visible in the density and horizontal speed fields, which often displayed

sharp horizontal gradients at the front of the flow when the tide changed directions.

Truncation error in the momentum advection scheme was investigated as possibly al-

tering vorticity generation and energy dissipation mechanisms. Truncation error analysis

was completed on the spatial terms of the upstream advection of momentum scheme that

is the default choice for use in ROMS. In the previously-analyzed case of tracer advection

in a uniform velocity field, the scheme is third-order accurate. However, this analysis found

that for advection of momentum in a general velocity field, the scheme is first-order accu-

rate. Calculations of the truncation error found minimal contributions to vorticity flux and

energy dissipation.

7.2 Vorticity Dynamics

Many of the flow features examined in connection with vorticity were present in the pro-

posed pilot site location near Admiralty Head. These included fronts, vortices, and vertical

velocity. The presence of persistent vortices affects the speed profile, which in turn would

affect the power production for a turbine in the path of such a vortex.

The size and trajectory of vortices generated in Admiralty Inlet were seen to depend on

the tidal cycle. For consecutive similar tidal cycles (e.g., two higher high water tides), the

time scale of substantial behavior change was found to be approximately one week. Eddies

generated often persisted and affected the behavior near Admiralty Head on the following

half-cycle. This behavior was most noticeable on flood tide, when large ebb eddies could

significantly impact the speed profile and other flow fields, but was also seen on ebb tide.

In one such example, when flood tide pushed southward through the channel, a large jet

formed with oppositely-signed eddies on either side. These large eddies were located on one
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side in shallow Admiralty Bay and on the other side lee of Marrowstone Island. Fronts were

most commonly seen on ebb tide following the presence of a jet and associated large eddies

on flood tide. These large flood eddies would entrain fresh water and move it northward.

When the tide then slowed and switched to ebb tide, the fresh water was in position to

travel with ebb tide, pushing past Admiralty Head as a front. The front would align with

vortex generation, thus appearing in multiple fields (density, speed, and vorticity).

In-depth analysis was used to understand the mechanisms of vorticity governance in the

region. Following the methodology in Dong et al. (2007), a modified version of the governing

equation for vertical vorticity was volume-integrated and used to diagnostically solve for

the boundary generation rate of vertical vorticity at within a small analysis domain around

Admiralty Head. The dominant terms in the vorticity equation were boundary generation,

advection into and out of the analysis domain, and stretching and tilting of the vertical

vorticity. Boundary generation was found to be present during each half-cycle, starting out

strong at the beginning of the tide. Advection was mostly out of the analysis domain of

the generated vorticity, but the term enabled a detailed analysis of the presence or absence

of persistent, old vorticity entering and/or exiting bounding walls. Generally, the vertical

vorticity was increased due to stretching near the surface with a positive vertical gradient of

convergent downwelling velocity (and some contracting near the seabed in a negative vertical

gradient of vertical velocity), and decreased due to tilting of the vortex tube in regions of

horizontal gradients on vertical velocity. Occasionally, in the presence of negative vertical

gradients of upsloping vertical velocity, instead of the typical positive vertical gradients of

upwelling vertical velocity, the signs of the stretching and tilting terms were switched, but

this was not common. All of the terms changed sign with the direction of the half-cycle.

The most significant effect on the dynamics of the vorticity was the presence of old,

persistent eddies from the previous half-cycle. In one flood tide, the persistent vortex from

the previous ebb tide created a double peak in the speed and vorticity time series. All

of the terms in the governing equation for vorticity also had a double peak, and similar

behavior within each peak. During one ebb tide examined, multiple vortices from the

previous flood tide (from in Admiralty Bay and the lee of Marrowstone Island) persisted

with minor influence on the speed time series. This influx of oppositely-signed vorticity had
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more noticeable effects on other terms in the governing equation, such as a change in sign

of the tilting and stretching terms.

7.3 Turbulence Modeling

Model output from the k-ε turbulence closure scheme compared reasonably well (within a

factor of two) with turbulence data for the Reynolds stress and turbulent dissipation rate.

The deficiency seen in these two parameters is due to the known model speed deficiency.

While the turbulent kinetic energy did not initially match well, limiting the frequency range

of the turbulent kinetic energy to the classical turbulence range led to a much closer match.

This indicates that the turbulence model performs reasonably well in the classical turbulence

range for which the model was intended.

An approach was attempted to address the turbulent kinetic energy that is in the field

data set but outside the classical range, and thus not captured directly in the numerical

model. The frequency range for the inertial subrange in Kolmogorov’s theory was extended

to lower frequencies, based on spectral energy density data. With this extension, the turbu-

lent kinetic energy could be calculated from the local mean speed and turbulent dissipation

rate from the model output, and the match between the data and this calculation from

model output was improved. As further discussed in Section 5.4, the field data could be

approximated with other, more exact functions to improve the accuracy of the expression.

Given the comparisons made between the model output and the data, the turbulence

parameters calculated from model output were found to be a reasonable representation of

the data. This suggests that maps of turbulence intensity and mean turbulent kinetic energy

can be confidently employed in turbine siting studies.

7.4 Metric Maps

Flow metrics in a region of interest for turbine placement can be classified into two cate-

gories. The first, quantitative metrics, includes metrics that describe the size of the resource

available. The second, qualitative and turbine survivability metrics, includes metrics that

describe the extractability of the resource, as well as potential undue stresses on turbines.

