Hypoxic Intrusions to Puget Sound From the Ocean

R. Walt Deppe1, Jim Thomson1b, Brian Polagye1c, Christopher Krembs2

1 University of Washington, Seattle, WA 98195, 1rdeppe@uw.edu, 1jimthomson@apl.washington.edu, 1bpolagye@uw.edu
2 Washington State Department of Ecology, Olympia, WA 98504, ckre461@ecy.wa.gov

Observing Dissolved Oxygen Levels at Admiralty Inlet

Data Collection

Oceanic intrusions of dense, low dissolved oxygen water may be significant to the modulation of dissolved oxygen concentrations in Puget Sound. To observe these intrusions, sensors at Admiralty Inlet have been deployed to collect data for dissolved oxygen, salinity, temperature, pressure, and current velocity since August 2009.

Motivation:

• Hypoxic water in Puget Sound can be harmful to the ecosystem (e.g. Fish kills in Hood Canal)
• Important to understand the relative contribution to the overall system from the natural modulation of dissolved oxygen concentrations
• Understanding the driving forces involved can enhance predictability of hypoxia events

Objective

The primary goal of ongoing work will be to develop an Intrusion Index that will act as a quantitative indicator of the likelihood that low dissolved oxygen water will be transported over the sill at Admiralty Inlet and into the main basin of Puget Sound at a given time.

Analysis

Determining the role of forcing factors that control the development of hypoxic intrusions is necessary for designing an Intrusion Index. The primary forces expected to modulate dissolved oxygen concentrations at the mouth of Puget Sound are tidal conditions, coastal upwelling conditions, and river discharge levels.

Exchange Flow Over Admiralty Sill

Intrusions of dense, low DO water are likely related to strong estuarine exchange flows, which have been observed to occur during conditions for minimal tidal mixing, nominally the coincident maximum diurnal inequality and neap tides that occur during equinoxes [1].

Confounding Oceanic Source of Hypoxic Water:

• Low dissolved oxygen levels correspond with high salinity water and a narrow temperature range, suggesting an oceanic source
• Water from Puget Sound is expected to be fresher as result of the large river outflows
• Confirms that occurrences of low dissolved oxygen water at Admiralty Inlet can be paired with the dynamics of dense water intrusions

Importance of Coastal Upwelling and River Discharge

Tidal conditions alone cannot predict intrusions of hypoxic ocean water to Puget Sound. Coastal upwelling and river discharge seem to play an important role in governing the availability of dense, low dissolved oxygen water to be transported into the Sound during exchange flows [1,2,6].

Ongoing Work

Developing an Intrusion Index:

1. Probability of Exchange Flow
 • Based on tidal conditions and river discharge
2. Availability of Hypoxic Water
 • Based on upwelling conditions and river discharge

Preliminary Conclusions

• Confirmation of oceanic source of hypoxic water
• Confirmation of tidal signal
 ○ Importance of minimal mixing periods
 ○ Pressure as potential proxy for exchange flow
• Suggestion of sensitivity to coastal upwelling and river discharge

References

Acknowledgments

Thanks to the Northwest National Renewable Energy Center for support in association with maintaining the sensor mooring.

University of Washington Water Symposium – 30 April 2013