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The performance of a current turbine is influenced by numerous variables related to the

geometry of the turbine and channel, the fluid properties, and the external forces acting on

the system. These variables can be non-dimensionalized to form parameters that affect the

dimensionless performance of a turbine. If these parameters are held constant between geo-

metric scales, a smaller turbine model can exactly represent a much larger prototype. This

method of testing scale models is frequently used to reduce the time and costs associated

with the early stages of design. However, not all parameters can be easily matched between

scales or maintained within experiments. These limitations prevent models from achieving

complete similarity with full-scale prototypes and make it challenging to isolate the effects

of individual parameters on turbine performance. Furthermore, the influence of certain pa-

rameters on turbine hydrodynamics and performance is not fully understood. Therefore, the

aim of this work is to investigate the effects of certain scaling parameters on the hydrody-

namics and performance of laboratory-scale current turbines. Three specific objectives are

addressed. The first objective is to characterize the effects of the blockage ratio, Reynolds

number, and Froude number on turbine performance and flow dynamics with the goals of

better understanding the relative influence of these parameters and improving the quality

of laboratory-scale testing. The second objective is to assess several analytical corrections



intended to account for the influence of blockage on turbine performance. A better under-

standing of the effectiveness of these corrections will enable data collected under confined

conditions to be accurately extrapolated to other environments. The third objective is to

investigate the effects of blockage on the wake of a cross-flow current turbine. Better under-

standing these effects will inform the design of arrays that can exploit blockage to augment

turbine performance.

To characterize the effects of the blockage ratio, Reynolds number, and Froude number

on turbine performance, a cross-flow current turbine was tested in a laboratory flume. The

turbine’s power and thrust coefficients were measured under a set of baseline operating con-

ditions, then each parameter was increased while the others were maintained at their baseline

values. We additionally measured the local channel depth directly upstream and downstream

of the turbine to quantify the deformation of the free surface. We found that all three param-

eters significantly influenced turbine performance, with the power coefficient most sensitive

to changes in the Reynolds number and least sensitive to changes in the Froude number.

Furthermore, free surface deformation was affected by the Froude number but remained rel-

atively unchanged from baseline values when the blockage ratio and Reynolds number were

varied. Because all three parameters significantly affected the turbine’s power and thrust

coefficients, they should be carefully controlled in experiments where scale similarity is de-

sired. In addition, further research is needed to determine the underlying fluid mechanisms

that cause the observed change in turbine performance with Froude number.

Because scale models are frequently tested at relatively high blockage ratios, it is desirable

to correct measured performance for blockage effects. However, there has been limited ex-

perimental validation of the analytical blockage corrections presented in the literature. This

work evaluated corrections against experimental data to recommend one or more for future

use. For this investigation, we tested a cross-flow turbine and an axial-flow turbine under

conditions of varying blockage with other dimensionless parameters, such as the Reynolds



and Froude numbers, held approximately constant. Increasing blockage improved turbine

performance, resulting in higher thrust and power coefficients over a larger range of tip-speed

ratios. Of the analytical corrections evaluated, the two based on measured thrust performed

best. Unexpectedly, these corrections were more effective for the cross-flow turbine than

the axial-flow turbine. We attribute this result to changes in the local Reynolds number

caused by increasing blockage, an effect not captured by the analytical theory. For both

turbines, the corrections performed better for thrust than power, which is consistent with

the assumptions that underlie the analytical theory.

The potential to increase turbine performance through the use of high blockage arrays has

inspired recent interest in array design. Arrays are typically composed of multiple rows of

turbines, with downstream turbines operating in the wake of upstream turbines. To inform

the design of arrays, the effects of blockage on the wake of a cross-flow current turbine

were evaluated. Velocity data were collected downstream of the turbine under two different

blockage conditions. As before, to isolate blockage effects, other dimensionless parameters

that affect turbine performance were held approximately constant. The turbine was operated

at the tip-speed ratio corresponding to peak power for each blockage ratio. Increasing the

blockage caused faster streamwise flow speeds through and around the turbine, a decreased

overall wake size, elevated turbulent kinetic energy, and an increased viscous dissipation

rate. These results suggest that higher blockage could increase the power output and reduce

the physical footprint of current turbine arrays due to faster wake mixing. However, these

benefits must be weighed against the potential for high blockage arrays to reduce a turbine’s

“basin efficiency”, which is an important ecological parameter. Furthermore, we observed

that decreasing the width of the experimental channel while holding the depth constant

decreased the extent of the wake in the lateral direction only. The wake was unaffected in

the vertical direction, which suggests that lateral and vertical blockage have independent

effects on turbine wakes. Consistent with prior studies, we also observed significant wake



mixing in the vertical (i.e., spanwise) direction and negligible wake mixing in the lateral

direction for both blockage conditions.
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Chapter 1

INTRODUCTION

Concerns about the negative environmental impacts of fossil fuel emissions continue to

drive research on innovative methods of power generation, including harnessing energy from

moving water. The relatively young field of marine renewable energy includes tidal current,

ocean current, and riverine energy. These three types of current energy employ turbines

that convert the energy of flowing water into mechanical, rotational energy and, ultimately,

electricity. Historically, the majority of research on turbines designed to capture the power

of a moving fluid has been conducted to support the wind energy industry. Unlike wind

turbines, current turbines operate in flows that are naturally confined by channel walls and

a free surface. This confinement alters the dynamics of the flow around a turbine, impacting

the performance of the turbine, the nature of the wake, the mechanisms of wake recovery,

and the flow energetics [23, 30, 37]. These unique operating conditions must be considered

to optimize current turbine designs. Therefore, although prior work in the wind energy field

has informed the development of current turbines, new research is needed to support the

growth of the marine energy industry [43].

1.1 Scale Model Similarity

To optimize individual turbine and array designs, explore new control schemes, and inves-

tigate environmental effects, researchers frequently use numerical and experimental models.

Because numerical methods do not require the fabrication of physical models, they can more

easily be used for large parameter sweeps, full-scale analysis, and array design. However,

experimental models may be preferable if the dynamics of a system are too complicated to

accurately model numerically. Furthermore, experimental data are essential for the valida-
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tion of numerical models. Due to constraints on computational capabilities and experimental

facilities, both numerical and experimental modeling is often conducted at reduced geomet-

ric scales. A scale model can exactly represent a larger prototype if certain dimensionless

parameters are identical between the model and prototype [51]. Holding these parameters

constant guarantees geometric and dynamic similarity between scales. Geometric similarity

requires that all lengths be scaled by the same factor, and dynamic similarity indicates that

relevant force ratios are constant between the model and prototype. If both geometric and

dynamic similarity are achieved, velocity and acceleration ratios will be constant as well,

and the pattern of streamlines in the two flows will be identical. These conditions indicate

that kinematic similarity has been achieved. If geometric, dynamic, and kinematic similar-

ity exist between a model and a prototype, the dimensionless performance of the prototype

will equal the dimensionless performance of the model. For example, turbine performance is

often characterized by the power coefficient (CP), a dimensionless parameter defined as

CP =
P

1
2
ρAtV 3

0

, (1.1)

where P is the mechanical power produced by the turbine, ρ is the fluid density, At is the

projected area of the turbine rotor, and V0 is the free-stream velocity. Note that P = τω,

where τ is the measured torque and ω is the angular velocity of the turbine. If complete

similarity exists between a model and prototype turbine,

CP,m = CP,p, (1.2)

where the subscript ‘m’ denotes the model and the subscript ‘p’ denotes the prototype.

Therefore,

Pp =
1

2
CP,mρpAt,pV

3
0,p. (1.3)

Assuming the power coefficient of the model has been measured and the prototype fluid

density, turbine area, and free-stream velocity are known, the power output of the prototype

can be calculated from Equation (1.3).
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1.2 Objectives

The use of scale-similar models is a powerful technique, as it allows the behavior of a full-scale

system to be determined from a smaller model, reducing the time and costs associated with

the early stages of design. Researchers in the marine energy field frequently use scale models

of current turbines to predict the behavior of full-scale systems. However, as further detailed

in Section 2.4, it can be difficult to achieve complete similarity between a model turbine and

a full-scale prototype [4, 50]. Furthermore, due to physical or numerical constraints, certain

dimensionless parameters are often varied within experiments [4, 15, 41, 47]. The influence

of some parameters on turbine performance is not fully understood, creating uncertainty

in interpreting scale model results. Therefore, the primary objective of this work is to

experimentally quantify the effects of specific scaling parameters on the hydrodynamics and

performance of current turbines. A better understanding of these parameters will improve

the quality of model testing and inform the intentional use of scaling effects to increase

turbine performance.

This work focuses on three dimensionless parameters: the blockage ratio, Reynolds num-

ber, and Froude number. A physical interpretation of these parameters and their relevance

to turbine performance is detailed in Chapter 2. The methods used in our experiments are

discussed in Chapter 3, and the primary objectives of this work are addressed in Chap-

ters 4-6. Chapter 4 experimentally characterizes the effects of the blockage ratio, Reynolds

number, and Froude number on the hydrodynamics and performance of a cross-flow current

turbine, illustrating the importance of all three parameters. Chapter 5 assesses the effective-

ness of multiple analytical models designed to correct for the effects of blockage, improving

the extrapolation of model results to larger scales. Finally, Chapter 6 evaluates the effects of

blockage on the wake of a current turbine, informing the use of this scaling effect to improve

turbine performance.
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Chapter 2

BACKGROUND

Investigating the effects of dimensionless scaling parameters on turbine performance re-

quires knowledge of the form of these parameters. To determine relevant parameters, a

Buckingham pi analysis [51] is performed in Section 2.2. This analysis requires knowledge

of the geometry of the systems under consideration. Therefore, before the Buckingham pi

analysis is presented, an overview of the two most common current turbine designs is given

in Section 2.1.

2.1 Current Turbine Designs

Most current turbines are either an axial-flow (i.e., horizontal-axis) or cross-flow (i.e., vertical-

axis) type [43]. An example of both turbine designs is given in Figure 2.1. Axial-flow

turbines are characterized by blades that rotate about an axis parallel to the direction of

incoming flow, and their rotors typically have circular profiles. Cross-flow turbine blades

rotate about an axis perpendicular to the flow and have rotors with rectangular or elliptical

profiles. The number of blades, blade geometry, and support structure configurations for

both turbine types can vary significantly. Furthermore, cross-flow turbines can be oriented

either vertically, with their axes of rotation perpendicular to the free surface, or horizontally,

with their axes of rotation parallel to the free surface. For the Buckingham pi analysis

conducted in Section 2.2, a vertical orientation is considered.

2.2 Buckingham Pi Analysis

When analyzing current turbine designs, researchers are often interested in power output

and structural loading, particularly thrust (T ) in the streamwise direction. Ideally, all di-
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(a) (b)

Figure 2.1: Illustrations of an axial-flow (a) and cross-flow (b) turbine. The axial-flow turbine

illustration is courtesy of Justin Burnett.

mensionless parameters that affect P and T are held constant within individual experiments

and between a model and full-scale prototype. To determine the parameters relevant to cur-

rent turbine performance, a Buckingham pi analysis [51] is conducted. The first step in this

analysis involves listing all of the relevant variables and their units, expressed in reference

dimensions (i.e., mass [M], length [L], and time [T]). Current turbines operate in channels,

and the channel boundaries can affect performance [30]. Therefore, the Buckingham pi anal-

ysis must include the geometry of both the turbine and channel. Although experimental

water tunnels can have circular cross-sections, most water tunnels, flumes, tow tanks, and

natural channels are rectangular in aspect. This analysis considers an open channel flow with

a rectangular cross-section. Because the flow is assumed to have a free surface, the effects of

gravity and surface tension must be considered as well. Variables relevant to the Buckingham

pi analysis are listed in Table 2.1. These variables apply to both cross-flow and axial-flow

turbines, although the height of an axial-flow turbine rotor is equal to its diameter. This

list is not necessarily exhaustive but attempts to capture the primary geometric, material,

and external variables that can affect the power and thrust of a turbine. Several of these

variables are illustrated visually for both a cross-flow turbine and an axial-flow turbine in



6

Variable Description Dimension

D turbine rotor diameter L

H turbine rotor height (i.e., blade span) L

c blade chord length L

αp blade preset pitch angle -

αt blade twist or helix angle -

- blade section profile -

- support structure configuration -

N number of blades -

b channel width L

d0 channel free-stream depth L

dt turbine submergence depth L

d` turbine offset from lateral boundary L

εt blade surface roughness height L

εc channel surface roughness height L

ρ fluid density ML−3

µ fluid dynamic viscosity ML−1T−1

σs fluid surface tension MT−2

V0 free-stream velocity LT−1

TI turbulence intensity -

ω turbine angular velocity T−1

g acceleration of gravity LT−2

Table 2.1: Geometric, material, and external variables that can affect the power and thrust

of a turbine.
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Figures 2.2 and 2.3.

The second step in the Buckingham pi analysis involves selecting a set of “repeating”

variables that are used to non-dimensionalize the remaining variables. The number of re-

peating variables is equal to the number of reference dimensions used. In this case, mass,

length, and time are all used, so three repeating variables are selected. The repeating vari-

ables must collectively include all reference dimensions and be dimensionally independent,

i.e., one repeating variable cannot be made dimensionless using the other two. Therefore,

the variables D, V0, and ρ are selected. The remaining variables, including P and T , are

non-dimensionalized by D, V0, and ρ, yielding a set of dimensionless “pi terms”. The pi

terms are not unique and can multiplied with each other or scaled by constants to yield

parameters that are more physically meaningful. The pi terms resulting from this analysis

are listed in Table 2.2. The dependent pi terms are the dimensionless power and thrust

coefficients, and the independent terms are the dimensionless parameters that affect power

and thrust. The turbine radius (R), defined as

R =
D

2
(2.1)

and fluid kinematic viscosity (ν), defined as

ν =
µ

ρ
(2.2)

are used in Table 2.2 for convenience. Note that ν is a function of fluid temperature (T ).

2.3 Relevant Dimensionless Parameters

The Buckingham pi analysis indicates that the parameters listed in Table 2.2 should be held

constant between scales for a model to accurately represent a prototype. However, if certain

parameters are “large” (or “small”) enough at both scales, changes in these parameters can

have insignificant effects, and their influence on turbine performance can be neglected. For

the work considered herein, we assume that the dimensionless roughness heights remain

approximately constant, and these parameters can be neglected. Furthermore, at the scales
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Figure 2.2: Dimensional variables related to the geometry of a cross-flow turbine and channel.

The blue dashed line indicates the free surface of the flow.
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Figure 2.3: Dimensional variables related to the geometry of an axial-flow turbine and chan-

nel. The blue dashed line indicates the free surface of the flow.
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Pi Term Symbol Description

τω
1
2
ρAtV 3

0
CP power coefficient

T
1
2
ρAtV 2

0
CT thrust coefficient

H
D

Ar turbine aspect ratio

c
R

- chord-to-radius ratio

αp - blade preset pitch angle

αt - blade twist or helix angle

- - blade profile

- - support structure configuration

Nc
2πR

σ solidity

D
b

β` lateral blockage ratio

H
d0

βv vertical blockage ratio

dt
d0

- dimensionless submergence depth

d`
b

- dimensionless lateral offset

εt
c

- dimensionless turbine roughness height

εc
d0

- dimensionless channel roughness height

V0c
ν

Re chord-based Reynolds number

ρV 2
0 d0
σs

We Weber number

TI - turbulence intensity

ωR
V0

λ tip-speed ratio

V0√
gd0

Fr Froude number

Table 2.2: Dimensionless parameters relevant to the power output and thrust of a current

turbine.



11

considered in this work, it is expected that the fluid’s surface tension will be small relative

to its inertia and, therefore, the Weber number can be neglected as well. Many of the

parameters listed in Table 2.2 are related to turbine geometry. Specifically, the aspect ratio,

chord-to-radius ratio, blade preset pitch angle, blade twist or helix angle, blade profile,

support structure configuration, and solidity involve only turbine geometric variables. The

effects of these parameters on turbine performance have been investigated in the archival

literature [12, 20, 27, 28, 39, 57, 61, 68, 74, 75]. Although geometric optimization remains

an active area of research [73], these parameters are not the focus of this body of work.

For the studies described herein, the turbine geometry is either held constant, or changes in

geometric parameters are shown to have a negligible effect on turbine performance.

All other pi terms involve fluid and channel properties in addition to turbine geometry.