Horizontal speeds from the model output were multiplied by a factor of 1.33 in order
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to account for the known speed amplitude deficiency as compared with data. With this

adjustment, quantitative metrics compared well between model output and data, and metric

maps were generated for Admiralty Inlet at a nominal hub height of ten meters (mean speed,

mean kinetic power density, mean power, turbine operation time, and capacity factor). It

was not necessary to adjust model output for qualitative metrics. Metric maps of the region

were made showing asymmetry properties (bi-directionality, directional deviation, and speed

and power bias), mean shear, and mean turbulence properties (intensity, turbulent kinetic

energy, and turbulent dissipation rate).

The best locations for turbine siting depends on many considerations. As determined by

resource magnitude, lower flow asymmetry, and turbulence properties, the best locations in

Admiralty Inlet were found to be just north of Point Wilson on the west side of the channel,

and in the middle of the channel, over the sill between Point Wilson and Admiralty Head.

7.5 Future Work

The deficiency in the M2 tide leads to an underestimation of quantitative turbine siting

metrics and of turbulence parameters. Several approaches could be followed in order to

address the M2 deficiency in the regional simulation which is inherited into the nested

simulation. A straight-forward solution would be to artificially adjust the boundary forcing

to roughly compensate for the M2 deficiency. A more involved solution would be to improve

the boundary forcing by improving the larger regional model, which is currently underway

in the School of Oceanography at the University of Washington.

Though this model enables the in-depth spatial and temporal analysis of the flow field,

it is important to remember its limitations. ROMS is a hydrostatic code, which limits the

useful spatial resolution, and also limits the ability to model some dynamic features that

are expected in the region. A future model of Admiralty Inlet should be at higher resolution

and be made using a non-hydrostatic model. This would improve the veracity and numerical

accuracy of the simulation results, especially at smaller length scales. The more resolved

the numerical output, the better micro-siting of turbines for a commercial-scale array for

tidal energy production.

An obvious but not necessarily straight-forward extension of the methodology in ideal-
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ized or realistic systems would be the addition of turbines to the simulations. For example,

if one turbine was added at the tip of the headland in the idealized headland case, would the

mean kinetic power density plot change in appearance? Or if five or twenty turbines were

added to the area? How would these turbines affect the directionality of the flows, which

would then be seen in the resource qualification metric plots? With a turbine representa-

tion in place, a comparison could also be made between the power generated by an array of

turbines arbitrarily placed in the domain, and turbines that have been intelligently placed

by examining the metric maps of the domain. A collaboration is underway that introduces

an advanced turbine model in ROMS in an idealized headland simulation to address such

questions. Preliminary results from this collaboration are shown in Section C, and more

work in this area is expected in the future.

n using model output from simulations and expect to continue having useful model

output, the hydrostatic approximation that has been made at the core of the numerics must

be kept in mind, particularly when increasing the grid resolution to a level that may begin

to push against the approximation’s limit. Another model consideration is one of timing in

the year. Model results from the nested Admiralty Inlet model will not necessarily line up

nicely in time with all of the various ADCP field data that has been collected. This means

that while the data may not be directly comparable to the model output, it can still be

used for quality control and to make sure that the same sorts of behavior are witnessed in

each case.
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Appendix A

UPSLOPING VELOCITY DERIVATION

A.1 Separating Vertical Velocities into Components

The vertical velocity can be split up as follows in order to better understand its underlying

causes (Deleersnijder, 1989):

w = wus + wuw, (A.1)

where w is the vertical velocity, wus is vertical velocity due to topographic effects, called

“upsloping velocity”, and wuw is vertical velocity due to other effects, called “upwelling

velocity.” This is derived as follows, from Deleersnijder (1989).

We start with the coordinate transformation to σ coordinates,

(t̂, x̂, ŷ, ẑ) =

(
t, x, y, L

z + h

η + h
= Lσ

)
, (A.2)

where z is the depth below a reference sea level, η is the sea surface height, h is the distance

from the seabed to a reference sea level, and L is the constant total depth in σ, or terrain-

following, coordinates (i.e. H = h+ η in Cartesian coordinates, which changes in time, and

L is the constant equivalent in σ space). See Figure A.1 for an illustration of the coordinate

systems. The transformation is illustrated in Figure A.1. The relationship between the

Cartesian vertical velocity and the σ coordinate vertical velocity, ω, is

w =
H

L
ω + σ

∂η

∂t
− u · [(1− σ)∇h− σ∇η]. (A.3)

We can find an expression for the upsloping velocity by deriving several vertical velocity

terms individually. First, we follow a particle of water that is stationary with respect to

the σ coordinates, but oscillates up and down in Cartesian coordinates. In other words, the

particle maintains a constant relative vertical relationship in the water column. This can

be represented by w1 = ∂z
∂t̂

= ∂z
∂t . Using Equation A.2, this can be shown as follows:
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Figure A.1: Transformation to sigma coordinates (Deleersnijder, 1989)

σ =
z + h

η + h

z = σ(η + h)− h
∂z

∂t
= σ

∂η

∂t

⇒ w1 = σ
∂η

∂t
. (A.4)

In the next situation, the σ layers are at rest and we examine a particle moving along

an iso-σ surface with horizontal velocity u. The particle does not cross the surfaces, so its

velocity is orthogonal to a normal unit vector to the surface. In other words,

(u+ w2k̂) · n̂ = 0,

for vertical velocity w2 in this situation. A form for n̂ can be derived geometrically to find

an expression for this type of vertical velocity:

w2 = −u · [(1− σ)∇h− σ∇η]. (A.5)

Together, w1 and w2 give the velocity of a particle that moves without crossing an iso-σ

surface. Since the σ layers are terrain-following and the sea surface and seabed are iso-σ
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Figure A.2: Domain bathymetry with slice location indicated

surfaces, we can call wus = w1 +w2 the vertical velocity that is due to the geometry of the

basin.

