HARP_Opt: An Optimization Code for System Design of Axial Flow Turbines

Marine and Hydrokinetic Instrumentation, Measurement, & Computer Modeling Workshop Broomfield, CO July 9-10, 2012

Danny Sale

Northwest National Marine Renewable Energy Center Dept. of Mechanical Engineering University of Washington

Objective

Develop a design tool for wind & hydrokinetic turbines rotors, combining

- aerodynamic models
- structural models
- multi-objective optimization

Applications

- Sizing of new machines
- Modifications to existing designs

Motivation

- Difficult problem considering many variables & constraints
- Optimization leads to improved designs beyond our intuition
- Accelerate design process

Intro: HARP_Opt code

HARP_Opt (Horizontal Axis Rotor Performance Optimization)

An optimization code for the design of horizontal-axis wind and hydrokinetic turbines

Objectives: • maximize annual energy production (AEP)
• minimize blade mass
Given: • turbine & environmental specifications
Variables: • blade shape, rotor speed & blade pitch control
• structural material thickness
Constraints: • power, cavitation, rotor speeds
• max allowable strain

Technical Approach: Hydrodynamics

- Blade Element Momentum Theory
 - WT_Perf (NREL code), simpler than CFD but computationally fast
 - Steady performance, uniform or sheared inflow
 - Hub/tip losses, turbulent wake state, corrections for 3D stall-delay
 - Cavitation inception model

Image: Wind Energy Handbook

Technical Approach: Structural Mechanics

- Euler-Bernoulli beam theory
 - Thin-shell cantilever beam, isotropic material properties
 - Design load resolved from max root moment over full range of operating conditions (with applied safety factor)
 - Consider max allowable bending strain only

Technical Approach: Optimization

Optimization Algorithm

- Multi-Objective Genetic Algorithm
 - Mimics biological evolution, i.e. "survival of the fittest"
 - Slow convergence, good for multi-optima problems, no gradient info required

Objectives and Fitness Function

Penalty method (a constrained problem becomes unconstrained)

Technical Approach: Blade Geometry

- Bézier curves define twist and chord distributions
- % thickness denotes airfoil placement
- Great degree of freedom in possible blade shapes

Technical Approach: Design Algorithm

Design of 5m dia., 72 kW MHK turbine: investigate various control schemes

- Fixed-Speed Fixed-Pitch
- Fixed-Speed Variable-Pitch
- Variable-Speed Variable-Pitch
- Variable-Speed Fixed-Pitch

Design of 5m dia., 72 kW MHK turbine: investigate various control schemes

- Fixed-Speed Fixed-Pitch
- Fixed-Speed Variable-Pitch
- Variable-Speed Variable-Pitch
- Variable-Speed Fixed-Pitch

Design of 5m dia., 72 kW MHK turbine: investigate various control schemes

- Fixed-Speed Fixed-Pitch
- Fixed-Speed Variable-Pitch
- Variable-Speed Variable-Pitch
- Variable-Speed Fixed-Pitch

Design of 5m dia., 72 kW MHK turbine: investigate various control schemes

- Fixed-Speed Fixed-Pitch
- Fixed-Speed Variable-Pitch
- Variable-Speed Variable-Pitch

R_{2.5}

R₃

• Variable-Speed Fixed-Pitch

Torque

R1 R1.5 R2

25.0

20.0

Torque (kN-m) 10.0

5.0

0.0

0.0

0.4

0.8

1.2

1.6

Flow Speed (m/s)

2.0

2.4

2.8

	Summary of Performance Data					
-	V _{rated} (m/s)	Cp _{max}	AEP (kW-hr/yr)	Max Flap (kN-m)	Max Torque (kN-m)	Max Thrust (kN)
FS-FP	2.7	0.49	148000	21.7	25.6	47.0
FS-VP	2.5	0.50	152000	21.4	16.4	46.0
VS-VP	2.5	0.50	155000	21.5	17.3	45.7
VS-FP	2.5	0.49	154000	22.0	20.9	45.8

Design Sp	becs (Summary)		
Control =	VSVP (feather)		
Rated Power =	250 kW		
Diameter =	10 m		
Flow Regime	Marrowstone Island, C5		
E =	27.6 GPa		
ρ =	1800 kg/m ³	Representative values for	
Max Strain =	3000 microstrain	composite fiberglass (GRFP)	
Sf _{cav} , SF _{loads} =	1.2		
	Circular @ root		
Uvdrofoilo –	FFA-W3-211	FFA hydrofoils resistant to	
Hydrofoils =	FFA-W3-241		
	FFA-W3-301	cavitation and soiling	

Moving Forward:

Develop a tool capable of modeling realistic composite blades

Image: www.Gurit.com

Future Direction: Advanced Structural Optimization

CoBlade: Software for Structural Analysis & Design of Composite Blades

• realistic modeling of composite blades

-arbitrary topology & material properties

technical approach

- -Euler-Bernoulli beam & shear flow theory
- -classical lamination theory
- -linear (eigenvalue) buckling
- -finite-element modal analysis

computes structural properties

- -stiffnesses: bending, torsional, axial
- -inertias: mass, mass moments of inertia
- -principal axes: inertial/centroidal/elastic principal axes
- -offsets: center-of-mass, tension-center, shear-center
- -modal: coupled mode shapes & frequencies

- optimization of composite layup
 - For a given (static) design load, minimize blade mass subject to constraints on:
 - -max allowable lamina stresses
 - -blade tip deflection
 - -panel buckling stresses
 - -separation of blade & rotor nat. frequencies

Image: replica of Sandia SNL100-00 wind turbine blade modeled with CoBlade

Future Direction: Advanced Structural Optimization Optimization of Composite Blade for Tidal Turbine

- NREL Ref. Model Tidal Turbine: 2-bladed, 550 kW, 20m dia. rotor
- design loads: CFD simulation of 2.85 m/s sudden gust (operating condition)

Progress to-date:

- developed *preliminary design tool* for axial flow wind & hydrokinetic turbines, method is generalized to a *variety of turbine configurations* & sizes
- consideration of *multiple design criteria & constraints* leads to satisfactory design in all areas (hydrodynamics, structures, & controls)
- enabling improved performance & reduced design time

Areas for Refinement

Short-term (Sept. 2012 release)

- implement Pattern Search optimization algorithm (*much* faster & deterministic)
- improve MATLAB/Fortran interface, allowing for parallel HPC
- make HARP_Opt cross-platform, develop GUI and non-GUI versions for improved usability & interfacing

Longer-term

• consider fatigue as design criteria (hydro-elastic analysis, i.e. *FAST* code)

Thank you! Questions?

WT_Perf: Turbine Performance Simulator
 wind.nrel.gov/designcodes/simulators/WT_Perf/

HARP_Opt: Optimization Software for Turbine Design
wind.nrel.gov/designcodes/simulators/HARP_Opt/

CoBlade: Software for Analysis & Design of Composite Blades

no website yet—contact <u>dsale@uw.edu</u> for source & documentation

Sale & Aliseda (2012) "Structural Design of Composite Blades for Wind & Hydrokinetic Turbines" <u>depts.washington.edu/nnmrec/docs/20120213_SaleD_pres_StructuralDesign.pdf</u>

Acknowledgements

Special thanks to the crew at NWTC!

This work has also been made possible by

- U.S. Department of Energy, National Renewable Energy Laboratory
- University of Washington, Northwest National Marine Renewable Energy Center
- National Science Foundation, Graduate Research Fellowship under Grant No. DGE-0718124