Consistent with the definition of turbulent kinetic energy, the turbulence intensity is defined

as

TI =

√
1
3
[(u− 〈u〉)2 + (v − 〈v〉)2 + (w − 〈w〉)2]

〈
√
u2 + v2 + w2〉

, (2.3)

where u, v, and w are the streamwise, lateral, and vertical velocity components, respectively,

and the angle brackets represent a time average. The turbulence intensity represents the

strength of turbulent fluctuations relative to the magnitude of the mean flow and has been

shown to affect turbine performance [16, 53]. Therefore, turbulence intensity is held approx-

imately constant in this work. The dimensionless submergence depth and lateral offset are

related to the effects of boundary proximity, which is a topic of potential future work and

is beyond the scope of the experiments presented herein. Boundary proximity is discussed

further in Appendix A. The turbine tip-speed ratio represents the blade tangential velocity

relative to the free-stream velocity. Tip-speed ratio has a significant impact on the power

and thrust coefficients. Typically, CP and CT are characterized over a range of tip-speed

ratios.

The remaining dimensionless parameters are the lateral and vertical blockage ratios, the

Reynolds number, and the Froude number. The blockage ratios represent the relative size of
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the turbine and channel cross-sections in the lateral and vertical directions. Higher blockage

ratios indicate the flow is more confined around the turbine, which can affect performance [23,

30, 34, 37, 70]. If the lateral and vertical blockage ratios are unequal, flow confinement is

asymmetric. Kinsey and Dumas [40] defined the confinement asymmetry (CA) as

CA = max

(
β`
βv
,
βv
β`

)
. (2.4)

They concluded that a confinement asymmetry exceeding unity affects turbine performance,

relative to a turbine operating with symmetric confinement at the same overall blockage

ratio (β), defined as

β = β`βv =

(
D

b

)(
H

d0

)
=
At

Ac

, (2.5)

where Ac is the cross-sectional area of the channel. However, they also found that the effects

of confinement asymmetry are negligible for CA < 3. Since CA < 3 in all of our experiments,

we consider only the overall blockage ratio, and the subtly of confinement asymmetry is

largely left as a topic of potential future work.

These assumptions and simplifications reduce the list of dimensionless parameters to the

blockage ratio, Reynolds number, and Froude number. The blockage ratio denotes the pro-

jected area of the turbine relative to the channel cross-sectional area, the Reynolds number

represents the ratio of inertial to viscous forces in a fluid, and the Froude number, which is

only relevant to flows with a free surface, gives the ratio of inertial to gravitational forces

in a fluid. As discussed in Section 1.2, the blockage ratio, Reynolds number, and Froude

number are the primary dimensionless parameters considered in this work.

2.4 Limitations of Scale Models

To achieve complete similarity, all relevant dimensionless parameters must be held con-

stant between a model and full-scale prototype. However, for current turbines, it is difficult

to match the full-scale values of all parameters using a geometrically smaller model. The

Reynolds number is particularly challenging to maintain. Specifically, if kinematic viscos-

ity is held constant, the test velocity for a model is inversely proportional to the geometric
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scale (e.g., at a 10:1 geometric scale, an experimental facility would require a 20 m/s inflow

velocity to match the Reynolds number of a full-scale prototype in 2 m/s flow). Such ve-

locities are practically impossible to achieve in experimental facilities. As a result of these

limitations, testing of current turbine models often occurs at reduced Reynolds numbers [4].

Typically, model Reynolds numbers are below the threshold where turbine performance can

be considered independent of Reynolds number [4, 50]. Therefore, changes in the Reynolds

number will affect model results.

Limitations on the size of experimental facilities also prevent model testing from oc-

curring at full-scale blockage ratios. Blockage ratio matching is best achieved with smaller

models. However, reducing model scale compounds the difficulty of matching Reynolds num-

ber. These conflicting requirements often result in models that match neither the Reynolds

number nor the blockage ratio of the full-scale system. These limitations highlight the need to

better understand the effects of these parameters on turbine performance to more accurately

extrapolate model results to larger scales.

In addition to holding relevant dimensionless parameters constant between scales, these

parameters should be maintained within experiments that investigate the effects of changing

dimensionless turbine geometry. However, this can be difficult to achieve. For example, an

experiment investigating the effects of changing the turbine aspect ratio requires varying

either the diameter or height of the rotor, which affects the blockage ratio. To maintain

a constant blockage ratio, the channel width or depth must change. Most flumes and tow

tanks are a fixed width, but the depth can vary. However, changing the channel depth alters

the Froude number, so the free-stream velocity must be adjusted accordingly. Changing

the free-stream velocity impacts the Reynolds number. This can be compensated for by

adjusting the water temperature, which varies its viscosity. Although this makes for a com-

plicated experimental procedure, failing to hold the blockage ratio, Reynolds number, and

Froude number constant will alter the results of the experiment [39], making it challenging

to differentiate performance effects caused by the aspect ratio from the performance effects

of other parameters. Furthermore, as detailed in Section 4.1, changing either the blockage
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ratio, Reynolds number, or Froude number can inadvertently impact the other parameters,

producing a hybrid effect. The difficulty of holding these parameters constant within exper-

iments reinforces the importance of understanding their influence on turbine performance in

order to inform the design of better experiments.
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Chapter 3

METHODS

Common materials and methods used in this body of work are detailed in this chapter.

Methods unique to a specific experiment are described in the chapter dedicated to that exper-

iment. Details of the experimental turbines, test rigs, facilities, performance characterization

methods, and wake measurement techniques are included here.

3.1 Turbines and Test Rigs

The experiments described in this work employed a total of three laboratory-scale turbines:

two cross-flow turbines and an axial-flow turbine. Renderings of the turbines and test rigs

are shown in Figure 3.1. The cross-flow turbine shown in Figure 3.1 (a) has two straight

blades connected to a central shaft by thin struts. The aluminum blades and struts are

NACA 0018 and NACA 0008 airfoils, respectively, with a chord length of 0.0405 m. The

blades are mounted with a 6◦ preset pitch angle. The turbine has a diameter of 0.1720 m and

a variable height that ranges between 0.1638 m and 0.2340 m. During testing, the turbine’s

rotational speed was regulated by a servomotor (Yaskawa SGMCS-05B3C41) equipped with

a 218 count rotary encoder. Two six-axis load cells mounted above and below the rotor

(ATI Industrial Automation Mini45 and Mini40) measured the forces and torque. The top

load cell was separated from the servomotor by ceramic stand-offs to minimize thermal drift

in the cell. The free-stream velocity was measured 5D upstream of the turbine’s axis of

rotation with an acoustic Doppler velocimeter (ADV, Nortek Vector). Both the turbine and

ADV measurement volumes were centered laterally and vertically in the channel. The water

temperature was monitored with a submersible temperature probe (NovaLynx 270-WQ101).

All instruments were sampled at a frequency of 1 kHz, with the exception of the ADV, which
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Six-axis load cell (ATI Mini45)

Servomotor and rotary encoder 

(Yaskawa SGMCS-05B3C41)

Submersible six-axis load cell

(ATI Mini40)

(a) Six-axis load cell (ATI Mini45)

Servomotor and rotary encoder

(Yaskawa SGMCS-05B3C41)

Submersible six-axis load cell

(ATI Nano25)

(b)

Six-axis load cell (ATI Mini45)

Stepper motor (Parker Automation LV233)

and optical encoder (Applied Motion ZAA)

(c)

Figure 3.1: Renderings of the cross-flow (a, b) and axial-flow (c) turbines used in this work.

The axial-flow turbine rendering is courtesy of Justin Burnett.
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was sampled at 64 Hz. Custom scripts implemented in Matlab and Simulink (Mathworks)

were used to control the instruments and collect data.

The cross-flow turbine shown in Figure 3.1 (b) was designed primarily to produce a

substantial blockage ratio and is not an optimized design. The turbine has four straight

blades with NACA 0018 profiles mounted to two circular end plates. The aluminum blades

have a chord length of 0.06 m and a 0◦ preset pitch angle. The turbine has a diameter of 0.51

m and a height of 0.31 m. The test setup is similar to that used by the two-bladed cross-flow

turbine, except the bottom load cell is an ATI Industrial Automation Nano25 rather than a

Mini40. For some experiments using this turbine, flume dimensions precluded mounting the

ADV 5D upstream of the turbine’s axis of rotation, and the ADV was mounted 3D upstream

instead.

The axial-flow turbine shown in Figure 3.1 (c) has three variable-pitch NACA 44xx

aluminum blades, a rotor diameter of 0.45 m, and a hub diameter of 0.11 m. The blades were

fixed at a pitch angle of 0◦. A six-axis load cell (ATI Industrial Automation Mini45) mounted

between the drive shaft and hub was used to measure the forces and torque. The speed of the

rotor was regulated by a stepper motor (Parker Automation LV233), and the rotor position

was measured with an optical encoder (Applied Motion ZAA). Turbine performance data

were collected at approximately 50 Hz. The free-stream velocity was measured with an ADV

(Nortek Vector) located 3D upstream of the rotor plane and sampled at a frequency of 64

Hz. The turbine and ADV measurement volumes were centered laterally between the channel

walls and vertically in the dynamic water column. Custom Matlab scripts were used for data

acquisition. Further information about the turbine blade geometry is given by Barber et al.

[7].

3.2 Experimental Facilities

Experiments were conducted in three different testing facilities: the Alice C. Tyler flume in

the Harris Hydraulics Laboratory at the University of Washington (UW), the flume in the

Fluid Dynamics Laboratory at the Bamfield Marine Sciences Centre (BMSC), and the tow
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tank at the Jere A. Chase Ocean Engineering Laboratory at the University of New Hampshire

(UNH). The UW flume has a rectangular test section that is 0.76 m wide and 3.7 m long with

a maximum fill depth of 0.60 m. Two variable-frequency pumps operating in parallel can

achieve a range of free-stream velocities, with a maximum flow speed of approximately 1.0

m/s at a fill depth of 0.60 m. A pool heater and chiller enable the water temperature to be

controlled to within ±0.1◦C of a target. The turbulence intensity is between approximately

2 and 4% under most operating conditions.

The BMSC flume is 2.0 m wide and 12 m long with a maximum fill depth of 1.0 m.

The flow is driven by four pumps operating in parallel. One of the pumps is connected

to a variable-frequency drive, so a range of flow speeds can be achieved. This flume has a

maximum free-stream velocity of approximately 0.7 m/s at a fill depth of 0.60 m. A chiller

connected to the BMSC flume allows the water temperature to be controlled to within±0.5◦C

of a target. The turbulence intensity varies between approximately 3 and 5% depending on

the specific operating conditions.

The UNH tow tank is roughly 3.7 m wide, 36 m long, and 2.4 m deep. Turbines are

mounted below a carriage that travels the length of the tank. Tow speeds above 1.0 m/s can

be achieved, depending on the size of the turbine. The water is room temperature, between

20 and 22◦C. The turbulence intensity is approximately 0%. Further details about the UNH

facility are provided by Bachant and Wosnik [3].

3.3 Performance Characterization

Turbine performance was characterized by quantifying the power and thrust coefficients over

the range of tip-speed ratios that produced net power. Desired tip-speed ratios were achieved

by controlling the angular velocity of the turbine while maintaining an approximately con-

stant free-stream velocity. Under this type of control, the measured torque was equal to

the hydrodynamic torque produced by the rotor [59]. At each nominal operating point (i.e.,

tip-speed ratio), performance data were collected for at least 30 seconds, and the time series

were trimmed to yield an integer number of turbine rotations. To calculate CP, CT, and λ
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according to the equations presented in Table 2.2, instantaneous values of τω, T , and ω were

averaged over each complete turbine rotation. Instantaneous values of V0, V
2
0 , and V 3

0 were

averaged over the entire sampling period for each operating point. The free-stream mea-

surements were averaged in this way to minimize uncertainty introduced by the convection

of turbulence from the sampling location to the rotor plane and by asynchronous acquisi-

tion. These averaging methods produced a set of cycle-average performance coefficients and

tip-speed ratios for every nominal operating point. The median of each set of cycle-average

values was taken as the representative CP, CT, or λ, and the interquartile range was taken

to be representative of the uncertainty.

3.4 Wake Measurement

Several of the experiments involved collecting data in the wake of the turbines. Three-

dimensional velocity data were collected downstream of these turbines using a pair of ADVs

(Nortek Vectrinos). The ADVs have a sampling rate of 100 Hz and were mounted on a

motorized gantry with three degrees of freedom. A picture of the gantry operating in the

UW flume is given in Figure 3.2. For every experiment that involved collecting wake data, the

gantry was mounted on the flume and aligned such that its axes traversed the streamwise

(X), lateral (Y ), and vertical (Z) directions. The gantry followed a predefined grid and

paused at each specified location to collect data for 30 s.



20

Gantry

ADV

Bottles

ADV

Heads

Flume

Figure 3.2: Two Nortek Vectrino ADVs mounted on a motorized gantry at the UW flume.

The gantry has three degrees of freedom and was used to move the ADVs to specific mea-

surement locations in the wake.
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Chapter 4

BLOCKAGE, REYNOLDS, AND FROUDE EFFECTS ON
PERFORMANCE

This chapter contains content from Ross and Polagye [63], which is in preparation. The

objective of this chapter is to compare the effects of the blockage ratio, Reynolds number,

and Froude number on the performance of a cross-flow current turbine to illustrate the

importance of controlling these parameters within experiments.

4.1 Introduction

As discussed in Sections 1.2 and 2.4, the blockage ratio, Reynolds number, and Froude num-

ber all affect turbine performance, but achieving full-scale values of these parameters at

reduced geometric scales can be challenging. Furthermore, because they are derived from

common dimensional variables, changing one parameter can affect the others, making it dif-

ficult to hold them all constant within experiments. Prior studies have demonstrated the

challenge of isolating blockage, Reynolds, and Froude effects from one another. An exper-

imental study conducted by Birjandi et al. [15] investigated the influence of blockage and

free surface proximity on cross-flow turbine performance in a laboratory flume. The exper-

imental procedure consisted of incrementally decreasing the channel depth. The authors

concluded that, as long as the turbine remained fully submerged, decreasing the channel

depth improved its performance. They attributed the performance increase to blockage ef-

fects and free surface proximity. However, reducing the channel depth convolves blockage

and Froude effects if no other variables are adjusted (i.e., both parameters increase). There-

fore, it is not possible to differentiate the relative impacts of the blockage ratio and Froude

number on turbine performance from these results. A similar numerical study by Kolekar



22

and Banerjee [41] varied channel depth to investigate the effects of blockage on a turbine’s

performance. The authors attributed improved performance to an increased blockage ratio

but did not consider attendant changes in Froude number. The authors also investigated

Reynolds effects. The Reynolds number was varied by increasing the free-stream velocity,

and the authors concluded that the turbine became independent of the Reynolds number

above a certain inflow speed. However, changes in the free-stream velocity also affect the

Froude number, and a failure to consider Froude effects could lead to incorrect conclusions

about when the turbine reached Reynolds independence. Other prior studies have similarly

convolved blockage and Froude effects by varying only the channel depth [47] or Reynolds

and Froude effects by varying only the free-stream velocity [4, 47]. Bachant and Wosnik [4]

acknowledged that both the Reynolds and Froude numbers changed in their study but as-

sumed that Froude effects were negligible. Although the blockage ratio, Reynolds number,

and Froude number are often varied simultaneously, the significance of each parameter in

determining a turbine’s performance is not fully understood [4]. Past work has evaluated the

effects of blockage [23, 30, 34, 37, 70], Reynolds number [4, 50], and Froude number [23, 37]

on turbine performance, but to our knowledge no prior studies have isolated each parameter

and assessed its effects relative to the others. Therefore, the objective of the work described

in this chapter is to systematically vary the blockage ratio, Reynolds number, and Froude

number of a model cross-flow current turbine and evaluate the impact of each parameter on

turbine performance and flow dynamics. In addition to quantifying the relative importance

of each parameter, a better understanding of these effects should improve the fidelity of

laboratory-scale current turbine testing.

4.2 Methods

To evaluate and compare the effects of the blockage ratio, Reynolds number, and Froude

number on turbine performance and flow dynamics, a laboratory-scale cross-flow turbine

was tested in an experimental flume. The turbine’s performance was characterized with

a set of baseline parameters. Blockage ratio, Reynolds number, and Froude number were
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then independently increased, and the performance was characterized again. Free surface

deformation was measured upstream and downstream of the turbine to assess the impact

of each parameter on flow dynamics. Details of the experimental procedure, performance

characterization, and flow characterization are given in Sections 4.2.1-4.2.3.