Comparing Equations A.4 and A.5 with Equation A.3 and renaming the one remaining

term as the upwelling velocity, as it is not directly induced by the top or bottom layers,

returns Equation A.1.

An important note is that ROMS can directly output the upwelling velocity. It is called

omega and in terms of the discussion here is given by

omega = wuw =
H

L
ω.

Note that this is assuming no vertical stretching, i.e., a uniform vertical grid.

A.2 Example Plots

A.2.1 Along-Channel

Plots of mean vertical, upsloping, and upwelling velocity were shown in Figure 4.18 for the

along-channel slice shown in Figure A.2. The maximum and minimum values of vertical

velocities along the same slice are shown in Figure A.3 for w, upsloping, and upwelling

velocities. The upsloping velocities are adjacent to the slopes in the bathymetry and largest
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(a) Maximum Upsloping Velocity (b) Minimum Upsloping Velocity

(c) Maximum Upwelling Velocity (d) Minimum Upwelling Velocity

(e) Maximum Vertical Velocity (f) Minimum Vertical Velocity

Figure A.3: Maximum and Minimum Vertical Velocities Over Time

moving downslopes, whereas the upwelling velocities are away from the bathymetry, mid-

water column, particularly between hills. Interestingly, the maximum and minimum values

are larger for the upwelling velocity than for the upsloping velocity, and thus these w plots

are most controlled by the upwelling plots. This is the opposite of the averaged plots shown

in Figure 4.18. The shapes and locations of the high-valued regions are similar between the

means and maximums/minimums.

A.2.2 Depth Slices

The plot shown in Figure 4.20 of upwelling velocity near Admiralty Head at ebb tide is

repeated in this section but shown for upsloping and full vertical velocity in order to help
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Figure A.4: Snapshot from an ebb tide on 9/5/06, showing slices in depth of upsloping

velocity. Snapshot is at the same time as shown in Figures 4.6(c) and 4.15.

illustrate distinctions in the fields. Slices in depth of upsloping velocity are shown in Figure

A.4 and in full vertical velocity are shown in Figure A.5. The magnitudes of the upsloping

velocities (Figure A.4) are much smaller than the upwelling velocities. The full vertical

velocity field looks very similar to the upwelling field shown in Figure 4.20 because the full

vertical velocity is dominated by the large upwelling values.

A.2.3 Hub Height Plots

The mean magnitude of vertical velocities at hub height are shown in Figure A.6. The full

vertical velocity and upsloping velocity look very similar and are approximately the same
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Figure A.5: Snapshot from an ebb tide on 9/5/06, showing slices in depth of vertical velocity.

Snapshot is at the same time as shown in Figures A.4.



250

(a) Vertical Velocity (b) Upsloping Velocity (c) Upwelling Velocity

Figure A.6: Various mean vertical velocities

size whereas the upwelling velocity is 1/3 the size of w. The areas of strong magnitude are

largely in the same place for all of the plots, indicating that the bathymetry directly or

indirectly causes most of the vertical velocity in the system (this was also seen in Section

A.2.1). The upsloping velocity tends to be more focused while the upwelling velocity tends

to be more widespread.

Maximum and minimum values for each vertical velocity over time for each (x, y) location

at hub height are shown in Figures A.7, A.8, and A.9. The maximum and minimum

upsloping velocity plots show that the strong currents occur near areas of sharp change

in bathymetry in the presence of strong horizontal currents. While many of these areas

overlap with with the strong areas in the upwelling plots, the shape of the highlighted areas

for upwelling velocity is very different and much more spread out.
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(a) Maximum (b) Minimum

Figure A.7: Maximum/minimum full vertical velocity in space over time at hub height

(a) Maximum (b) Minimum

Figure A.8: Maximum/minimum upsloping velocity in space over time at hub height
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(a) Max Upwelling Velocity (b) Min Upwelling Velocity

Figure A.9: Maximum/minimum upwelling velocity in space over time at hub height
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Appendix B

SITE CHARACTERIZATION METRICS: ADDITIONAL DETAILS

Alternative calculations to some of the existing tidal turbine siting metrics have been

proposed in this work. Details on why they are proposed along with details on the effects

of the changes are given in this appendix.

B.1 Directionality Details

The proposed formulation for the directionality metrics involves weighting the angles of the

horizontal velocity vectors based on the cube of their speed, so that the relationship between

speed and power is used to maintain the ultimate goal of power production. This was found

by trying combinations of two possible parts of the directionality calculations: utilization

of a cut-in speed, and weights. A cut-in speed has been used in previous research to

prevent erratic speeds around slack tide from having undue influence on metric calculations.

However, when a cut-in speed is applied to the numerical simulation, which may have many

points with consistently low speeds, much of the velocity information may be discarded.

While the velocities at these points may be too low for utilization by a turbine, that will

depend on the turbine design deployed. Also, other (quantitative) metrics, such as the mean

kinetic power density, are intended to account for the size of the resource available, leaving

directionality metrics to address directionality exclusively. An alternative or complement

to the cut-in speed is to weight the speeds used in the directionality calculations.

