Micropower from Tidal Turbines

Brian Polagye¹, Rob Cavagnaro¹, and Adam Niblick² ¹Northwest National Marine Renewable Energy Center, University of Washington ²Creare, Inc.

13th International Symposium on Fluid Power July 9, 2013

Tidal Current Energy

Utility-scale (> 1 MW) turbines harnessing renewable, predictable kinetic energy from tidal currents

Ocean Renewable Power Company

Potential Environmental Impacts

Physical environment: Near-field Physical environment: Far-field

Habitat

Invertebrates

Fish: Migratory

Fish: Resident

Marine mammals

Seabirds

Ecosystem interactions

			\bigtriangleup	
		\triangle		
			\bigtriangleup	
			\bigtriangleup	

Polagye, B., B. Van Cleve, A. Copping, and K. Kirkendall (eds), (2011) Environmental effects of tidal energy development.

Studying Changes to Distribution and Use

- Pre-installation studies of tidal energy sites must typically rely on autonomous instrumentation
- Active acoustic sensors for observations of marine life have relatively high power draws (> 20 W)

SoundMetrics DIDSON

BioSonics DTX

3-4 deep cycle lead acid batteries required to achieve 10% duty cycle for 1 month

Tidal Micropower Concept

- Integrate energy harvesting capability into sensor package
- Modular alternative to cabled observatories
- Target 10-20 W/m² power output (including battery storage losses)

System Components

Micropower Rotor Requirements

- Self-starting without external excitation
- Accommodate currents with time varying direction
- High efficiency conversion of kinetic power to electrical power

Rotor Selection

Cross-flow turbine

- High solidity
- Helical blades
- NACA 0018 profile
- N: Number of blades (4)
- *H/D:* Aspect Ratio (1.4)
- φ: Blade helix angle (60°)
- σ : Turbine solidity (0.3) $\sigma = \frac{Nc}{\pi D}$
- Limited existing parametric studies

Shiono, M., Suzuki, K., and Kiho, S., 2002, "Output characteristics of Darrieus water turbine with helical blades for tidal current generations," *Proceedings of the Twelfth International Offshore and Polar Engineering Conference*, Kitakyushu, Japan, pp. 859-864.

Bachant, P., and Wosnik, M. 2011, "Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence," *Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference*, Hamamatsu, Shizuoka, Japan.

Principle of Operation

Laboratory Experiments

Niblick, A.L., 2012, "Experimental and analytical study of helical crossflow turbines for a tidal micropower generation system," Masters thesis, University of Washington, Seattle, WA.

Turbine Operation

C_p - λ Velocity Dependence

Whelan, J. I., J. M. R. Graham, and J. Peiro (2009) A freesurface and blockage correction for tidal turbines. *Journal of Fluid Mechanics* 624, 1: 281-291.

Possible Effect of Reynolds Number

Approximate Local Velocity

Sheldahl, R. E. and Klimas, P. C., 1981, "Aerodynamic characteristics of seven airfoil sections through 180 degrees angle of attack for use in aerodynamic analysis of vertical axis wind turbines," SAND80-2114, March 1981, Sandia National Laboratories, Albuquerque, New Mexico.

Angle of Attack Variation

Significance of Dynamic Stall

 $Re_{c} = 5x10^{4}$

Jacobs, E.N., and Sherman, A., 1937, "Airfoil section characteristics as affected by variations of the Reynolds number," Report No. 586, National Advisory Committee for Aeronautics.

Field Experiments

Turbine Operation

Micropower Turbine Tow Test 2 8/23/12 Cut-in to 4 knots

Field Performance

Laboratory Dynamometer

Reaction

Torque

- Generator connected to field testing load bank
- Motor driven by variable frequency drive (3 phase AC)
- Evaluate generator and gearbox efficiency under same conditions as field test (loads and rpm)

Generator

Generator Efficiency

Gearbox Efficiency

Field Performance

System Performance

Rotor Performance

Rotor performance (without blockage) in line with expectations from prior work by Bachant and Wosnik (2011), accounting for higher solidity

Response to Turbulent Perturbations

Tidal Micropower Feasibility

- Self-starting without external excitation
- Accommodate currents with time varying direction
- High efficiency conversion of kinetic power to electrical power
 - Low balance of system efficiency
 - Relatively low rotor efficiency

Design Refinements

Improved Rotor Efficiency

- Decrease solidity to increase λ
- Asymmetric foil with higher C_L/C_D at $Re_c \simeq 10^4 10^5$ (similar Re_c to UAVs)

Submersible Direct-Drive Generator

- With existing drivetrain, optimal λ depends on inflow velocity (undesirable for control)
- Eliminate rotary seal
- Minimize thermal management challenge

http://adg.stanford.edu/aa241/airfoils/air foilhistory.html

Acknowledgements

This material is based upon work supported by the Department of Energy under Award Number DE-FG36-08GO18179.

Funding for field-scale turbine fabrication and testing provided by the University of Washington Royalty Research Fund.

Fellowship support for Adam Niblick and Robert Cavagnaro was provided by Dr. Roy Martin.

Two senior-level undergraduate Capstone Design teams fabricated the turbine blades and test rig.

Martin Wosnik and Pete Bachant provided a number of helpful comments on representations of the blade chord Reynolds number for cross-flow turbines.