4.2.1 Experimental Procedure

These experiments utilized the turbine and test rig illustrated in Figure 3.1 (a). Experiments

were conducted in the UW flume, described in Section 3.2. Baseline performance was first

characterized at a relatively low blockage ratio, Reynolds number, and Froude number.

Subsequent experiments varied only one of these parameters, and the others were maintained

at their baseline values by adjusting dimensional variables. The blockage ratio, Reynolds

number, and Froude number were controlled by simultaneously varying the rotor height, free-

stream velocity, channel depth, and fluid kinematic viscosity which, as mentioned in Section

2.2, is a function of temperature. Varying the rotor height and channel depth controlled

the blockage ratio, varying the channel depth and free-stream velocity controlled the Froude

number, and varying the free-stream velocity and water temperature controlled the Reynolds

number. The experiments were conducted using an iterative approach, where the blockage

ratio, Reynolds number, and Froude number were varied incrementally until the peak power

coefficients approximately matched across all three cases, allowing the turbine’s relative

sensitivity to each parameter to be quantified. The values of H, V0, d0, and T for each

final case, and the resulting values of β, Re, and Fr, are given in Table 4.1. Notably, the

Reynolds number was increased from 29,000 to 35,000 by varying the temperature of the

water less than 10◦C with all others variables held constant. This illustrates the sensitivity

of the Reynolds number to changes in water temperature and the importance of controlling

this variable in experiments. This topic is discussed further in Appendix B.

Because the rotor diameter was not varied, changing its height affected the aspect ratio

of the turbine in addition to the blockage ratio. However, concurrent work has shown that

varying the aspect ratio within the range tested here does not affect performance, at least
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H (m) V0 (m/s) d0 (m) T (◦C) β Re Fr

Baseline 0.2106 0.60 0.60 27.9 0.080 29,000 0.25

Blockage 0.2340 0.52 0.45 34.9 0.117 29,000 0.25

Reynolds 0.2106 0.60 0.60 37.5 0.080 35,000 0.25

Froude 0.1638 0.84 0.47 13.2 0.079 29,000 0.39

Table 4.1: Dimensional variables and dimensionless parameters for the baseline and variable

blockage ratio, Reynolds number, and Froude number test cases.

for this specific turbine geometry and support structure configuration [39]. Changing the

free-stream velocity and channel depth can also affect the turbulence intensity of the flow,

which has been shown to impact turbine performance [16, 53]. For the tests conducted in

this study, the turbulence intensity varied only slightly, between 2.3 and 4.4%. Therefore,

we believe that variations in turbulence intensity had a negligible effect on observed turbine

performance.

4.2.2 Performance Characterization

The turbine’s power and thrust coefficients were measured at each of the operating conditions

detailed in Table 4.1. For each case, turbine performance was characterized over the range of

tip-speed speed ratios that produced net power according to the process described in Section

3.3. For these experiments, data were collected for 60 s at each tip-speed ratio.

As illustrated by Bachant et al. [5] and Strom et al. [75], drag on the rotating components

of a turbine’s support structure can significantly degrade its performance. To determine if the

performance effects caused by the blockage ratio, Reynolds number, and Froude number were

primarily a result of increased lift on the blades or decreased drag on the support structure,

the turbine was tested with blades removed at each of the operating conditions detailed

in Table 4.1. Performance curves for the bladeless turbine were calculated as described
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in Section 3.3, using the median of the cycle-average values at each tip-speed ratio. The

resulting CP(λ) curves were subtracted from the CP(λ) curves of the full turbine, yielding

the blade performance. Due to small fluctuations in the free-stream flow, actual tip-speed

ratios varied from the nominal values. Therefore, the full turbine and support structure

performance curves were collected at slightly different tip-speed ratios. To directly subtract

the support structure CP from the full turbine CP, both sets of curves were interpolated at set

tip-speed ratios within the original measurement range using a piecewise cubic polynomial

interpolator.

4.2.3 Flow Characterization

To characterize the influence of the blockage ratio, Reynolds number, and Froude number on

flow dynamics, the free surface deformation was measured using an array of four acoustic free

surface transducers (Omega LVU30). The transducers were mounted above the free surface

and centered between the channel walls, such that they were aligned laterally with the

turbine. Transducers were mounted 2D upstream, 1D upstream, 1D downstream, and 2D

downstream of the turbine. An additional transducer was placed 7D upstream of the turbine

to record the reference free-stream depth. Figure 4.1 gives a top view of this layout, including

the turbine swept area and free surface transducer locations, which are denoted by red ‘x’

markers. The ADV location is marked with a blue circle. The transducers sampled at a rate

of 10 Hz, and the data were upsampled to match the 1 kHz sampling frequency of the rest of

the instruments. Raw time series were cleaned by discarding samples with a target strength

less than 100% and despiked using a thresholding method and the algorithm of Goring

and Nikora [33]. Removed points were replaced with nearest neighbor interpolation. The

transducers measured the distance from the instrument face to the free surface. Therefore,

the channel depth was calculated by subtracting the transducer measurements from the total

distance between the instrument face and the bottom of the channel. Similar to the turbine

performance data, instantaneous values were averaged over each complete turbine rotation,

yielding a set of cycle-average values at each tip-speed ratio. The median of each set was taken
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Figure 4.1: Top view of the turbine swept area, free surface transducer mounting locations

denoted by red ‘x’ markers, and ADV location marked by a blue circle.

as the local channel depth (d), and the interquartile range was taken as the uncertainty. As

detailed in Table 4.1, the free-stream channel depth varied between experiments. Therefore,

to compare the free surface deformation between cases, the local channel depth at each

measurement location was normalized by the time average of the free-stream channel depth

at each tip-speed ratio.

4.3 Results

The effects of increasing the blockage ratio, Reynolds number, and Froude number on turbine

performance are illustrated in Figures 4.2 and 4.3. The power coefficient for each case

is plotted as a function of tip-speed ratio in Figure 4.2, and the thrust coefficients are

plotted in Figure 4.3. All four cases are initially compared, then the effects of the blockage

ratio, Reynolds number, and Froude number are shown individually. The shading indicates

the interquartile range (i.e., measurement uncertainty) at each tip-speed ratio. All three
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parameters increased the turbine’s power coefficient over the majority of its operating range,

although each parameter changed the shape of the CP(λ) curve in a different way. The

parameters had a similar effect on the turbine’s thrust coefficient.

Figure 4.4 presents another way to visualize the effects of these parameters on turbine

performance. Figure 4.4 (a) gives the difference between the CP(λ) curves for the blockage,

Reynolds, and Froude cases and the baseline case. Figure 4.4 (b) presents analogous results

for the CT(λ) curves. The dashed line on each plot indicates the tip-speed ratio corresponding

to the peak power coefficient of the baseline case, and the solid line emphasizes the point of

zero CP or CT. This figure clearly illustrates that the three parameters affected the turbine’s

performance differently over the range of tip-speed ratios tested.

The operating conditions outlined in Table 4.1 were intentionally chosen, through iter-

ation, such that the peak power coefficients for the blockage, Reynolds, and Froude cases

would be approximately equal (Figure 4.2 (a)). This allowed the turbine’s relative sensitivity

to changes in each parameter to be evaluated. The peak CP of the blockage case increased

by 14.3% from the peak CP of the baseline case. The Reynolds and Froude cases increased

by 14.0% and 12.2%, respectively. To achieve this, the blockage ratio was increased by

38.4%, the Reynolds number by 21.2%, and the Froude number by 58.9%, indicating that

the turbine’s performance was most sensitive to changes in the Reynolds number and least

sensitive to changes in the Froude number. Further discussions of the specific effects of each

parameter are presented in Sections 4.4.1 - 4.4.3.

The relative influence of the support structure on turbine performance is illustrated in

Figure 4.5, which presents the power coefficient as a function of tip-speed ratio for the full

turbine and blade-only cases. The CP(λ) curves shown in Figure 4.5 (a) are identical to those

presented in Figure 4.2 (a) and are shown for comparison. As concluded by Strom et al. [75],

drag on rotating support structure components decreases a turbine’s performance. Therefore,

the blade-only performance is elevated relative to the full turbine. The peaks of the blockage,

Reynolds, and Froude curves are offset by a similar amount relative to the baseline case for

both the full turbine and blade-only experiments.
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Figure 4.2: CP(λ) curves for each of the operating conditions outlined in Table 4.1. Similar

increases in maximum CP were obtained for a 21.2% increase in the Reynolds number, 38.4%

increase in the blockage ratio, and 58.9% increase in the Froude number.
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Figure 4.3: CT(λ) curves for each of the operating conditions outlined in Table 4.1. The

Reynolds number increased by 21.2% relative to baseline, the blockage ratio increased by

38.4%, and the Froude number increased by 58.9%.
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Figure 4.4: Difference between the power coefficients (a) and thrust coefficients (b) of the

blockage, Reynolds, and Froude cases and the baseline case.
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Figure 4.5: CP(λ) curves for each of the operating conditions outlined in Table 4.1 for the

full turbine (a) and blades only (b).
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Figure 4.6: Local channel depth normalized by free-stream channel depth. Data were col-

lected at the tip-speed ratio corresponding to peak CP for each case. The turbine’s axis of

rotation is located at X/D = 0, denoted by a dashed line.

Free surface deformation in the streamwise direction provides additional insight into

the underlying fluid dynamics. Figure 4.6 shows the local channel depth measured upstream

(X/D = −2 and X/D = −1) and downstream (X/D = 1 and X/D = 2) of the turbine at the

tip-speed ratio corresponding to peak CP for each case, normalized by the free-stream depth.

The dashed line at X/D = 0 denotes the turbine’s axis of rotation. The shading represents

the measurement uncertainty at each location. These results indicate that increasing the

blockage ratio and Reynolds number had a negligible effect on the free surface, but increasing

the Froude number caused significantly more free surface deformation around the turbine.

4.4 Discussion

The performance curves presented in Figures 4.2 and 4.3 indicate that the blockage ratio,

Reynolds number, and Froude number have distinct effects on a turbine’s power and thrust

coefficients. For the turbine geometry and test conditions investigated in this study, turbine
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performance was most sensitive to changes in the Reynolds number and least sensitive to

changes in the Froude number. Because the influence of all three parameters is evident in the

blade power coefficients presented in Figure 4.5 (b), we can conclude that their effects are

related primarily to increased lift on the blades rather than decreased drag on the support

structure, which is consistent with our physical intuition. The local channel depth measure-

ments presented in Figure 4.6 indicate that free surface deformation changes substantially

for the Froude case but is negligible for the remaining cases. We now discuss the specific

effects of each parameter on the turbine’s power and thrust coefficients, as well as the flow

dynamics.

4.4.1 Blockage Ratio Effects

Prior work has explored the effects of blockage on the power and thrust coefficients of current

turbines, and multiple studies have established the theoretical basis for increased turbine

performance caused by blockage [23, 30, 34, 37, 70]. Flow in a channel is more constrained

at high blockage, causing the flow speeds through and around the turbine to increase relative

to an unconfined case [23, 40, 41, 48]. These higher flow speeds cause increased forces and

torque acting on the turbine rotor and, therefore, increased power and thrust coefficients.

Our work aligns with these past results. As shown by Figures 4.2 (b) and 4.3 (b), higher

blockage increased the turbine’s peak CP and corresponding CT. Furthermore, the turbine

produced net power over a larger range of tip-speed ratios. However, as illustrated by Figure

4.4 (a), the effects of blockage were negligible below a tip-speed ratio of approximately 1.5.

The latter two effects have been observed previously for cross-flow turbines [23, 40] and

can be explained, at least in part, by considering the blade kinematics. Cross-flow turbines

experience a range of angles of attack throughout a single revolution. At the lowest tip-speed

ratios, the angles of attack undergo larger fluctuations, which can lead to dynamic stall and

decreased performance. At the highest tip-speed ratios, the angles of attack undergo smaller

fluctuations that are less advantageous for lift production, and hydrodynamic drag increases.

As blockage increases, the flow speed through the rotor tends to increase as well, decreasing
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the effective tip-speed ratio. This allows the turbine to produce net power over a larger

range of tip-speed ratios. However, because this exacerbates dynamic stall at lower tip-

speed ratios, any gains in CP caused by higher flow speeds through the rotor are negated in

this performance region.

Prior numerical work by Consul et al. [23] has also shown that increasing blockage shifts

the peak CP to a higher tip-speed ratio and causes increased free surface deformation down-

stream of the turbine. Our results do not reflect these trends. As shown by Figures 4.2 (b)

and 4.6, peak CP occurred at the same tip-speed ratio for the baseline and blockage cases,

and there were no significant differences in local channel depth between the two cases. We

believe that these discrepancies are a consequence of the relatively small increase in blockage

used here, as we were only able to vary the blockage ratio from 0.080 to 0.117, whereas Con-

sul et al. [23] quadrupled the blockage ratio from 0.125 to 0.50. The experiments detailed in

Chapter 5 vary the blockage ratio from approximately 0.03 to 0.36. In this work, the peak

CP does shift to a higher tip-speed ratio as blockage is increased.

4.4.2 Reynolds Number Effects

As discussed in Sections 2.3 and 2.4, the Reynolds number represents the ratio of inertial

to viscous forces in a fluid and is commonly used to indicate whether a flow is laminar or

turbulent. Below a certain threshold, varying the Reynolds number changes the nature of

the boundary layer on a turbine’s blade, affecting lift production and, consequently, the

turbine’s performance. Studies by Bachant and Wosnik [4] and Miller et al. [50] found that

the Reynolds number can significantly affect the power output of both laboratory-scale and

field-scale turbines and that performance becomes independent of the chord-based Reynolds

number for values on the order of 105 to 106 [4, 50]. In this study, the chord-based Reynolds

number isO(104) and, as illustrated by Figure 4.4, increasing the Reynolds number influenced

the turbine’s CP and CT across the range of tip-speed ratios tested. The Reynolds effects

shown in Figures 4.2 (c) and 4.3 (c) are qualitatively similar to those observed in past work.

Increasing the Reynolds number had an increasingly significant impact on CP at higher
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tip-speed ratios and a fairly constant effect on CT across all tip-speed ratios.

Reynolds and blockage effects are caused by two fundamentally different fluid mecha-

nisms. Reynolds effects are related to changes in the blade boundary layer, and blockage

effects are caused by increased flow speeds through the turbine. However, when operating

in a Reynolds dependent regime at high blockage, the increased flow speeds through the

turbine simultaneously increase the local Reynolds number, convolving the performance ef-

fects of the two parameters. Therefore, in Reynolds dependent regimes, it is challenging to

entirely isolate the effects of Reynolds number and blockage from one another.

As illustrated by Figure 4.6, increasing the Reynolds number had a negligible impact on

local channel depth in these experiments. To our knowledge, no prior experimental or nu-

merical studies have reported the influence of Reynolds number on free surface deformation.

4.4.3 Froude Number Effects

The effects of Froude number on turbine performance are less well understood than the effects

of the blockage ratio and Reynolds number. In simulation, Consul et al. [23] concluded that

the Froude number has a relatively small influence on turbine power and thrust coefficients

and a significant impact on free surface deformation. These results are consistent with our

findings, which suggest that turbine performance is less sensitive to changes in the Froude

number than changes in the other two parameters. Furthermore, as shown by Figure 4.6, the

free surface deformation downstream of the turbine was observable, though negligible, for

the baseline, blockage, and Reynolds cases, but significant for the Froude case. Consul et al.

[23] suggested that increasing the Froude number improves turbine performance because the

additional drop in channel depth downstream of the turbine acts to increase the blockage.

This explanation assumes that Froude and blockage effects are caused by the same underlying

fluid mechanisms. Given this reasoning, the Froude number and blockage ratio should have

similar effects on a turbine’s CP(λ) and CT(λ) curves. However, as illustrated by Figures 4.2

and 4.3, the Froude number and blockage ratio had distinctly different influences on turbine

performance. The Froude number affected the power coefficient mainly near the peak of the



35

curve and the thrust coefficient consistently across tip-speed ratios, whereas blockage effects

were magnified at higher tip-speed ratios for both coefficients. An alternative hypothesis is

that the larger free surface deformation improves performance by increasing the hydrostatic

pressure difference across the turbine. The increase in thrust coefficient across all tip-speed

ratios is consistent with an increased pressure differential, but this does not explain why

the power coefficient only increases for a subset of tip-speed ratios. The underlying fluid

mechanisms that cause changes in the Froude number to affect turbine hydrodynamics clearly

warrant further investigation.