The following sections show results from different methods for calculating the metrics

for angles. In this first section, the mean angle and standard deviation of the angles are

calculated based on the horizontal velocity vector angle for every point in time with no

weighting, with and without a cut-in speed of sc = 0.7 m/s. Next, the average and the

standard deviation calculations are weighted linearly with speed, without the cut-in speed,

and last, the metrics are weighted cubicly with speed, with and without a cut-in speed.
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B.1.1 Results for Different Calculations

When a cut-in speed is implemented in a calculation, no speeds below the cut-in are used.

Weights may be used with or without a cut-in speed. A weight is calculated for each time

step. In the linear weighting case, normalized weights wi for each (u, v) pair are determined

as follows:

wi =
|si|∑N
i=1 |si|

, (B.1)

where si is the horizontal speed at time step i. In the case with cubic weighting, normalized

weights are given by:

wi =
|s3
i |∑N

i=1 |s3
i |
. (B.2)

The case without weighting can be treated as having weights wi = 1/N . The weighted

average direction is found as

θM =

N∑
i=1

wiθi, (B.3)

for ebb and flood tide separately, where θi is the angle corresponding to the horizontal

velocity at time step i. The standard deviation is also weighted and calculated separately

for ebb and flood tides, and is given as

σ =

√√√√ N∑
i=1

wi(θi − θM )2. (B.4)

The bidirectionality metric, represented by a, is calculated as

a = |θM,ebb − θM,flood − 180|, (B.5)

where the calculation of θM,ebb and θM,flood includes corresponding weighting for each case.

A value of 0 for a implies perfect bi-directionality.

No Weighting

The bi-directionality a and directional deviation Θ for the case with no weighting and no

cut-in speed are shown in Figure B.1 at hub height. In the plot for a, a black contour is

shown at a value of 10, and labelled red markers show the locations of example points to
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(a) Bi-directionality (b) Directional Deviation

Figure B.1: Bi-directionality and directional deviation: no weighting, no cut-in speed

be examined later in this appendix. Dark colors indicate lower values, which is preferable

for fixed-axis tidal turbines. The directional deviation is large throughout the domain.

In the next case, no weights are used, but the velocities used in the metrics are filtered

ahead of time to eliminate (u, v) pairs for which the speed is below 0.7 m/s. The bi-

directionality and directional deviation are shown in Figure B.2. They are fairly similar to

the non-weighted, no cut-in speed case shown above, except here locations whose speeds stay

below the cut-in speed are not shown, leaving much of the maps empty. These empty points

would not be good for generating power, though it leaves out a lot of available information.

Linear Weighting

In the case using linear weights and no cut-in speed, the weights used in the calculations are

given in Equation B.1. The bidirectionality and directional deviation are shown in Figure

B.3. The directional deviation is large throughout the domain, but the differences in the

methods will be most easily seen in Section B.1.2.
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(a) Bidirectionality (b) Directional Deviation

Figure B.2: Bi-directionality and directional deviation: no weighting, cut-in speed of 0.7

m/s

(a) Bidirectionality (b) Directional Deviation

Figure B.3: Bi-directionality and directional deviation: linear weighting, no cut-in speed
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(a) Bidirectionality (b) Directional Deviation

Figure B.4: Bi-directionality and directional deviation: cubic weighting, no cut-in speed

Cubic Weighting

For the case with cubic weights, the weights are given by Equations B.2. The bidirectionality

and directional deviation for this case, with no cut-in speed, are shown in Figure B.4. In

both of these metrics, the results have been refined relative to the previous methods. The

directional deviation has decreased because the cubic weighting emphasizes the times with

the strongest speeds.

The bidirectionality and directional deviation are shown in Figure B.5 for the case with

cubic weighting and a cut-in speed of sc = 0.7 m/s. These plots are similar to the cubic-

weighted, no cut-in speed plots shown previously, but with empty locations where the speeds

are below the cut-in speed.

B.1.2 Example Points

Shown in this section are several example points to illustrate what (u, v) pairs can look like

in time from a specific location. This helps to interpret the metric maps, and to compare

calculation methods. The points are labeled in all of the previous plots as numbered red dots
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(a) Bidirectionality (b) Directional Deviation

Figure B.5: Bi-directionality and directional deviation: cubic weighting, cut-in speed of 0.7

m/s

which correspond to the figures below. Each method of calculation has its own color/line

type combination, as shown in the legends. The line represents the mean angle for that

location and tide direction. Only three of the indicated points will be evaluated.

Example point 1, shown in Figure B.6, is in the middle of the channel between Point

Wilson and Admiralty Head in an area that is bi-directional and has low directional devi-

ation. This can be seen in the metric maps as well as the alignment and lack of scatter of

the velocity points in each tidal direction in Figure B.6. Because of this, all of the methods

give similar mean angles, though the two cubic-weighted methods are most tuned toward

the strongest currents.

Example point 2 is located east of Marrowstone Island in the area affected by the large

flood eddy. It is shown two ways in Figure B.7: first with ebb and flood chosen based

on principal axis analysis with no cut-in speed, and the second principal axis analysis was

done with a 0.7 m/s cut-in speed. This helps to illustrate the effect of the cut-in speed

on the analysis. The cases without the cut-in speed have similar results, which are fairly
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Figure B.6: Example point 1

bidirectional, but the cut-in speed cases are very asymmetric due the completely different

principal axis identified, which heavily biases the metrics in these weaker current areas.