Consul et al. [23] also concluded that free surface deformation is more significant at higher

tip-speed ratios, and these effects become more pronounced as both the Froude number and

blockage ratio increase. Figure 4.7 shows that this trend was observed for our Froude case

but not for the other cases. We expect that this trend was not measurable for the blockage

case because the blockage ratios tested were relatively small. Free surface deformation likely

becomes more significant at higher tip-speed ratios because the rotor appears more solid to

the incoming flow, increasing the thrust. Again, this explanatory hypothesis is not entirely

satisfactory, as the thrust coefficient was similar for all three parameters at high tip-speed

ratio, but a significant free surface deformation was only observed when the Froude number

was increased.

4.5 Conclusions

Varying the blockage ratio, Reynolds number, and Froude number all affected turbine per-

formance, although each parameter changed the shape of the CP(λ) and CT(λ) curves in

a different way. The impact of each parameter on turbine performance is grounded in its

connection to turbine hydrodynamics. Increasing the blockage ratio increases the flow speeds

through and around a turbine, resulting in higher forces and torque. These increased flow

speeds modify the angles of attack experienced by the blades, allowing the turbine to pro-

duce net power over a wider range of tip-speed ratios and exaggerating performance effects at

higher tip-speed ratios. Increasing the Reynolds number changes the nature of the boundary
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Figure 4.7: Channel depth near the turbine normalized by free-stream channel depth for the

high Froude number case for three different tip-speed ratios. The turbine’s axis of rotation

is located at X/D = 0 and denoted by a dashed line.

layer on the blades, augmenting lift forces that affect both the power and thrust coefficients.

Reynolds effects increased with tip-speed ratio for the power coefficient and were fairly con-

sistent across tip-speed ratios for the thrust coefficient. Increasing the Froude number caused

the largest increase in CT and most significant free surface deformation. Both effects are

likely associated with a larger hydrostatic pressure drop across the turbine. Varying the

Froude number affected the turbine’s power coefficient most significantly near its peak value

and, like the Reynolds number, affected the thrust coefficient consistently across tip-speed

ratios. However, as discussed, there are inconsistencies in explanations of the Froude number

effect that require further investigation.

Although the effects of each parameter are distinct, some are interrelated. For example,

higher flow speeds through the rotor that occur with increased blockage can simultaneously

increase performance due to Reynolds effects if the turbine is operating in a Reynolds de-

pendent regime. These complicated relationships highlight the importance of understanding
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how each parameter affects turbine performance. We concluded that the power coefficient

was most sensitive to changes in the Reynolds number and least sensitive to changes in

the Froude number for the turbine geometry and test conditions considered in this study.

However, because varying all three parameters was found to significantly affect the turbine’s

power and thrust coefficients, the blockage ratio, Reynolds number, and Froude number

should all be given due consideration in experimental design.



38

Chapter 5

ASSESSMENT OF ANALYTICAL BLOCKAGE
CORRECTIONS

This chapter contains content from Ross and Polagye [62], which has been published

in Renewable Energy. Portions of the article have been edited to avoid redundancy. The

objective of this chapter is to assess the effectiveness of analytical models designed to correct

for the effects of blockage, improving the extrapolation of model results to larger scales.

5.1 Introduction

Experimental investigations of model current turbines often take place in confined flows,

such as flumes and water tunnels. Flow confinement, or blockage, can significantly alter the

mechanical performance of a turbine, relative to operation in an unconfined flow. Higher

blockage increases streamwise flow speeds through and around the rotor [23, 40, 41, 48],

increasing the turbine’s torque and thrust. However, the flow velocity far upstream of the

turbine remains relatively unchanged. Therefore, increasing the blockage augments a tur-

bine’s power and thrust coefficients.

Blockage effects were first examined in the context of wind tunnel testing of propellers

in the early 20th century by Wood and Harris [84] and Glauert [32]. More recently, analyti-

cal [30, 37], numerical [23, 34, 40, 41, 54, 69, 70], and experimental [6, 11, 15, 25, 31, 48, 67]

studies have explored the effects of blockage on wind and water current turbines. The mag-

nitude of these effects is related to the blockage ratio, defined here as

β =
At + As

Ac

, (5.1)

where As is the projected area of the support structure. Multiple studies have demonstrated

that turbine performance changes appreciably when the blockage ratio exceeds 0.05-0.10 [25,
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41, 48, 69].

The effects of blockage on turbine models can make it difficult to extrapolate results

to larger scales. To accurately model full-scale conditions, the influence of blockage on

performance data collected at smaller scales must be accounted for. Over the past century,

multiple analytical methods have been developed for this purpose. These methods are often

referred to as “blockage corrections” and are the focus of this study. The first such correction

was developed by Glauert [32] for propellers tested in wind tunnels. Glauert’s method is

based on axial momentum theory applied to an actuator disk (i.e., linear momentum actuator

disk theory) in a closed tunnel. The most common form of this correction is an approximation

based on the assumption that the blockage ratio is less than 0.15. Glauert’s approximate

correction can be applied to turbines, but it has a limited range of applicability due to

a singularity as the thrust coefficient approaches unity [11]. Subsequent studies, following

Glauert’s approach, have derived corrections specifically for wind and current turbines. Here,

we focus on the corrections presented by Barnsley and Wellicome [8], Mikkelsen and Sørensen

[49], Werle [81], and Houlsby et al. [38]. All are derived from axial momentum theory applied

to an actuator disk in a flow confined either by rigid walls (e.g., a tunnel) or by rigid walls

and a free surface (e.g., a channel). These corrections have seen widespread application to

performance data from experiments and simulations [2, 6, 31, 41, 48]. However, uncertainty

remains as to which corrections, if any, effectively account for blockage [2, 29, 40].

Several previous studies have attempted to address the question of correction efficacy. Kin-

sey and Dumas [40] simulated a cross-flow turbine and an axial-flow turbine operating in a

water tunnel and applied the correction of Barnsley and Wellicome [8]. By comparing the

corrected results to simulations conducted in an unconfined domain, they concluded that

Barnsley and Wellicome’s method worked well for the axial-flow turbine and was adequate

for the cross-flow turbine. Similarly, Segalini and Inghels [71] simulated blockage effects

on an axial-flow turbine using a vortex model and compared power and thrust corrections

estimated from this model to those given by the actuator disk method of Mikkelsen and

Sørensen [49]. Results from the two methods agreed reasonably well, providing encourag-
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ing validation of actuator disk corrections applied to realistic turbines. Experimentally, Ryi

et al. [67] applied Barnsley and Wellicome’s correction to an axial-flow turbine tested in a

closed-section wind tunnel and found that corrected results agreed well with the same tur-

bine’s performance in an open-jet wind tunnel. Using similar methods, Dossena et al. [25]

conducted experimental wind tunnel tests of a cross-flow turbine at a blockage ratio of 0.10

and under conditions of negligible blockage. They compared an empirical correction based

on experimental data from the two conditions with an analytical correction using Mikkelsen

and Sørensen’s method. They concluded that the analytical method predicted the trend

of the empirical correction but significantly underestimated its magnitude. The authors

recommended improving analytical blockage corrections specifically for cross-flow turbines.

Several recent studies [11, 40, 65, 72, 83] have also examined the effectiveness of blockage

corrections originally derived for bluff bodies [46, 60], when applied to turbines. For ex-

ample, Whelan et al. [83] and Kinsey and Dumas [40] determined that Maskell’s correction

performs better than actuator disk methods when the turbine rotor is heavily loaded.

Overall, previous research has concluded that actuator disk corrections are adequate for

axial-flow turbines and give mixed results for cross-flow turbines. However, prior studies have

evaluated only one or two of the multiple blockage corrections proposed in the literature.

Because the effectiveness of a blockage correction depends on the specific conditions under

which it is applied (e.g., turbine and support structure design and tunnel or channel geome-

try), the relative accuracy of these corrections remains an open question. To our knowledge,

no systematic experimental validation that considers both turbine archetypes and multiple

analytical corrections has been reported in the archival literature. This lack of validation may

be a consequence of the difficulty of undertaking such experiments, which require varying

blockage while controlling the Reynolds number [4, 21, 50] and, in the case of a free surface,

the Froude number [41, 80]. For experiments conducted at transitional Reynolds numbers,

this can only be achieved by changing the physical dimensions of a tunnel or the width of a

channel. Therefore, the objective of the present study is to experimentally evaluate blockage

corrections for a cross-flow turbine and an axial-flow turbine by varying the blockage ratio
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with other significant parameters held approximately constant.

5.2 Experimental Methods

To establish a baseline for the analytical corrections, a cross-flow turbine and an axial-flow

turbine were characterized under high blockage and negligible blockage by testing the tur-

bines at experimental facilities of different size. The turbines used for this study are shown in

Figure 3.1 (b) and (c) and described in Section 3.1. The testing facilities were the UW flume

and UNH tow tank, described in Section 3.2. The performance of both turbines was char-

acterized as described in Section 3.3. Section 5.2.1 describes the dimensionless parameters

that were controlled in this study, and Section 5.2.2 details the wake characterization.

5.2.1 Dimensionless Parameters

The dimensions of the UW flume resulted in a blockage ratio of 0.36 for the cross-flow

turbine and 0.35 for the axial-flow turbine. The larger cross-section of the UNH facility

yielded a blockage ratio of 0.03 for the cross-flow turbine and 0.02 for the axial-flow turbine.

Consequently, the blockage effects at the UNH facility were assumed to be negligible [69].

We will refer to data taken in the UW flume as “confined” and data taken in the UNH tow

tank as “unconfined”. To measure only the effects of a change in blockage, we attempted to

hold the Reynolds and Froude numbers approximately constant. Under test conditions, both

turbines were operating at transitional Reynolds numbers: 31,000 for the cross-flow turbine

and 14,000 for the axial-flow turbine. To maintain a constant Reynolds number, all tests

were conducted at a free-stream velocity of 0.5 m/s, and the temperature of the UW flume

was controlled to match the temperature of the UNH tow tank. However, the variation in

free-stream channel depth from 0.60 m in the flume to 2.4 m in the tow tank resulted in a

change in the Froude number from 0.2 to 0.1. Given that these are relatively low Froude

numbers, it was assumed that this variation had a negligible effect on performance compared

to the changes in blockage [23].

Furthermore, as detailed in Section 3.2, there was a small difference in turbulence intensity
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between the two facilities. Past studies have shown that decreasing the turbulence intensity

increases a turbine’s power and thrust coefficients [16, 53]. However, based on the magnitude

of performance change observed in these studies, it is assumed that the impact of a decrease

in turbulence intensity from approximately 2% to approximately 0% is insignificant.

Finally, the aspect ratio of the UW flume resulted in higher lateral blockage for the cross-

flow turbine and higher vertical blockage for the axial-flow turbine. However, as discussed in

Section 2.3, confinement asymmetry is negligible for CA < 3. As the confinement asymme-

try of both turbines in the UW flume was approximately 1.3, we assume performance was

relatively unaffected by the channel aspect ratio.

5.2.2 Wake Characterization

One of the blockage corrections considered in this study requires information about the

wake structure. Because these data were time-intensive to collect, wake measurements were

taken only at the tip-speed ratio corresponding to the peak power coefficient. Wake data

were collected using two acoustic Doppler velocimeters mounted on a motorized gantry, as

described in Section 3.4. For both turbines, measurements were taken at 0.75, 1.25, 1.75,

and 2.25 diameters downstream of the center of the rotor. At each downstream location,

the measurement grid consisted of a single lateral traverse in the cross-stream direction,

with measurements spaced 0.01 m apart. The traverses were centered vertically relative to

the turbine rotor. Figure 5.1 illustrates the wake measurement locations for the cross-flow

turbine. A similar grid was used for the axial-flow turbine. Raw measurements were despiked

using the method of Goring and Nikora [33], and data points with low correlation values were

discarded [66]. These measurements were used to estimate the cross-sectional area of the

wake (A1) downstream of each turbine. The values of A1 were determined by calculating

the position, in the cross-stream direction, of the boundary between the core flow (fluid that

passes through the turbine) and bypass flow (fluid that passes around the turbine). This

boundary was taken as the point where the velocity in the core flow equaled or exceeded the

free-stream velocity. According to theory, A1 is measured at the streamwise location where
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Figure 5.1: Top view of the measurement grid used to collect wake data for the cross-flow

turbine. The dashed lines show the location of each cross-stream traverse.

the pressure between the core and bypass flows reaches equilibrium. This point is ambiguous

without spatially-resolved pressure measurements, which were not available for these tests.

Therefore, the wake area was estimated at each of the streamwise locations shown in Figure

5.1. All four values were used in the analytical correction, and the one which yielded the

lowest error was reported.
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5.3 Analytical Methods

Blockage corrections applied to confined performance data estimate the equivalent unconfined

power coefficient (C ′P), thrust coefficient (C ′T), and tip-speed ratio (λ′),

C ′P =
P ′

1
2
ρAtV ′30

, (5.2)

C ′T =
T ′

1
2
ρAtV ′20

, (5.3)

λ′ =
Rω′

V ′0
, (5.4)

where the prime denotes an unconfined value. The methods considered in this section are

based on axial momentum theory applied to an actuator disk in either closed channel flow

(representative of a closed-section wind tunnel or cavitation tunnel with no free surface) or

open channel flow (representative of a flume with a deformable free surface). These methods

are not suitable for open-jet wind tunnels.

5.3.1 Glauert’s Method

Although we do not directly evaluate the original propeller blockage correction developed

by Glauert [32], all of the methods considered in this section are based, to a varying degree,

on his analysis. The assumptions that underpin Glauert’s derivation are that the incoming

flow is uniform, the propeller (or turbine) is two-dimensional and has an infinite number of

frictionless blades, thrust over the entire rotor is uniform, the wake does not rotate, and the

effects of boundary proximity and channel aspect ratio are insignificant.

Given performance data collected at a constant operating condition in confined flow,

Glauert’s method computes V ′0 , the free-stream velocity that, in an unconfined flow, would

produce the same values of thrust and streamwise velocity through the rotor (ut) at the same
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angular velocity, i.e.,

T ′ = T, (5.5)

u′t = ut, (5.6)

ω′ = ω. (5.7)

Glauert does not specifically address power, but to correct CP, subsequent authors have

invoked the definition of power absorbed by an actuator disk,

P = Tut. (5.8)

Combining Equations (5.5), (5.6), and (5.8) yields

P ′ = P. (5.9)

Dividing Equations (5.2)-(5.4) by the definitions of CP, CT, and λ and using the equalities

in Equations (5.5), (5.7), and (5.9) yields expressions for C ′P, C ′T, and λ′ as functions of V ′0 :

C ′P = CP

(
V0
V ′0

)3

, (5.10)

C ′T = CT

(
V0
V ′0

)2

, (5.11)

λ′ = λ

(
V0
V ′0

)
. (5.12)

For a turbine, blockage increases ut for a given V0. Therefore, the free-stream velocity that

gives the same ut in an unconfined flow is typically higher (i.e., V ′0 > V0). By calculating

the equivalent unconfined power coefficient, thrust coefficient, and tip-speed ratio using V ′0 ,

Glauert’s correction can account for the performance increase that a turbine experiences in

confined flow.

The equivalent unconfined free-stream velocity V ′0 is estimated by first applying the prin-

ciples of continuity, conservation of axial momentum, and the Bernoulli equation to an
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actuator disk in confined flow. This yields a system of four equations,

utAt = u1A1, (5.13)

u2(Ac − A1) = V0Ac − utAt, (5.14)

T =
1

2
ρAt(u

2
2 − u21), (5.15)

T +
1

2
ρAc(V

2
0 − u22) = ρA1u1(V0 − u1) + ρ(Ac − A1)u2(V0 − u2), (5.16)

where u1 is the velocity of the core flow and u2 is the velocity of the bypass flow. It should be

noted that Equations (5.13)-(5.16) apply to an actuator disk that extracts energy from the

flow (i.e., a turbine). Therefore, the thrust in Equations (5.15) and (5.16) is oppositely signed

from the thrust in Glauert’s original derivation, which applies to an actuator disk that adds

energy to the flow (i.e., a propeller). Assuming ut has been estimated from Equations (5.13)-

(5.16), the unconfined free-stream velocity can then be found by introducing a fifth equation:

the expression for thrust in unconfined flow obtained from momentum conservation,

T ′ = 2ρu′tAt(V
′
0 − u′t). (5.17)

Combining the definition of CT and Equations (5.5) and (5.6) with Equation (5.17) yields a

solution for V ′0 :

V ′0 =
V0((ut/V0)

2 + CT/4)

ut/V0
. (5.18)

Once V ′0 is known, the unconfined coefficients C ′P, C ′T, and λ′ can be calculated for each

operating point using Equations (5.10)-(5.12).

Specific corrections for a turbine operating in closed or open channel flow, as presented

by Barnsley and Wellicome [8], Mikkelsen and Sørensen [49], Werle [81], and Houlsby et al.

[38] are described separately in the following sections. The correction given by Maskell [46]

for bluff bodies is contrasted in Section 5.5.5.

5.3.2 Closed Channel Flow

Several methods have been proposed to account for the effects of blockage in a channel

without a free surface. All methods reference the streamtube model shown in Figure 5.2.
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Figure 5.2: Streamtube model of an actuator disk in closed channel flow with no free surface.

The first method, developed by Barnsley and Wellicome [8] and introduced to the marine

energy research community by Bahaj et al. [6], applies Glauert’s axial momentum theory

analysis [32] to a turbine rather than a propeller. A second method, developed by Mikkelsen

and Sørensen [49], also follows Glauert’s analysis. However, it provides an alternative closure

to the correction presented by Barnsley and Wellicome. A third method, derived by Werle

[81], applies simplifying approximations to Glauert’s theory.

Barnsley and Wellicome’s Method

To apply the correction given by Barnsley and Wellicome [8] (BW), measurements of At, Ac,

V0, T , and ρ must be available. If so, Equations (5.13)-(5.16) become a closed system with

four unknowns: A1, ut, u1, and u2. Although a compact analytical solution to these equations

does not exist, individual solutions can be obtained for certain operating conditions. By

rearranging Equations (5.13)-(5.16), an iterative scheme is developed to solve for the ratio
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ut/V0. This scheme consists of three equations:

ut
u1

=
−1 +

√
1 + β((u2/u1)2 − 1)

β(u2/u1 − 1)
, (5.19)

V0
u1

=
u2
u1
− β

(
ut
u1

)(
u2
u1
− 1

)
, (5.20)

V0
u1

=

√
(u2/u1)2 − 1

CT

. (5.21)

The solution is found by guessing a reasonable value for u2/u1 and solving Equation (5.19)

for ut/u1. Using these values of u2/u1 and ut/u1, Equations (5.20) and (5.21) can be solved

for the ratio V0/u1. If the two values of V0/u1 do not match, a new value of u2/u1 should

be selected, and the scheme repeated until the error between Equations (5.20) and (5.21)

is minimized. Note that solutions only exist for values of the input variables that yield

physical results, e.g., u2 > ut > u1, V0 > ut, and u2 > V0. With ut/u1 and V0/u1 known,

the ratio ut/V0 can be found. Given ut/V0, V
′
0 can be calculated using Equation (5.18), and

C ′P, C ′T, and λ′ can be estimated at each operating point using Equations (5.10)-(5.12). A

summary of this method is presented by Bahaj et al. [6] and derived by Kinsey and Dumas

[40]. While the original technical report [8] does not appear to be publicly available, given

limited comments on blockage corrections in subsequent work [9], the primary reference is

unlikely to contain more detail than is presented in the secondary sources.

Mikkelsen and Sørensen’s Method

Mikkelsen and Sørensen [49] (MS) proposed a correction that presents an alternative closure

to Equations (5.13)-(5.16). As with Barnsley and Wellicome’s correction, it is assumed that

At, Ac, V0, and ρ are known. However, A1 is measured rather than T . This method rearranges

Equations (5.13)-(5.16) to solve for the unknown variables ut, u1, u2, and CT directly, with

no iteration required. Even if measurements of T or CT are available, they should not be used

in conjunction with this method, as the system of equations would become overdetermined.
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The correction consists of the following four equations:

ut =
V0(A1/At)(β(A1/At)

2 − 1)

β(A1/At)(3A1/At − 2)− 2A1/At + 1
, (5.22)

u1 =
utAt

A1

, (5.23)

u2 =
At(V0 − βut)
At − βA1

, (5.24)

CT =
u22 − u21
V 2
0

. (5.25)

Once ut and CT have been calculated, the unconfined velocity V ′0 can be found using Equation

(5.18) and the unconfined turbine performance parameters calculated using Equations (5.10)-

(5.12). This method highlights the fact that Equations (5.13)-(5.16) can be solved multiple

ways, as long as adequate measurements are available to close the system.

Werle’s Method

The final closed channel blockage correction considered in this study was developed by Werle

[81]. This method is also based on Equations (5.13)-(5.16) but makes several approximations

that allow the unconfined parameters C ′P, C ′T, and λ′ to be calculated as functions of the

blockage ratio alone, without an intermediate calculation of V ′0 . These approximations are

given as

C ′P
C ′P,max

≈ CP

CP,max

, (5.26)

C ′T
C ′T,max

≈ CT

CT,max

, (5.27)

u′t
u′t,max

≈ ut
ut,max

, (5.28)
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where the expressions for C ′P,max, C
′
T,max, and u′t,max are given by the well-known Betz crite-

rion [14, 42] as

C ′P,max =
16

27
, (5.29)

C ′T,max =
8

9
, (5.30)

u′t,max =
2

3
V ′0 , (5.31)

and the expressions for CP,max, CT,max, and ut,max are given by Garrett and Cummins [30] as

CP,max =
16

27

1

(1− β)2
, (5.32)

CT,max =
8

9

(1 + β)

(1− β)2
, (5.33)

ut,max =
2

3

V0
(1 + β)

. (5.34)

Substituting Equations (5.29)-(5.34) into Equations (5.26)-(5.28) gives corrections for CP,

CT, and ut, which Werle presents as

C ′P ≈ CP(1− β)2, (5.35)

C ′T ≈ CT
(1− β)2

(1 + β)
, (5.36)

u′t
V ′0
≈ ut
V0

(1− β). (5.37)

Applying Equations (5.6) and (5.12) to Equation (5.37) yields an expression in terms of the

tip-speed ratio,

λ′ ≈ λ(1− β). (5.38)

Based on an independent re-derivation of Werle’s method, Equations (5.37) and (5.38) appear

to contain sign errors and are inconsistent with the rest of the model. If treated consistently,

the equations should be given as

u′t
V ′0
≈ ut
V0

(1 + β), (5.39)

λ′ ≈ λ(1 + β). (5.40)
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However, because the purpose of this study is to evaluate blockage corrections as presented

in the literature, the tip-speed ratio correction given by Equation (5.38) was applied to our

experimental data without modification.

5.3.3 Open Channel Flow (Houlsby et al.’s Method)

An analytical model for an actuator disk in flow with a deformable free surface was first

developed by Houlsby et al. [38] (Houlsby). As with Glauert’s model for closed channel flow,

this model was derived by applying continuity, conservation of axial momentum, and the

Bernoulli equation to an actuator disk in confined flow. However, the free surface of the flow

was allowed to deform, as shown in Figure 5.3. This yields seven equations, which can be

rearranged and expressed as a system of two equations:

u1 =
Fr2u42 − (4 + 2Fr2)V 2

0 u
2
2 + 8V 3

0 u2 − 4V 4
0 + 4βCTV

4
0 + Fr2V 4

0

−4Fr2u32 + (4Fr2 + 8)V 2
0 u2 − 8V 3

0

, (5.41)

u1 =
√
u22 − CTV 2

0 . (5.42)

As with the closed channel model, analytical solutions to Equations (5.41) and (5.42) do

not exist. However, specific solutions can be found using an iterative method. To apply

the correction, measurements of At, Ac, V0, T , ρ, and d0 are required. The solution method

consists of guessing a reasonable value for u2, solving Equations (5.41) and (5.42) separately

for u1, and iterating until the two values of u1 are equal. With u1 and u2 known, the

streamwise velocity through the turbine can be calculated as

ut =
u1(u2 − V0)(2gd0 − u22 − u2V0)

2βgd0(u2 − u1)
. (5.43)

The unconfined free-stream velocity and turbine performance parameters can then be found

from Equations (5.18) and (5.10)-(5.12).

This open channel flow model is referenced by Whelan et al. [83] and Houlsby and Vogel

[37]. Whelan et al. [83] used this model as the basis for a blockage correction that can be

applied within a blade element momentum code. Houlsby and Vogel [37] explored solutions
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Figure 5.3: Streamtube model of an actuator disk in open channel flow with a deformable

free surface.

to this model over a range of operating conditions. However, to our knowledge, it has not

previously been cast as an analytical blockage correction.

5.3.4 Summary of Analytical Methods

All of the blockage corrections considered in this section are grounded in Glauert’s deriva-

tion [32]. In his original work, Glauert presented a set of equations that can be used to solve

for V ′0 and, therefore, calculate the equivalent unconfined turbine performance coefficients.

Glauert also proposed a linearization of this model that provides a simpler method of esti-

mating V ′0 when the blockage ratio is less than 0.15. While Glauert’s derivation applies to

propellers, it can easily be adapted to turbines by reversing the direction of thrust to yield

Equations (5.13)-(5.18).

Barnsley and Wellicome [8] and Mikkelsen and Sørensen [49] use measured quantities to

solve Equations (5.13)-(5.16) for unknown variables, calculate V ′0 using Equation (5.18), and

estimate the unconfined performance coefficients using Equations (5.10)-(5.12). The only

difference between these two methods is Barnsley and Wellicome’s use of thrust to close
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the system and Mikkelsen and Sørensen’s use of the wake area. The correction presented

by Werle [81] uses expressions for the maximum theoretical power coefficient and correspond-

ing thrust coefficient and streamwise velocity through the rotor in confined and unconfined

flow. In confined flow, these expressions can be derived from Equations (5.13)-(5.16), fol-

lowing the method of Garrett and Cummins [30]. In unconfined flow, these expressions are

given by Lanchester [42] and Betz [14]. Although Werle’s correction is based on Glauert’s

theory, it relies on assumptions that yield a model distinct from the other closed channel

corrections. The open channel flow model given by Houlsby et al. [38] is a generalization of

Equations (5.13)-(5.16) to allow for a deformable free surface. So, if the free surface does not

deform, Houlsby et al.’s correction reduces to the model used by Barnsley and Wellicome

and Mikkelsen and Sørensen.

5.3.5 Estimation of Correction Error

The effectiveness of each blockage correction was evaluated by a measure of the difference

between the corrected CP(λ) and CT(λ) curves relative to the unconfined performance curves.

This error metric was computed as the projection of the Euclidean distance (positive definite

scalar quantity) between uniformly sampled points on the corrected and unconfined curves

into CP, CT, or λ space. These distances were then normalized by the corresponding values

on the unconfined curves to calculate a relative error. The mean of these values, over all

operating conditions that produced net power, was taken as an estimate of correction error.

Since Mikkelsen and Sørensen’s method required wake data, it was applied only at the tip-

speed ratio corresponding to the peak power coefficient. Therefore, the error of each method

was estimated at this single point as well.
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5.4 Results

5.4.1 Performance and Wake Characteristics

The power and thrust coefficients measured under confined and unconfined conditions are

shown in Figure 5.4. For both turbines, blockage produces a higher peak power coefficient

at an elevated tip-speed ratio. Furthermore, the thrust coefficient at the point of peak CP is

increased, and the turbines produce net power over a wider range of tip-speed ratios. These

results are in agreement with previous findings [23]. Interestingly, the overall trend of an

increased CP at high blockage reverses or becomes negligible at lower tip-speed ratios. As

discussed in Section 4.4.1, past studies have reported an insensitivity of CP to blockage at

low tip-speed ratios for both cross-flow and axial-flow turbines [23, 40, 41]. For cross-flow

turbines, Consul et al. [23] and Kinsey and Dumas [40] attribute this to dynamic stall effects

that are magnified by blockage. At low tip-speed ratios, the performance-enhancing effects

of blockage are cancelled out by increased dynamic stall. However, as shown in Figure 5.4,

we observe that blockage has a negative, rather than neutral, effect on the power coefficient

of the cross-flow turbine at low tip-speed ratios. As prior studies are based on numerical

simulations, this discrepancy could be explained by the difficulty of accurately modeling

dynamic stall.

As described in Section 5.2.2, the cross-sectional area of the wake downstream of both

turbines was estimated from velocity measurements. Table 5.1 presents the values of A1,

non-dimensionalized by At, at each of the four streamwise positions shown in Figure 5.1.

These values were used only when applying Mikkelsen and Sørensen’s correction.

5.4.2 Application of Blockage Corrections

Barnsley and Wellicome’s Method

Figure 5.5 presents the results of applying Barnsley and Wellicome’s correction to the con-

fined data. The uncorrected, confined data are superimposed for reference. If the correction
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Figure 5.4: Confined and unconfined power and thrust coefficients for the cross-flow (a, b)

and axial-flow (c, d) turbines. The shading represents the measurement uncertainty at each

tip-speed ratio. In some instances, the uncertainty range is smaller than the plot markers,

and therefore not visible.
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X/D 0.75 1.25 1.75 2.25

Cross-flow turbine 1.10 1.14 1.16 1.19

Axial-flow turbine 1.11 1.11 1.11 1.06

Table 5.1: Dimensionless wake area (A1/At) at four streamwise locations.

had worked perfectly, the corrected data would have collapsed onto the unconfined perfor-

mance curve. Although some discrepancies remain, the correction generally accounts for the

effects of blockage on the power and thrust coefficients of both turbines.

Werle’s Method

Figure 5.6 shows the application of Werle’s correction to the confined performance data.

Although the correction performs adequately for the magnitude of the power coefficient, it

significantly overcorrects the thrust coefficient and tip-speed ratio. As mentioned in Section

5.3.2, the tip-speed ratio correction given by Equation (5.38) is not consistent with the rest

of the derivation. However, the modified form given by Equation (5.40) further reduces the

corrected tip-speed ratios, increasing the disagreement between corrected and unconfined

performance (results not shown).

Houlsby et al.’s Method

Figure 5.7 presents the results of Houlsby et al.’s correction which, unlike the previous two

methods, allows for a deformable free surface. The results of this correction are almost

identical to those from Barnsley and Wellicome’s method (Figure 5.5).

Mikkelsen and Sørensen’s Method

Figure 5.8 gives the results of applying Mikkelsen and Sørensen’s correction. Unlike the

previous methods, a single operating point (peak CP) was evaluated rather than the full CP
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Figure 5.5: Application of Barnsley and Wellicome’s correction to the confined performance

data from the cross-flow (a, b) and axial-flow (c, d) turbines.
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Figure 5.6: The results of applying Werle’s correction to the confined performance data from

the cross-flow (a, b) and axial-flow (c, d) turbines.
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Figure 5.7: Houlsby et al.’s method applied to the confined performance data from the

cross-flow (a, b) and axial-flow (c, d) turbines.
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and CT curves, as wake data could not be collected in a timely manner for all operating

conditions. All of the values for A1/At presented in Table 5.1 were evaluated, and it was

determined that X/D = 2.25 gave the least error for the cross-flow turbine and X/D = 1.75

gave the least error for the axial-flow turbine. For comparison, the results of applying the

other corrections to the peak CP of each turbine are also shown in Figure 5.8.

5.5 Evaluation of Blockage Corrections

The errors for all blockage corrections applied to both turbines are summarized in Figure 5.9.

For reference, the equivalent calculation for the confined, uncorrected data (i.e., performance

change as a consequence of blockage) is given as well. The ratio of As to At was less than 5%

under confined conditions for both turbines, so alternative definitions of the blockage ratio,

such as β = At/(Ac − As), do not significantly affect the values shown in Figure 5.9.

5.5.1 Full Performance Curve

As quantified in Figure 5.9, Houlsby et al.’s and Barnsley and Wellicome’s methods are

relatively effective at correcting for blockage over the entire range of tip-speed ratios con-

sidered for both turbines. These corrections give almost identical results, with Houlsby et

al.’s method performing slightly better overall. This outcome is to be expected, given that

Houlsby et al.’s analytical model is a generalization of the one used by Barnsley and Welli-

come to allow for a deformable free surface. Since no significant free surface deformation

was observed during these experiments, it is unsurprising that the two methods yield similar

outcomes.