Example point 3 is located just off the tip of Admiralty Head in an area that is directly

affected by the headland eddies. It is shown in Figure B.8 and is easily split into ebb and

flood tide, resulting in a moderate asymmetry and directional spread.

B.2 Bias Details

This metric is used to capture the bias of the strength of the speed or power to ebb or flood

tide as a representation of potential asymmetry of power production throughout the day.

Currently, researchers at the University of Washington (Gooch et al., 2009; Polagye and

Thomson, 2011) calculate this metric as

bias = (mean property on ebb)/(mean property on flood).

The problem with this calculation is that it does not give a linear relationship between

various possible results. For example, if an ebb property is valued at 1 and a flood property

is valued at 2, the bias calculation would give 1/2. However, if they were oppositely-valued,

the bias calculation would give 2. The difference between these bias values is 3.5 even

though the relationship between the two numbers is a factor of 2. A more proper way to



260

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

Ebb

Flood

No Weight+No Cut−Off Speed

Linear Weight + No Cut−off

Cubic Weighting + No Cut−off

Cut−off 0.7, No Weight

Cut−off 0.7, Cubic Weight

(a) Ebb/flood based on no cut-in speed

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

Ebb

Flood

No Weight+No Cut−Off Speed

Linear Weight + No Cut−off

Cubic Weighting + No Cut−off

Cut−off 0.7, No Weight

Cut−off 0.7, Cubic Weight

(b) Ebb/flood based on cut-in speed of 0.7 m/s

Figure B.7: Example point 2
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represent their relationship may be that the bias is 1/2 when the flood is 2 and ebb is 1 and

the bias is −1/2 when the flood is 1 and ebb is 2, giving an equivalent distance from zero

for the same ratio of relationship, and with the sign showing which direction is dominating.

It is easy to differentiate between two tidal directions with pretty good accuracy, however,

it is difficult to consistently determine which direction is flood and which is ebb specifically,

especially for model output around headlands and other features that may have unexpected

behavior. Because of this, it may be best to take the absolute value of the calculation

described. This eliminates information of tidal direction if there is a bias, but also eliminates

possible mistakes in directionality. From a siting perspective, knowledge about the deviation

from roughly equivalent properties on ebb versus flood tide is important, but knowing which

direction is dominant may not be. However, from an operational perspective, this would

not be the case. In that case, further efforts can be made to determine flood versus ebb

directionality for the specific turbine locations.

This new bias metric can be written as follows for speed bias and power bias

sbias = 1−
min(sM,one direction, sM,other direction)

max(sM,one direction, sM,other direction)

pbias = 1−
min(pM,one direction, pM,other direction)

max(pM,one direction, pM,other direction)

B.2.1 Examples and Results

x-y plane

Figure B.9 illustrates the difference between including and not including direction infor-

mation in the speed bias plot. In the plot with directionality, it was necessarily to guess

the direction for flood everywhere ahead of time in order to categorize which direction the

principal axis was pointing toward (ebb or flood). In general it is fairly easy to make this

guess, but not in the more complicated flow areas of the domain. For example, the tides

west of Marrowstone Island are difficult to categorize and some strange behavior is easy to

see as the colors switch quickly between red and blue, due to some mis-categorization of

directionality. Similar effects can be seen south of Marrowstone Island and at the southern

end of the domain. While these instances of problems are relatively few and in areas that
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(a) With Directionality (b) Without Directionality

Figure B.9: Speed bias at hub height

do not tend to matter as much for tidal energy, it is a problem with the metric that will

be on-going, and the purpose of the metric is to present this specific bias information as

correctly as possible, regardless of tidal energy potential at each specific location.

Taking the absolute value of the first plot gives the plot of speed bias without direction-

ality. We get all of the important information in this plot: that is, the colors are dark where

the tide is most balanced between flood and ebb speed strength, and the colors are lightest

where the tide is most biased toward one direction.

There is relatively low bias between Point Wilson and Admiralty Head, with higher

biases tending to be near headlands or in the large jet area east of Marrowstone Island.

Figure B.10 shows the kinetic power density bias without and without directionality.

Everything is similar to the speed bias case, but all areas have been intensified due to the

cubic relationship of power with speed.
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(a) With Directionality (b) Without Directionality

Figure B.10: Power bias at hub height
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Appendix C

PRELIMINARY SIMULATIONS OF THE EFFECT OF TURBINES
ON FLOW FIELDS AND METRIC MAPS

C.1 Introduction

After working to understand the existing flow field characteristics of the area of interest, a

logical next step is to understand the effects of turbines on the flow. To this end, a turbine

model that is implemented in ROMS is used in several idealized headland channel flow

simulations (Roc et al., 2011).

Flow fields will be compared between the initial, base case simulation with no turbines

and two simulations with different array layouts near the headland tip. Plots will be ex-

amined at both hub height and the surface. In addition to examining the fields through a

tidal cycle, mean plots and metrics will help display the differences created by the presence

of turbines. Implications for the system and for turbine placement, along with future work

in this rich area of research, will be discussed in the final section.

C.1.1 Turbine Model

The turbine is modeled in ROMS by adding a force term to the momentum equations,

representing the turbine in a grid cell (Roc et al., 2011). The form of this term is

F = −1

2
ρAdC|v| · v · n̂,

where ρ is the fluid density, Ad is the area of the turbine, C is the drag coefficient, v is the

velocity, and n̂ is the unitary vector perpendicular to the rotor disc area.