Werle’s method produces mixed results. The CP correction performs better than or

equal to Houlsby et al.’s and Barnsley and Wellicome’s for both turbines and the CT and

λ corrections perform significantly worse. These outcomes are consistent with the original

derivation [81]. As mentioned in Section 5.3.2, Werle’s correction begins with the analytical

expressions for CP,max, CT,max, and ut,max in both confined and unconfined flow [14, 30, 42].

These expressions yield corrections that are applicable only at the peak CP. To generalize
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Figure 5.8: Overall correction performance at the tip-speed ratios corresponding to peak CP

for the cross-flow (a, b) and axial-flow (c, d) turbines. Mikkelsen and Sørensen’s correction

used the downstream wake measurements that gave the closest correction to unconfined data.

The closer the corrected performance is to unconfined measurements (black circle), the more

effective the correction. Uncorrected performance is shown for reference (gray triangle).
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Figure 5.9: Blockage correction error for the cross-flow (a, b) and axial-flow (c, d) turbines,

relative to unconfined data. Filled markers indicate error averaged over full curves, while

open markers indicate error at peak CP.
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the corrections to other operating conditions, the approximations given in Equations (5.26)-

(5.28) are used. However, the approximation for CP given by Equation (5.26) is the only

expression that Werle mathematically justifies in the original derivation. This is done using

a “correlation scheme” that is attributed to Werle and Presz [82]. Repeating this method

for CT and ut reveals that the approximations given in Equations (5.27) and (5.28) are less

well justified than Equation (5.26). This could explain why Werle’s CP correction performs

better than the CT or λ corrections.

5.5.2 Peak CP

Considering only the results for the peak CP allows a comparison of all four blockage cor-

rections. The errors in Houlsby et al.’s, Barnsley and Wellicome’s, and Werle’s methods

follow the same trends as the full curve error. Mikkelsen and Sørensen’s method yields much

higher errors than either Houlsby et al.’s or Barnsley and Wellicome’s correction. This result

is unexpected given that Barnsley and Wellicome’s and Mikkelsen and Sørensen’s corrections

use the same set of equations and differ only in their choice of input variables (thrust versus

wake area). The poor performance of Mikkelsen and Sørensen’s method is likely due to the

difficulty of measuring A1 in experiment. The lateral traverses shown in Figure 5.1 captured

the size of the wakes in only one dimension, while wakes have a higher dimensional structure

(e.g., Bachant and Wosnik [3], for cross-flow turbines). Additionally, due to experimental

limitations, the wake data were collected at water temperatures of 11◦C for the cross-flow

turbine and 17◦C for the axial-flow turbine, compared to 22◦C and 20◦C for the performance

data. It is uncertain how these changes in temperature, which impact the Reynolds num-

ber, would affect the wake, though prior results have suggested that wake structure reaches

Reynolds independence sooner than turbine performance [21]. Compounding the difficulty of

accurately measuring A1, the correction is quite sensitive to this variable. An error of ±10%

in the value of A1 produces an error of approximately ±32% in Mikkelsen and Sørensen’s

CP correction. By comparison, introducing a ±10% error into the value of T produces an

error of ±12% when applying Barnsley and Wellicome’s CP correction to the same data.
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Although Mikkelsen and Sørensen’s correction did not perform well in this study, its perfor-

mance should improve if a better estimate of A1 were available. However, in experiments, it

is unlikely that such a measurement would be simpler than measuring the rotor thrust. The

fact that Barnsley and Wellicome’s and Mikkelsen and Sørensen’s corrections give different

results, despite solving the same equations, illustrates that the choice of input variables can

significantly influence the magnitude of the correction.

5.5.3 Impact of Reynolds Number

Due to experimental limitations, both turbines were operated in a transitional regime, where

performance was dependent on Reynolds number [4, 21, 50]. As discussed in Section 4.4.2,

because blockage increases the streamwise flow speed through the rotor plane, the turbines

experienced an elevated “local” Reynolds number (Re`, calculated using ut as the charac-

teristic velocity) under confined conditions, even as the free-stream Reynolds number was

held constant. Specifically, momentum theory suggests that, due to blockage, the Re` of the

cross-flow turbine increased by about 9% and the Re` of the axial-flow turbine by about 7%.

Although these increases are relatively small, they can meaningfully change turbine perfor-

mance, as illustrated in Chapter 4. Because blockage corrections are implicitly Reynolds

independent, changes in Re` are likely to increase the correction error when experiments

are conducted below Reynolds independence. This provides two further insights into the

accuracy of Houlsby et al.’s and Barnsley and Wellicome’s methods reported here.

First, both Houlsby et al.’s and Barnsley and Wellicome’s corrections are more effec-

tive for the cross-flow turbine than the axial-flow turbine. This is unexpected, considering

blockage corrections were originally derived for axial-flow devices. Furthermore, prior work

has indicated that Barnsley and Wellicome’s correction performs better for axial-flow tur-

bines [40]. This discrepancy may be explained by Reynolds dependence. Although the

axial-flow turbine saw a slightly smaller increase in local Reynolds number under confined

conditions, it was operating at a lower free-stream Reynolds number (Re = 14, 000) than

the cross-flow turbine (Re = 31, 000) and was likely further from Reynolds independence.
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Therefore, the change in Re` is expected to have a larger effect on the axial-flow turbine. To

evaluate this hypothesis, it would be necessary to characterize trends in the performance of

both turbines as a function of Reynolds number, which was beyond the scope of this study.

Second, Houlsby et al.’s and Barnsley and Wellicome’s corrections are more accurate for

the thrust coefficient than the power coefficient. This may also be due, at least in part, to

Reynolds number dependency. In unrelated experiments, both turbines were tested in the

UW flume at two different transitional Reynolds numbers (see Figure 5.10). The cross-flow

turbine’s power coefficient changed significantly with Reynolds number around the conditions

referenced in this study. However, the thrust coefficient was relatively insensitive to Reynolds

number, such that corrections for CT would not be significantly impacted by the changes in

Re`. The axial-flow turbine performance followed a similar trend.

5.5.4 Impact of Model Limitations

Axial momentum theory applied to an actuator disk is a significant simplification of real

turbine dynamics. As noted by Houlsby and Vogel [37], axial momentum theory is not

restricted to turbines of a certain shape. However, the assumptions that underpin the theory,

discussed in Section 5.3.1, do not hold for most real turbines, either axial-flow or cross-flow.

Several past studies have noted that these limitations reduce blockage correction efficacy [2,

31, 40, 71]. Here, we discuss several of these limitations in the context of our experimental

results.

With the exception of Werle’s method, the thrust coefficient corrections are more effective

than the power coefficient corrections. Axial momentum theory does not account for any

rotation, either of the turbine or of the wake. While expressions for thrust can be derived

without this information, power is equal to torque multiplied by the angular velocity of

the turbine. Therefore, power from a real turbine requires rotation and an exchange of

angular momentum between the rotor and the flow. Most blockage corrections based on

axial momentum theory assume power is the product of thrust and the streamwise flow

speed through the rotor. This expression is inaccurate for several reasons. First, the power
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Figure 5.10: Power and thrust coefficient curves for the cross-flow (a, b) and axial-flow (c, d)

turbines at multiple transitional Reynolds numbers in the UW flume. The power coefficients

are more sensitive to variations in Reynolds number than the thrust coefficients.
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absorbed by an actuator disk does not account for the presence of rotational kinetic energy

in the wake. Second, although axial momentum theory assumes a frictionless turbine, drag

on rotating components reduces the torque produced by the rotor. This is accounted for in

measured torque but is not reflected in axial momentum theory. Finally, thrust measurements

may include components of the system that do not produce torque, such as the hub or

support structure. These factors mean that real power is not generally the product of T and

ut. Therefore, because thrust can be expressed directly by axial momentum theory, whereas

power can only be estimated, it is expected that corrections based on axial momentum theory

would perform better for CT than for CP. This hypothesis is supported by the results of

our experimental assessment (Figure 5.9). To overcome this limitation, a blockage correction

originating from angular momentum theory would be required.

Examining the limitations of axial momentum theory may also explain why, as shown in

Figures 5.5 and 5.7, the CP correction is more effective at lower and higher tip-speed ratios

than in the center of the curve. As discussed previously, axial momentum theory neglects

wake rotation. Therefore, it is expected that the corrections will perform better at operating

conditions with minimal wake rotation. Because wake rotation is a reaction to the torque

of the rotor, operating conditions that produce less torque also cause less wake rotation.

These operating conditions correspond to lower and higher tip-speed ratios where torque

and, consequently, CP are reduced.

The fact that the corrections are based on axial momentum theory also has interesting

implications for the tip-speed ratio. Glauert [32] specifies that the angular velocity of the

turbine and the flow speed through the rotor remain constant between the confined and

equivalent unconfined conditions. With wake rotation neglected, this justifies the assertion

that the thrust remains constant as well. However, because the correction is based on

axial momentum theory, the calculation of V ′0 does not depend on ω. Aside from providing a

justification for constant thrust between confined and unconfined conditions, the requirement

that ω′ = ω is used only to derive Equation (5.12), the tip-speed ratio correction. Because

axial momentum theory does not directly address rotation, prior work [71] has questioned
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whether the equivalent unconfined condition should be that which gives the same angular

velocity or the same tip-speed ratio. We chose to assume ω′ = ω and correct the tip-speed

ratio according to Equation (5.12), which is in line with Glauert’s statements and gives good

agreement with the unconfined results.

5.5.5 Maskell’s Bluff Body Correction

Another relevant restriction of axial momentum theory is that it becomes invalid when the

unconfined thrust coefficient exceeds unity, as this corresponds to reversed flow in the wake.

As shown in Figure 5.4, the unconfined thrust coefficients of the cross-flow and axial-flow

turbines tested in this study were within this threshold. However, this is not always the

case, motivating the use of a blockage correction based on bluff body theory for highly

loaded turbines. As discussed in Section 5.1, two prior studies applied a blockage correction

based on the theory of Maskell [46] to an axial-flow turbine [83] and a cross-flow turbine [40].

Both studies found that Maskell’s correction performed better than actuator disk methods

for highly loaded turbines.

Maskell observed that blockage corrections based on actuator disk theory were inadequate

for objects that produced a bluff body wake. Maskell’s blockage correction is based on

momentum theory coupled with an empirical description of wake behavior. The derivation

assumes that the bluff body wake is axisymmetric, the flow is uniform and unidirectional, and

the blockage ratio is small, such that higher-order terms of β can be neglected. The correction

calculates the free-stream velocity (V ′0,b) that, in an unconfined flow, would produce the same

flow speed past the object (u2,b). Note that u2,b is the velocity of the shear layer downstream

of the bluff body and is distinct from u2, the velocity of the bypass flow in actuator disk

theory. Given measurements of u2,b, V0,b, CT, and β, the ratio u′2,b/V
′
0,b can be calculated

according to

(u2,b/V0,b)2

(u′2,b/V
′
0,b)2

= 1 +
CTβ

(u′2,b/V
′
0,b)2 − 1

. (5.44)
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With u′2,b/V
′
0,b known, the equivalent unconfined thrust coefficient can be estimated as

C ′T = CT

(u′2,b/V
′
0,b)2

(u2,b/V0,b)2
. (5.45)

Since u2,b = u′2,b, Equation (5.45) reduces to

C ′T = CT

(
V0,b
V ′0,b

)2

. (5.46)

Although this correction is similar in form to Equation (5.11), the unconfined free-stream

velocity is that which gives the same value of u2,b between confined and unconfined condi-

tions, rather than ut. To apply Maskell’s correction as presented, it is necessary to have a

measurement of u2,b. As for Mikkelsen and Sørensen’s correction, it would be difficult to

identify an unambiguous location to sample this value in an experimental turbine.

Rather than applying Maskell’s method exactly as formulated, past studies have applied

a correction inspired by the theory. Whelan et al. [83] assumed that, when operating in a

highly loaded condition, a turbine responds primarily to the bypass flow rather than the flow

through the rotor plane. This allows CT and λ to be corrected as

C ′T = CT

(
V0
u2

)2

, (5.47)

λ′ = λ

(
V0
u2

)
. (5.48)

Neither Whelan et al. [83] nor Kinsey and Dumas [40] attempt to estimate C ′P. Equations

(5.47) and (5.48) are distinct from Maskell’s original correction, in that they use the by-

pass velocity (u2) as a correction factor, rather than the unconfined free-stream speed (V ′0,b).

Furthermore, to apply Equations (5.47) and (5.48), Whelan et al. and, subsequently, Kin-

sey and Dumas estimated u2 using actuator disk methods, despite assuming the operating

conditions are such that actuator disk methods are invalid. Nevertheless, both past studies

found that Equations (5.47) and (5.48) were more effective than actuator disk corrections

when the rotors were more heavily loaded.

As the bypass flow adjacent to the rotor was not sampled in our experiments, we followed

the method of Whelan et al. to correct CT and λ using a Maskell-inspired approach. For
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the sake of investigation, we also corrected CP as

C ′P = CP

(
V0
u2

)3

. (5.49)

The results of applying Equations (5.47)-(5.49) to our confined performance data are shown

in Figure 5.11. The bypass velocity was estimated iteratively according to the method of

Houlsby et al. Overall, Maskell’s correction performs better at intermediate tip-speed ratios

and worse at higher tip-speed ratios, which is in contrast to the results obtained by Whelan

et al. and Kinsey and Dumas. Given that u2 > V ′0 , this approach makes a larger correction,

which reduces some of the error we attribute to Reynolds dependence at the peaks of the

CP curves. The poor performance at higher tip-speed ratios is unexpected, as the thrust

coefficients for both turbines in confined flow are similar to the values reported in Whelan

et al. and Kinsey and Dumas. These mixed results suggest that a bluff body correction may

be effective, but is not guaranteed to be more effective, even when the rotor is highly loaded.

The physical justification for use is generally weaker than for axial momentum theory, and

obtaining a correction factor directly in experiment is likely to be similarly problematic

to obtaining the wake cross-sectional data necessary to apply Mikkelsen and Sørensen’s

correction. Consequently, a Maskell-inspired correction applied to experimental data may

have a relatively large unquantified uncertainty. Finally, a Maskell-inspired correction does

not resolve the fundamental mismatch between real turbine power and power absorbed by an

actuator disk. This being said, prior studies [1, 21] have identified similarities between some

turbine and bluff body wakes, suggesting that blockage corrections incorporating elements

of bluff body theory could be more effective than those based purely on axial momentum.

5.5.6 Recommended Blockage Corrections

Analytical blockage corrections based on axial momentum theory are imperfect and can only

provide estimates of the equivalent unconfined condition for performance data collected at

high blockage. Although axial momentum theory solves for thrust directly, an approximate

expression for power is required. Here, we demonstrate that for relatively high blockage,
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Figure 5.11: Application of a blockage correction inspired by the bluff body theory of Maskell

to the confined performance data from the cross-flow (a, b) and axial-flow (c, d) turbines.
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this leads to higher error in the CP correction, which is unfortunate, as the power output

of a turbine is often of greater interest than the loading. Despite the limitations of these

methods, they do reduce the effects of blockage on performance data. Encouragingly, two of

the methods resulted in less than 20% mean percentage error for the power coefficient of the

cross-flow turbine tested at a blockage ratio of 0.36, experimental conditions that resulted in

a change in the local Reynolds number and likely violated many of the assumptions of axial

momentum theory. The same two methods gave less than 30% mean percentage error for

the power coefficient of the axial-flow turbine tested at a blockage ratio of 0.35. However,

the errors shown in Figure 5.9 are specific to the turbines and test conditions in this study

and should not be taken as indicative of the error associated with these blockage corrections

for other turbine geometries or test conditions.

Of the corrections evaluated, we recommend the methods presented by Houlsby et al. and

Barnsley and Wellicome. Houlsby et al.’s correction allows for a deformable free surface and

gave slightly better results for this study, even though no significant free surface effects were

observed. If thrust measurements are not available, but detailed wake data are, Mikkelsen

and Sørensen’s correction may be appropriate. However, given the correction’s sensitivity

to the wake area, we caution against general use in experiments. Even though Werle’s

correction performed best for the power coefficient, we do not recommend this method, due

to inconsistencies in the underlying assumptions and poor performance for the tip-speed

ratio and thrust coefficient. Corrections based on bluff body theory, such as the Maskell-

inspired correction applied by Whelan et al. and Kinsey and Dumas, may be appropriate

when methods based on axial momentum theory fail to converge but should be used with

caution.

5.6 Conclusions

This study experimentally examined the effects of blockage on the performance of a cross-flow

and an axial-flow turbine. Both turbines were characterized under conditions of high blockage

and negligible blockage, while other significant parameters were held approximately constant.
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Overall, the effects of increased blockage on the turbines’ power and thrust coefficients were

consistent with prior investigations. These data were used to evaluate the performance

of analytical blockage corrections for both turbine archetypes. Four of the five blockage

corrections considered were based on axial momentum theory applied to an actuator disk in

confined flow and followed the original propeller blockage correction presented by Glauert

[32]. A correction based on momentum theory applied to a bluff body [46] was also evaluated.

Interestingly, and in contrast to some prior results, we observed that the corrections were

more effective for the cross-flow turbine than the axial-flow turbine. We hypothesize that

this may be a consequence of changes in the local Reynolds number associated with our

relatively high experimental blockage. This indicates that additional care should be taken

when applying blockage corrections to data collected at transitional Reynolds numbers, which

are common in a laboratory setting.

Our results also demonstrate that corrections for the thrust coefficient performed better

than corrections for the power coefficient for both turbines. This is likely a combination

of Reynolds number dependence and the limitations of axial momentum theory. Glauert’s

original blockage correction provides a system of equations, based on axial momentum theory,

that can be used to calculate the equivalent unconfined free-stream velocity. However, his

derivation does not explicitly mention how to apply this correction to measured performance

coefficients. Subsequent studies have used his statement that the thrust, angular velocity

of the turbine, and flow speed through the turbine remain constant between blocked and

unblocked conditions to derive such corrections. However, this requires assuming that the

power is given as the product of thrust and the flow speed through the turbine, which is

inaccurate for real turbines. So, while thrust is calculated directly from axial momentum

theory, power must be approximated, yielding higher error in the corrected power coefficients.

Despite the limitations of axial momentum theory, we have shown that analytical blockage

corrections can give acceptable results for experimental data. However, the most effective

way to eliminate blockage effects is to characterize turbine performance under approximately

unconfined conditions, such that a blockage correction is unnecessary. Unfortunately, the
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model scales needed to reduce the effects of blockage are often at odds with the scales

needed to achieve Reynolds independence. Large facilities allow testing at both low blockage

ratios and high Reynolds numbers but present challenges for collecting well-controlled, high

resolution measurements. Due to these limitations, certain experiments will necessarily be

conducted in smaller facilities, and corrections will be required to account for the effects of

blockage.

Based on our results, in addition to our evaluation of the corrections’ ease of application

and mathematical robustness, we recommend the methods presented by Barnsley and Welli-

come [8] and Houlsby et al. [38]. We also note that the errors shown in Figure 5.9 are specific

to this study, and there is no guarantee that these corrections will give satisfactory results

for an arbitrary test condition. Our analysis suggests that a new blockage correction that

accounts for rotation and better describes highly loaded turbines could be more effective and

is an area deserving of future efforts.
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Chapter 6

BLOCKAGE EFFECTS ON WAKE

This chapter contains content from Ross and Polagye [64], which has been submitted

to the Journal of Ocean Engineering and Marine Energy. Portions of the article have been

edited to avoid redundancy. The objective of this chapter is to evaluate the effects of blockage

on the wake of a current turbine to inform the intentional use of this scaling effect to improve

turbine performance.

6.1 Introduction

As discussed in Chapters 4 and 5, flow confinement, or blockage, can significantly augment

the power output of current turbines [23, 25, 30, 31, 34, 37, 41, 54, 69, 70]. Chapter 5 focuses

on accurately accounting for these effects at model scales to improve the extrapolation of

laboratory results to larger scales. However, blockage effects can be used advantageously

at full scale to improve the performance of current turbines operating in arrays. Naturally

confined flows, such as rivers and tidal channels, are of particular interest for high blockage

arrays. There has been significant research conducted on array design, and multiple studies

have developed models to predict and optimize the power output from arrays of current

turbines operating in confined channels [17, 18, 22, 24, 26, 30, 36, 44, 45, 55, 56, 58, 70, 77,

78, 80].

The effects of blockage on an individual turbine’s power output have been explored ana-

lytically [30, 37], numerically [23, 34, 40, 41, 54, 69, 70], and experimentally [6, 11, 15, 25, 31,

48, 62, 67]. However, to inform the design of high blockage arrays, the influence of flow con-

finement on wake dynamics and channel energetics must also be considered. Prior work has

indicated that blockage can affect the size of a turbine’s wake and alter the streamwise flow
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speeds through and around the rotor [11, 23, 30, 37, 40, 41, 48, 69, 70]. The relative speed

between the core flow and bypass flow determines the shear in the wake and the magnitude

of turbulent kinetic energy (TKE) generated as the two flows mix downstream of the turbine.

This TKE is ultimately converted to internal energy via viscous dissipation and represents a

loss of upstream mechanical energy [37]. Because blockage affects both turbine power output

and viscous dissipation, it influences the total mechanical energy that a turbine or array of

turbines removes from a flow. The ratio of useful to total mechanical power removed from a

flow is quantified by the basin efficiency (η), defined as

η =
P

Ptot
, (6.1)

where Ptot is the total mechanical power removed from the flow, including viscous dissipation

in the wake. Wake size, core and bypass flow speeds, and basin efficiency are important con-

siderations in array design, as they affect spacing and overall resource utilization. Therefore,

an understanding of blockage effects on wake dynamics and channel energetics is necessary

to design high blockage arrays that optimize power output while minimizing the physical

footprint and viscous dissipation losses.

Several analytical [30, 37] and numerical [23, 69, 70] studies have explored the effects

of blockage on turbine wakes. The analytical model developed by Houlsby et al. [38] and

expanded by Houlsby and Vogel [37] provides fundamental insight. This model, discussed in

Chapter 5, is based on linear momentum actuator disk theory and quantifies flow confinement

in terms of the blockage ratio. The effects of blockage on a turbine’s wake can be illustrated

with this model by increasing the blockage ratio while holding constant either the thrust on

the turbine or the streamwise flow speed through the rotor. First, if thrust is held constant,

higher blockage leads to a smaller wake and increased flow speeds through the rotor and in

the core and bypass flows. Although the core and bypass flow speeds both increase with

blockage, the relative velocity between the two flows decreases, decreasing shear and viscous

dissipation, as well as increasing basin efficiency. Second, increasing blockage while holding

the streamwise flow speed through the rotor constant results in a smaller wake, higher thrust,
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and increased flow speeds in the core and bypass flows. Unlike the constant thrust case, the

relative velocity between the core and bypass flows increases with blockage, yielding higher

shear and more viscous dissipation, as well as decreasing the basin efficiency. It should be

noted that although increased viscous dissipation often lowers basin efficiency, and vice versa,

the two are not always indirectly correlated. The basin efficiency represents the fraction of

total mechanical energy extracted from the flow that is captured by the turbine. Because

the turbine power output changes with blockage, both the mechanical energy lost to viscous

dissipation and the basin efficiency can increase as blockage increases.

While the analytical model presented by Houlsby and Vogel [37] provides useful insight,

a turbine’s response to increasing blockage is more complex than the response of an actuator

disk. In general, increasing the blockage ratio causes the thrust and flow speed through the

rotor to vary simultaneously [69]. The implications for the wake depend on how significantly

the thrust changes, which is influenced by a turbine’s specific design and operating point.

Therefore, numerical and experimental studies of actual turbines are required to capture

all the relevant dynamics. For example, a numerical study by Schluntz and Willden [70]

investigated the effects of variable blockage and rotor design on turbine wakes. The authors

optimized axial-flow turbine performance in an array at different blockage ratios by varying

the rotor solidity. To maximize power output, rotor solidity increased with blockage. The

streamwise flow speed through the turbines and the basin efficiency decreased with increas-

ing blockage when comparing turbines optimized for specific blockage conditions. However,

when comparing a single turbine design operating at peak power under all blockage condi-

tions, the streamwise flow speed through the rotor and the basin efficiency increased with

blockage. In both cases, the bypass flow speed increased. The basin efficiency worsened for

the turbines optimized for blockage but improved for a single design because the thrust of

the optimized turbines increased more significantly with blockage. This caused the relative

velocity between the core and bypass flows to increase, with attendant increases in shear and

viscous dissipation.

Schluntz and Willden further illustrated that blockage effects depend on a turbine’s op-
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erating point, defined by its tip-speed ratio, as well as its solidity. The authors found that

turbines designed for low blockage conditions achieved peak power at higher tip-speed ratios

when operating under highly blocked conditions. Because these turbines had a lower than

optimal solidity, operating at higher tip-speed ratios allowed them to exert more thrust on

the flow and extract more power. This highlights the fundamental principle that the effects

of flow confinement depend on the blockage ratio and rotor thrust, which underpins why

certain blockage corrections are more effective than others, as discussed in Chapter 5.

Although most of the past work in this area is either analytical or numerical, several

studies have explored the effects of blockage on turbine wakes experimentally. McTavish et al.

[48] tested an axial-flow turbine at blockage ratios between 0.06 and 0.26 in a laboratory flume

and concluded that increasing blockage while operating at a fixed tip-speed ratio produced

a smaller wake. Battisti et al. [11] tested a cross-flow turbine in closed and open wind

tunnels, resulting in blockage ratios of near 0 and 0.10. They concluded that for a turbine

operating at a fixed tip-speed ratio, increasing the blockage ratio increased the flow speeds

through and around the rotor. The results of these experimental studies are consistent with

the findings of past analytical and numerical work [23, 30, 37, 69, 70] and, notably, the

trends are consistent regardless of whether the turbine under consideration is an idealized

actuator disk, axial-flow turbine, or cross-flow turbine. However, both experimental studies

focus on a single effect rather than comprehensively addressing blockage effects, and neither

study addresses channel energetics (i.e., viscous dissipation in the wake). Furthermore, both

studies investigate blockage effects at a constant tip-speed ratio, rather than the tip-speed

ratio corresponding to peak power for each blockage condition. As demonstrated numerically

by Schluntz and Willden [70], understanding how blockage influences a turbine’s wake at peak

power is likely of greater interest for optimizing array designs. Therefore, the objective of

this work is to experimentally characterize the effects of blockage on the wake of a cross-flow

turbine operating at peak power, with an emphasis on wake size, core and bypass flow speeds,

and viscous dissipation.
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6.2 Methods

Turbine performance and wake data were collected for a laboratory-scale cross-flow turbine

operating at two different blockage ratios. The turbine used for these experiments is shown

in Figure 3.1 (b) and described in Section 3.1. Its performance was characterized according

to the process described in Section 3.3. To vary the blockage ratio, the turbine was tested in

the UW flume and the BMSC flume, described in Section 3.2. Details of the dimensionless

parameters and wake characterization are given in Sections 6.2.1 and 6.2.2.

6.2.1 Dimensionless Parameters

At both test facilities, the free-stream water depth was 0.60 m. The difference in channel

width resulted in a blockage ratio of 0.14 in the BMSC flume and 0.36 in the UW flume,

where the blockage ratio was defined according to Equation 5.1. The projected area of the

support structure accounted for less than 5% of At.

To isolate the effects of blockage, it was necessary to hold the Reynolds and Froude

numbers constant between experiments [4, 23, 50]. To maintain a constant Reynolds number,

the free-stream velocity in both flumes was set to 0.5 m/s, and the water temperature was

controlled to approximately 11◦C. This resulted in a chord-based Reynolds number of 23,000

in both flumes. A free-stream velocity of 0.5 m/s and water depth of 0.60 m resulted in a

Froude number of 0.20 in both flumes. Turbulence intensity, which has also been shown to

impact turbine performance [16, 53], was 3% in the BMSC flume and 2% in the UW flume.

By varying only the channel width between experiments, the Reynolds number, Froude

number, and turbulence intensity were held approximately constant while the blockage ratio

increased.
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Figure 6.1: Rendering of the measurement grid used to collect wake data downstream of the

turbine for the UW flume experiments. Each point on the grid corresponds to a location

where velocity measurements were taken. The grid used for the BMSC experiments was

similar.

6.2.2 Wake Characterization

Data Collection

For wake characterization, the turbine was operated at the tip-speed ratio corresponding to

peak power. Three-dimensional velocity data were collected downstream of the turbine using

a pair of ADVs mounted on a motorized gantry, as described in Section 3.4. The grid used

for data collection in the UW flume is illustrated in Figure 6.1. In this diagram, the free-

stream flow is moving from left to right, and the turbine is rotating in the counterclockwise

direction when viewed from above. Variable grid spacing was used to achieve higher spatial

resolution in the shear layer between the core and bypass flows. Along the gridlines shown,

spacing is 0.01 m in the lateral direction and either 0.01 or 0.02 m in the vertical direction.

Gridline separation is approximately 0.10 m in the lateral direction and 0.07 m in the vertical
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direction. The first wake profile is 0.75D downstream of the center of the turbine, with

subsequent profiles spaced 0.5D in the streamwise direction. The grid used for the BMSC

flume was similar but extended further in the lateral direction to capture the entire wake

area. For the BMSC flume experiments, gridlines in the lateral direction were approximately

0.13 m apart. Overall, the grid layouts balanced resolution against total acquisition time.

Data Analysis

Raw velocity time series from the ADVs were despiked using the method of Goring and

Nikora [33]. Data points with a low correlation were discarded [66], and the mean values

were replaced using a piecewise cubic polynomial interpolator. Less than 4% of wake data

points from the UW experiments and less than 2% of wake data points from the BMSC

experiments were replaced. The cleaned velocity time series were used to calculate the mean

streamwise velocity and TKE and to analyze the effects of blockage on channel energetics.

Profiles of the mean streamwise velocity were calculated as the time average of the streamwise

velocity component at each wake measurement location. Similarly, the TKE was calculated

at each measurement location as

TKE =
1

2
[〈(u− 〈u〉)2〉+ 〈(v − 〈v〉)2〉+ 〈(w − 〈w〉)2〉]. (6.2)

As described in Section 6.1, the influence of blockage on channel energetics can be quan-

tified by the basin efficiency, which requires an estimate of viscous dissipation in the wake.

Assuming channel boundary friction is negligible, quantifying the basin efficiency requires

either measurements of the energy extracted by the turbine and the total viscous dissipation

or measurements of the energy extracted by the turbine and the total mechanical energy

upstream of the turbine and at a point downstream where the core and bypass flows have

fully remixed. In the latter case, viscous dissipation is the difference between the upstream

and downstream mechanical energy, less the energy extracted by the turbine [70]. Because

the measurement grids did not extend over the entire wake region, the total viscous dissipa-

tion could not be calculated. However, the rate of viscous dissipation was estimated at each
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wake measurement location according to a theory developed by Kolmogorov that gives the

frequency spectrum (S(f)) in the inertial subrange as

S(f) = αε2/3f−5/3
(
〈u〉
2π

)2/3

, (6.3)

where α is a constant, ε is the rate of viscous dissipation of TKE per unit mass, f is the

range of frequencies in the inertial subrange, and 〈u〉 is the mean streamwise velocity at the

point of interest. Because turbulence is isotropic in the inertial subrange, the spectra of the

vertical component, which has the least Doppler uncertainty, was used for analysis. The

constant α is equal to 0.69 for the vertical spectrum [10, 35]. To estimate ε, each vertical

velocity spectrum was multiplied by f 5/3 to obtain a compensated spectrum with a zero

slope in the frequency band corresponding to the inertial subrange. A sliding, windowed

polynomial fit was used to identify the frequency range with the minimum absolute slope.

Over this frequency range, the rate of viscous dissipation was calculated as

ε =
2π

〈u〉

[
〈f 5/3S(f)〉

α

]3/2
. (6.4)

The mean streamwise velocity, TKE, and viscous dissipation rate were interpolated onto

a regular grid with 0.001 m resolution within the measurement extent of each wake profile

using biharmonic spline interpolation. Interpolated TKE profiles were used to define the

wake region for both blockage ratios. Because the core and bypass flows have different bulk

velocities, a shear layer develops between them, and mixing begins immediately downstream

of the turbine. This shear layer outlines the wake and has a high TKE compared to other

areas in the flow. Therefore, a trace of the maximum TKE at each downstream position was

used to estimate the size and shape of the wake. Although other methods to estimate the

wake size exist, such as choosing a velocity threshold to distinguish between the core and

bypass flows, we found the maximum TKE to be more robust.