Additionally, a term is added to each of the two k-ω turbulence closure scheme equa-

tions to simulate reduced turbulence length scales (Pk) and additional production of wake
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turbulence due to the turbine’s presence (Pω). The equations are as follows

Dk

Dt
=

∂

∂z

(
KM

σk

∂k

∂z

)
+ Ps + PB − ε+ Pk

Dω

Dt
=

∂

∂z

(
KM

σω

∂ω

∂z

)
+
ω

k
(c1Ps + c2PB − c3εFwall + Pω) ,

where D/Dt represents the material derivative, k is the turbulent kinetic energy, KM is

the vertical eddy viscosity, Ps is the shear production, PB is the buoyancy production, ε

is the turbulent dissipation rate, ω is the turbulent frequency, and Fwall is a wall function.

Constants have the following values: c1 = 0.555, c2 = 0.833, c3 = −0.6, σk = 2.0, and

σω = 2.0. The added terms to represent the turbine are given by

Pk = −Ck
uk

L

Pω = Cω
P 2
s

ε
,

where u is magnitude of the horizontal velocity, L is the grid spacing of the porous disc,

and parameters Cω and Ck are found empirically.

Turbines modeled this way are currently aligned with the x or y axis and have a fixed

direction. More details on this turbine model as implemented in ROMS can be found in

Roc et al. (2011).

C.1.2 Simulations

The simulations examined here are similar to the idealized headland case discussed in Chap-

ter 3. However, the grid has been refined due to the very high resolution used in these sim-

ulations. The turbine model requires one grid cell in thickness and three grid cells across.

The turbines modeled are 30 meters in diameter and are modeled with three, 10 meter grid

cells across, and one 30 meter cell in thickness. The resolution employed for these simula-

tions is 30 meters in the x-direction, 10 meters in the y-direction, and 20 vertical layers.

The domain is a flat-bottomed 40 km x 7 km x 100 meters deep channel with a smooth,

symmetric headland at the center. This simulation is shallower than the previous headland

simulation, and the k − ω turbulence closure scheme is used. Simulations are run for two

M2 tidal cycles with the same linear density initialization as in the previous headland case
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(a) Headland domain, zoom in box indicated

(b) Regular array, zoomed in (c) Staggered array, zoomed in

Figure C.1: Turbine locations in the three simulation cases.

(Section 2.7.1). The first tidal cycle is considered ramp-up, and the second tidal cycle is

used for analysis.

There are three simulation cases to examine: first, the initial case with no turbines; then

two cases with 10 turbines each, in different configurations. Turbines are located at a hub

height of 50 meters, mid way up the water column.

The three simulation cases are shown in Figure C.1. The initial case is shown in Fig-

ure C.1(a), which has no turbines modeled. Figure C.1(b) shows the “regular” array case,

in which there is one turbine near the headland tip and the other nine are uniformly ar-

ranged behind, away from the tip. The “staggered” array case, shown in Figure C.1(c)

has 3 columns of turbines, alternating with three then four then three turbines, which are

staggered with respect to one another in columns.
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C.2 Flow Fields

The staggered turbine array layout appears to affect the flow field less than the regular

turbine array. This is probably due to the fact that with the angle of the flow past the tip

of the headland, the staggered array actually causes the turbine wakes to align, having less

affect on the flow field, whereas in the regular layout, the wakes are staggered. See Figure

C.1. Because of this, we will compare the base case with no turbines with the regular layout

array to have the most extreme comparison, knowing that the results with the staggered

array are somewhere between.

C.2.1 Hub Height

Figure C.2 shows snapshots of a variety of model outputs from the base case with no turbines

and the regular array. Generally, the presence of the turbines disrupts the flow features. In

the speed, the sharp front in the base case is diffused and not noticeable in the regular array

case. The turbines are visible as a decrease in speed at each turbine location along with a

decrease in the wake. The dip in speed due to an eddy is in a slightly different location in

the two cases, implying that the turbines’ presence in the present locations alters the flow

enough to change the eddy field patterns. The vorticity field appears to show that in the

base case, the vorticity field is more cohesive, compared with the turbine case in which the

vorticity patch is broken up by the turbines. The vertical velocity field in the base case

shows a sharp front whereas the regular array again has a more diffuse frontal region, and

there are a lot of small vertical velocity patches in the turbine array wake. The turbulent

kinetic energy also has a cohesive patch in the base case, but this is disrupted and broken

up by the turbines in the regular array case.

Another set of snapshots is shown in Figure C.3. This is in the middle of ebb tide in

which a large eddy has developed lee of the headland, seen in the speed fields. The most

noticeable feature is a flow feature from the headland tip that swirls downstream in the

base case. It is easily seen in both the vertical velocity and turbulent kinetic energy. In

the turbine case, the turbulence is too small-scale to be resolved explicitly on this grid and

looks like streaks behind the turbines, and patches near the tip of the headland where the
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Sharp 
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(a) Speed

No sharp front
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(b) Speed
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patch of 
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(c) Vorticity
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(d) Vorticity
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vertical velocity

(e) Vertical velocity

Velocity 
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wakes

Less dramatic front

(f) Vertical velocity

Cohesive 
front

(g) Turbulent kinetic energy

Less cohesive front; 
turbulent wake region

(h) Turbulent kinetic energy

Figure C.2: Snapshots of speed, vorticity, vertical velocity, and turbulent kinetic energy are

shown in color at hub height at the same time, with the x-axis the length along the channel

and the y-axis the width across the channel. The left column is from the base case with no

turbines and the right column is from the regular turbine array. Ebb tide is just starting.
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swirl was in the other case.

In Figure C.4, snapshots are shown from a tide near the end of ebb tide. The speed

in the base case shows some detailed behavior in the flow from the headland that is not

seen in the turbine case. This is also seen in the vorticity field with additional patches of

vorticity in the base case but not the turbine case. The dip in speed in the base case from

the large eddy is again in a slightly different place than in the turbine case; in this case a

little northeast of the dip in the turbine case. Accordingly, the speed up seen on the side of

the eddy near the wall is a little smaller and less strong in the turbine case. The turbulent

kinetic energy field in the base case shows a large swirl from the headland along with a large

patch of increased turbulence along the wall. The turbine case shows increased turbulence

persisting near the headland tip and a smaller, less strong patch along the wall.

Overall, these slight changes in behavior in the system can be seen in mean plots.

The mean speed and vertical velocity plots for each simulation are shown in Figure C.5.

The mean speed plots show the highest speeds near the headland tip, but the cases with

turbines show a speed deficit at and in the wake of each turbine location. Since the flow is

approximately parallel to the headland on each tide, the wake is also at an angle on each

tide direction. There is a circular dip in speed to each side of the headland in the base case

due to a large eddy that takes over the channel toward the end of each half-tide, as well as

an increase in speed along the wall. These features are located in slightly different areas in

each of the array cases, and have slightly different shapes and sizes.

The mean vertical velocity magnitude plots in Figure C.5 all show strong vertical ve-

locities near the headland in the direction parallel to the flow past the headland, as well

as smaller magnitudes, on average, throughout the eddy fields. The array cases show addi-

tional sharp increases in vertical velocity in the array area. The maximum mean value in

the array cases is over double that of the base case.

C.2.2 Surface

The extent to which the surface flow properties change with the presence of turbines helps

show how much turbines may affect the rest of the water column away from hub height.
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(a) Speed (b) Speed
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Figure C.3: Snapshots of speed, vorticity, vertical velocity, and turbulent kinetic energy are

shown in color at hub height at the same time, with the x-axis the length along the channel

and the y-axis the width across the channel. The left column is from the base case with no

turbines and the right column is from the regular turbine array. This is at mid-ebb tide.
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Figure C.4: Snapshots of speed, vorticity, vertical velocity, and turbulent kinetic energy are

shown in color at hub height at the same time, with the x-axis the length along the channel

and the y-axis the width across the channel. The left column is from the base case with no

turbines and the right column is from the regular turbine array. This is toward the end of

ebb tide.
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(e) Staggered array (f) Staggered array

Figure C.5: Mean speed (left column) and mean vertical velocity magnitude (right column)

at hub height.
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Snapshots at the beginning of ebb tide in Figure C.6, the same time as shown in Section

C.2.1, show differences between the base case and the regular turbine array case. In the

initial case, the front of speed pushes further south and less west than in the array case,

and the vortex is shifted. The vorticity field shows a cohesive patch beyond the headland

in the base case, but a largely broken patch in the array case. As in the hub height case,

the vertical velocity shows a stronger front in the no turbine case compared to the turbine

case, and turbulence levels are increased with the presence of turbines even at the surface.

Plots are shown at the surface for mid-ebb tide in Figure C.7. Here again we find

similar differences in behavior. Generally, the front of speed, vorticity, vertical velocity, and

turbulent kinetic energy is sharp and further west in the base case. The array case has the

flow slightly retarded by the turbines, shown in all flow fields.

Mean speed and vertical velocity magnitude are shown in Figure C.8. Even the mean

surface properties are changed due to the turbines at mid-water column. The large eddy

location is shifted in the array cases compared with the base case, and the mean speed is

slightly higher in the array cases, probably due to increase in flow around the turbines. The

turbines can be seen in the mean vertical velocity plot near the surface, and, like at hub

height, the mean vertical velocity magnitude is much larger than in the initial case.

The turbines are even visible in the mean free surface plots, shown in Figure C.9. These

plots are zoomed in very close to the headland tip. The array cases show that there are dips

on the surface due to each turbine of 6-7 cm. The base case shows a dip on either side of

the headland tip from vorticity shedding. While there is some decrease in the free surface

near the headland tip in the turbine cases, there is not the same structure seen in the base

case, perhaps showing another indication of the vorticity generation being disrupted by the

turbines.

C.3 Metric Maps

The mean kinetic power density and mean turbulent kinetic energy plots at hub height are

shown in Figure C.10. The power density plots show that the areas of higher resource are

shifted slightly south in the array cases, as was shown repeatedly in the previous plots. The

turbines also deteriorate the contours of power density in their wake, as would be expected
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(a) Speed (b) Speed

(c) Vorticity (d) Vorticity

(e) Vertical velocity (f) Vertical velocity

(g) Turbulent kinetic energy (h) Turbulent kinetic energy

Figure C.6: Snapshots of speed, vorticity, vertical velocity, and turbulent kinetic energy are

shown in color at the surface at the same time, with the x-axis the length along the channel

and the y-axis the width across the channel. The left column is from the base case with no

turbines and the right column is from the regular turbine array. Ebb tide is just starting.
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(a) Speed (b) Speed

(c) Vorticity (d) Vorticity

(e) Vertical velocity (f) Vertical velocity

(g) Turbulent kinetic energy (h) Turbulent kinetic energy

Figure C.7: Snapshots of speed, vorticity, vertical velocity, and turbulent kinetic energy are

shown in color at the surface at the same time, with the x-axis the length along the channel

and the y-axis the width across the channel. The left column is from the base case with no

turbines and the right column is from the regular turbine array. This is at mid-ebb tide.
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(a) Base case (b) Base case

(c) Regular array (d) Regular array

(e) Staggered array (f) Staggered array

Figure C.8: Mean speed (left column) and mean vertical velocity magnitude (right column)

at or near the surface.
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(a) Base case (b) Regular array

(c) Staggered array

Figure C.9: Mean free surface near the headland tip. The turbine locations are just visible.

since they are taking energy from the system. The mean turbulent kinetic energy plots show

a large increase in the magnitude and area of turbulence around the headland tip from the

turbine wakes.

Asymmetry metrics are shown at hub height in Figure C.11. The presence of the turbines

leads to larger areas of less bi-directionality near the headland tip. Directionality deviation

patches are shifted in the different cases but not too different.

C.4 Summary and Discussion

This chapter shows results from the first few simulations combining an idealized simulation

of a realistic situation, baroclinic headland channel flow, with a validated turbine model.

Results show potential flow field affects to the system. At hub height, the turbine array

cases show differences in both mean flow and the details of the flow field. The flow shows a

phase change due to the presence of the turbines, with the front in the array case typically

just behind the front in the base case. The fronts are also more diffused in the array cases,
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(a) Base case (b) Base case

(c) Regular array (d) Regular array

(e) Staggered array (f) Staggered array

Figure C.10: Mean kinetic power density (left column) and turbulent kinetic energy (right

column) at hub height.
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(a) Base case (b) Base case

(c) Regular array (d) Regular array

(e) Staggered array (f) Staggered array

Figure C.11: Bi-directionality (left column) and directional deviation (right column) at hub

height.
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with less vertical velocity and a less sharp speed gradient marking the area as it moves

around the system. The turbine arrays interrupt the formation of a resolved swirl from the

headland tip, instead generating smaller-scale, unresolved streaks in the turbine wakes in

the vertical velocity and turbulent kinetic energy fields. The eddies in the system are also

located in slightly different areas when turbines are present, leading to a small difference in

the areas of lower mean speed, among other effects. The effects of the turbines can be seen

near the surface as well, even with just these ten turbines, in similar ways as at hub height

but not as dramatic.

C.4.1 Implications for Estuary

The changes in the system involved alteration to the timing and location of flow features

in the system including vorticity generation, eddy location, turbulence scales, and fronts.

Additional vertical velocities were seen near the turbines along with increased turbulence.

Each of these changes could affect the location, timing, and rate of mixing and transport.

The change in the eddy locations and rate could affect bottom sediment transport, which

could affect the bathymetry in the area. The bathymetry was seen to correlate with the

eddy field location in previous studies as well as possibly in Admiralty Inlet (see Figure

C.12) (Geyer and Signell, 1990).

C.4.2 Implications for Turbine Siting

The changes found in these simulations would not only affect the estuary system itself, but

also any placement of additional turbines. For example, the mean kinetic power density

plots shown in Figure C.10 illustrate how the turbine placement affects the power density

available for other turbines to access. The same may be true in other aspects of the flow,

such as bi-directionality and increased turbulence levels.

C.4.3 Future Work

These simulations showed that ten turbines placed near the headland tip had an effect on the

flow field of the simulation. This may be partially due to the turbine locations. Placement
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Admiralty Head

Figure C.12: High resolution bathymetry near Admiralty Head possibly showing effect of

eddies on seabed

of turbines away from the headland may result in less effect on the system, which will be

investigated in future simulations. Results may show that an additional consideration to

be used for turbine siting is potential effect on the major local flow features, leading to the

need to place turbines away from important flow features.

There are adjustments that could be made to future simulations to improve understand-

ing and performance of results. For example, due to the high resolution needed in the

simulations to model the turbines, only two tidal cycles were simulated here: one for spin-

up time and one for analysis. Access to more tidal cycles would possibly alter model results.

Implementing the turbine model in a non-hydrostatic ocean modeling code could lead to

some distinct results. Additionally, turbines are currently located at a hub height in the

middle of the water column. A more realistic hub height location for these thirty meter

diameter turbines would be 25 meters rather than 50 meters above the seabed. Further,

the turbine model itself is currently a fixed-axis turbine which must be aligned with the

x-y axes. In future work, a turbine that could yaw with the flow, or at least be tilted with

the mean flow as a fixed-axis turbine, would be helpful to study. Incorporating cut-in and
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Figure C.13: Mean kinetic power density is shown in color at hub height in the base case

with a cyan contour of bi-directionality overlaid at 15◦.

rated speed parameters into the turbine model would allow for more realistic results.

More simulations are planned to continue this line of research. Looking at the results

from the base case, we can choose a sample turbine distribution to attempt to optimize the

array layout with metric maps of the simulation. For example, Figure C.13 shows the mean

kinetic power density at hub height with contours showing the bi-directionality parameter.

For this fixed-axis turbine, ideal locations may be due to a combination of these two metrics.

A future simulation may look at the affects of turbines outside the high asymmetry areas

(below 15◦ asymmetry) but within areas of high resource. An additional next simulation to

examine is the extreme case with many turbines in the area to see the effect of an over-loaded

channel.

Analysis on these results from a power production perspective is to be undertaken by

Thomas Roc at the University of Plymouth.
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