6.3 Results

The power and thrust coefficients at both blockage ratios are plotted in Figure 6.2 as functions

of tip-speed ratio. The performance effects of blockage are consistent with prior investiga-
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Figure 6.2: Turbine power (a) and thrust (b) coefficients as functions of tip-speed ratio for

both blockage ratios. The squares denote peak CP and the corresponding CT.

tions [23]. Increasing the blockage ratio from 0.14 to 0.36 resulted in a higher peak CP at

correspondingly higher CT and λ (red squares in Figure 6.2). Net power is produced over a

wider range of tip-speed ratios at higher blockage. Wake data were collected at the tip-speed

ratios corresponding to maximum CP: 2.0 at the lower blockage ratio and 2.6 at the higher

blockage ratio.

The interpolated mean streamwise velocity profiles, normalized by the free-stream veloc-

ity, are presented in Figure 6.3. The colormap is scaled such that white indicates that the

flow speed is equal to the free-stream velocity, blue indicates that the flow is slower than

the free-stream, and red indicates that the flow is faster than the free-stream. Although

this colormap outlines the slower moving regions of flow, the outlines do not necessarily

correspond to the edges of the wake, which are more robustly detected by TKE. The bulk

structure of the wake is similar between the two blockage cases, and significant wake recovery

is observed in the vertical direction (i.e., reduced vertical extent of the core flow at increasing

X/D). In absolute terms, the velocity increases over the entire rotor plane as the blockage
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Figure 6.3: Mean streamwise velocity profiles normalized by the free-stream velocity for

both blockage ratios. The upper row is the lower blockage case and the lower row the

higher blockage case. The leftmost column presents the profile closest to the turbine and

the rightmost column the furthest downstream. The dashed black rectangles represent the

projection of the turbine location in the streamwise direction.
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Figure 6.4: TKE profiles for both blockage ratios. The upper row is the lower blockage case

and the lower row the higher blockage case. The leftmost column presents the profile closest

to the turbine and the rightmost column the furthest downstream. The solid white lines

denote the wake extent. The dashed black rectangles represent the projection of the turbine

location in the streamwise direction.

ratio is increased. We note that the plot boundaries do not represent the flume walls or free

surface and, due to experimental constraints, it was not possible to measure the entire flume

cross-section at either blockage ratio.

The equivalent TKE profiles are given in Figure 6.4. The white line overlaying each TKE

profile defines the edge of the wake, as identified by a trace of the maximum TKE, and

demarcates the core flow from the bypass flow. At both blockage ratios, close to the turbine,

the TKE remains relatively low near the center and edges of the measurement region, with

a sharp increase in TKE at the shear layer. Further downstream, the shear layer becomes

less defined, and the TKE near the center and edges of the profiles increases. There is a

pronounced increase in the magnitude of TKE in the shear layer at the higher blockage ratio,
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Figure 6.5: Wake extent at both blockage ratios. The darker blue outline corresponds to the

lower blockage case and the lighter blue outline to the higher blockage. The dashed black

rectangles represent the projection of the turbine location in the streamwise direction.

but the magnitude of TKE outside of the shear layer (i.e., elsewhere within the core and

bypass flows) is similar.

The wake extent at both blockage ratios for each downstream position is compared in

Figure 6.5. At both blockage ratios, the wake contracts significantly in the vertical direction

as the core and bypass flows begin to mix but maintains an approximately constant width.

At each downstream position, the wake is smaller for the higher blockage case, but the size

difference is primarily observed in the lateral direction, and the vertical extent is relatively

independent of blockage.

The viscous dissipation rate is presented in Figure 6.6. The black lines denote the wake

extent and are shown for reference. Like the TKE, the dissipation rate is highest in the

shear layer at X/D = 0.75 and X/D = 1.25, but is fairly uniform across the measurement

region at X/D = 1.75 and X/D = 2.25. The magnitude of the dissipation rate increases
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Figure 6.6: Viscous dissipation profiles for both blockage ratios. The upper row is the lower

blockage case and the lower row the higher blockage case. The leftmost column presents the

profile closest to the turbine and the rightmost column the furthest downstream. The solid

black lines denote the wake extent. The dashed black rectangles represent the projection of

the turbine location in the streamwise direction.
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with blockage. Closer to the turbine, this increase occurs primarily in the shear layer, while

at further downstream positions, the dissipation rate increases throughout the measurement

region.

6.4 Discussion

6.4.1 Influence of Thrust on Blockage Effects

As discussed in Section 6.1, the effects of blockage on a turbine’s wake are determined by

the blockage ratio and how significantly the turbine’s thrust changes with blockage. Under

most operating conditions, including those considered in this study, the thrust and bypass

flow speed increase as blockage increases. For a given change in blockage, smaller increases

in thrust allow more fluid to pass through the rotor, decreasing the relative velocity between

the core and bypass flows and the associated losses due to viscous dissipation [23, 37, 70].

Larger increases in thrust cause more fluid to be diverted around the rotor, increasing the

relative velocity between the core and bypass flows and the associated losses due to viscous

dissipation [30, 37, 70]. Typically, smaller increases in thrust correspond to a higher basin

efficiency and larger increases in thrust to a reduced basin efficiency [23, 37]. However,

because basin efficiency also depends on the power extracted by the turbine, the basin

efficiency can improve while viscous dissipation losses increase if the turbine power increases

by a greater factor.

Changes in a turbine’s thrust in response to blockage are affected by its geometry, includ-

ing the solidity and preset pitch angle, and by its operating point. Prior work for axial-flow

turbines demonstrates that if a turbine’s geometry and operating point are optimized to

extract maximum power from a confined flow, the turbine will have a lower basin efficiency

as blockage increases [30, 37, 70]. However, if a turbine’s geometry does not change, and the

tip-speed ratio is either maintained or optimized for power, the turbine will have a higher

basin efficiency as blockage increases [23, 37, 70]. Furthermore, the size of the wake should

decrease with increasing blockage [23, 48, 69]. In this study, we used a fixed geometry tur-
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bine that was operated at the tip-speed ratio corresponding to peak power for each blockage

ratio. Based on prior work, we would expect increasing blockage to reduce the wake extent,

increase flow speeds in the core and bypass regions, reduce the mechanical energy lost to

viscous dissipation, and improve the basin efficiency. At the higher blockage ratio, we do

observe a decreased wake extent and increased flow speeds in both the core and bypass flows.

Estimates of the mechanical energy lost to viscous dissipation and the basin efficiency could

not be calculated from the measurements. However, we observed that the viscous dissipation

rate increased with blockage, consistent with the observed higher relative velocity between

the mean core and bypass flows and increased shear. The higher relative velocity, shear,

and dissipation rate suggest that the mechanical energy lost to viscous dissipation likely

increased with blockage as well. The increase in viscous dissipation rate and likely increase

in dissipation losses are not consistent with past studies with fixed turbine geometry, which

observed decreased viscous dissipation losses with increased blockage. However, a direct

comparison between our work and prior studies requires a similar thrust response as a func-

tion of blockage. Therefore, the results of our experiments do not necessarily contradict past

work but rather emphasize the influence of thrust on wake dynamics and channel energetics

in confined flow.

6.4.2 Implications for Array Design

Flow Speed and Dissipation Rate

As described in Section 6.1 and shown here experimentally, blockage can significantly aug-

ment turbine performance, and multiple studies have investigated optimal layouts for arrays

of current turbines [17, 18, 22, 24, 26, 30, 36, 44, 45, 55, 56, 58, 70, 77, 78, 80]. For an

array with a fixed number of identical turbines, arranging the turbines in a single row pro-

duces more power any other layout [26]. However, if this layout is precluded by spatial

constraints, turbines are often arranged in multiple rows, such that downstream turbines

can be operating in the wake of upstream turbines. In general, placing a second row of tur-
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bines directly behind an upstream row is detrimental to the performance of the downstream

turbines because of the reduction in inflow velocity [24, 44, 45, 52]. Increased row spacing

reduces these impacts, as the flow has more time to recover before reaching the next set of

turbines [45, 52]. Additionally, staggering the second row to place the downstream turbines

in the bypass flow can increase performance [22, 24, 26, 45, 52, 77] and reduce streamwise

spacing [77]. As demonstrated experimentally here, varying the blockage ratio from 0.14

to 0.36 resulted in an approximately 20% increase in the bypass flow speed. Consequently,

the benefits of staggered array layouts are likely to increase with blockage. Additionally,

past work has demonstrated that when higher blockage results in greater shear between the

core and bypass flows, the wake recovers more rapidly [77]. We observed a higher relative

velocity between the core and bypass flows and an increased viscous dissipation rate at the

higher blockage ratio, indicating that the wake should recover more rapidly and allow closer

streamwise spacing.

Wake Size and Shape

We observed that blockage affects the size and shape of the wake. Increasing the blockage

ratio from 0.14 to 0.36 decreased the wake size between 10 and 20% at each downstream mea-

surement position. However, increasing the blockage primarily impacted the lateral extent of

the wake, with the vertical extent unaffected by blockage (Figure 6.5). We hypothesize that

this could be a consequence of the variation in blockage being obtained solely by a variation

in channel width. As described in Section 6.2.1, the water depth was held constant to main-

tain Froude number. This suggests that lateral and vertical blockage may have independent

effects on the extent of a turbine’s wake. In other words, changes in the lateral blockage may

affect the wake only in the lateral direction and changes in the vertical blockage may affect

the wake only in the vertical direction. To our knowledge, this independence has not been

observed previously and could be useful for informing array design.

We also observed that wake mixing occurred primarily in the vertical direction, regardless

of the blockage ratio. As shown in Figure 6.5, the wake remains relatively unchanged in the
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Figure 6.7: Mean vertical (i.e., spanwise) velocity profiles normalized by the free-stream

velocity for both blockage ratios. The upper row is the lower blockage case and the lower

row the higher blockage case. The leftmost column presents the profile closest to the turbine

and the rightmost column the furthest downstream. The dashed black rectangles represent

the projection of the turbine location in the streamwise direction.

lateral direction between measurement locations but contracts in the vertical direction at

measurement locations further downstream. Relatively strong mixing in one direction has

been observed previously in studies of cross-flow turbine wakes and is attributed to tip and

dynamic stall vortices shed from the blades that induce flow in the spanwise direction [3,

19, 76, 79]. The mean vertical (i.e., spanwise) velocity profiles, interpolated in the same way

as the streamwise velocity profiles and normalized by the free-stream velocity, are presented

in Figure 6.7. In this colormap, white indicates a zero velocity, red indicates an upward

velocity, and blue indicates a downward velocity. The vertical velocity profiles are roughly

symmetrical about the midplane, especially at the further downstream locations. Downward

flow from the top and upward flow from the bottom promote mixing of the bypass and
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core flows, enabling the wake to recover. Because cross-flow turbines can be oriented either

vertically or horizontally, this suggests that faster mixing will not inherently occur in the

vertical direction. Rather, the wake will recover more quickly in the direction aligned with

the blade span. This has implications for array design, as turbines could be spaced closer

together in the direction of more rapid wake recovery.

6.5 Conclusions

Blockage has been shown to increase the power output of current turbines operating in con-

fined flows [23, 25, 30, 31, 34, 37, 41, 54, 69, 70], and this potential for enhanced performance

has motivated the design of high blockage arrays [17, 18, 22, 24, 26, 30, 36, 44, 45, 55, 56,

58, 70, 77, 78, 80]. Many array designs involve multiple rows of turbines, with downstream

turbines influenced by the wakes of upstream turbines. Therefore, to optimize array layouts

in confined flows, it is necessary to understand how blockage affects turbine wakes. We

explored this experimentally by characterizing the wake of a cross-flow turbine operating at

peak power at two different blockage ratios. To evaluate only the effects of blockage, other

parameters that affect turbine performance, such as the Reynolds number, Froude number,

and turbulence intensity, were held constant. Increasing the blockage ratio from 0.14 to

0.36 resulted in a higher peak power coefficient that was associated with an increased thrust

coefficient and tip-speed ratio. We also observed that increasing the blockage caused higher

streamwise flow speeds through and around the turbine, a smaller wake, higher levels of TKE,

and an increase in the viscous dissipation rate downstream of the turbine. The increased flow

speeds and decreased wake size at higher blockage indicate that increasing blockage could

enhance the power output and reduce the physical footprint of an array. However, these

benefits should be weighed against the potential disadvantages of removing more mechanical

energy from the flow, reducing the basin efficiency. We observed that increasing the blockage

ratio only affected the lateral extent of the wake. Because the blockage ratio was increased

by changing the flow confinement in the lateral direction only, this suggests lateral and ver-

tical confinement may have independent effects on the wake. Finally, we observed significant
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wake mixing only in the vertical (i.e., spanwise) direction at both blockage ratios. Increased

mixing in the direction aligned with the blade span has been observed in past work and is

attributed to velocities induced by tip and dynamic stall vortices shed from the blades.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

Multiple dimensionless parameters related to the turbine and channel geometry, material

properties, and external forces affect the dimensionless performance of current turbines. This

work considered three specific parameters: the blockage ratio, Reynolds number, and Froude

number, with an emphasis on the blockage ratio. These parameters were the focus of this

study because their effects on turbine performance are not fully understood. The emphasis on

blockage ratio was motivated by our perception of the most significant gaps in the literature.

It can be challenging to achieve full-scale values of these parameters with geometrically

scaled models and to hold these parameters constant within experiments. Therefore, our

first objective was to better understand the relative effects of each parameter on turbine

hydrodynamics and performance to inform experimental design and improve the quality of

laboratory-scale testing. Our second objective was to assess the efficacy of analytical models

designed to account for the effects of blockage on turbine performance to enable model results

to be more accurately extrapolated to larger scales. Furthermore, although scaling effects

can present challenges for model testing, they can also provide opportunities to improve

turbines performance. Specifically, blockage effects enhance turbine performance and can be

used to augment the power output of turbine arrays operating in confined flows. Therefore,

the third objective of this work was to characterize the effects of blockage on the wake of a

current turbine to inform the design of high blockage arrays.

Chapters 1-3 presented relevant background information and experimental methods used

throughout. Chapter 4 focused on the first objective by experimentally characterizing the

performance and flow dynamics of a cross-flow current turbine operating under variable block-
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age, Reynolds, and Froude conditions. The turbine’s baseline power and thrust coefficients

were characterized, then each parameter was varied such that the peak power coefficients

achieved by increasing only the blockage ratio, Reynolds number, and Froude number were

approximately equal. This allowed the relative effects of each parameter to be evaluated,

and we concluded that the turbine’s power coefficient was most sensitive to changes in the

Reynolds number and least sensitive to the Froude number. The free surface deformation

across the turbine was also measured, and no significant effects were observed for the baseline,

blockage, or Reynolds cases. However, a significant drop in channel depth downstream of the

turbine was observed for the Froude case. These results indicate that all three parameters

should be closely controlled within experiments to avoid convolving their effects with the

hypothesis under consideration (e.g., the effect of turbine geometry on performance). No-

tably, the Reynolds number was varied by increasing the water temperature, with all other

parameters equal to the baseline case. This highlights the sensitivity of Reynolds number

to changes in fluid temperature, which is discussed further in Appendix B. Finally, we note

that the range of parameters tested in this study was limited by our experimental capabil-

ities, and we expect that larger variations in the parameters will produce more significant

performance effects that do not necessarily follow the trends observed in this work, as is the

case for changes in characteristic performance at higher blockage ratios.

Chapter 5 focused on experimentally assessing the effectiveness of multiple analytical

blockage corrections that have been proposed in the literature. These corrections are in-

tended to account for the effects of blockage on the power and thrust coefficients of current

turbines operating in confined flows and are frequently used on data collected at laboratory

scales. However, many of the corrections are based on simplified, analytical models, and

few have been rigorously validated. This work applied five different blockage corrections to

performance data from a cross-flow turbine and an axial-flow turbine operating under highly

blocked conditions. The corrected performance curves were compared to data collected un-

der conditions of negligible confinement. To isolate the effects of blockage, the Reynolds

and Froude numbers were held approximately constant by testing the same turbines at the
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same free-stream velocity and water temperature in facilities of differing size. Of the five

corrections tested, the two based on measured thrust performed best and were recommended

for future use. These recommendations were made based on the effectiveness of the correc-

tions, in addition to their ease of application and mathematical robustness. Although two

corrections outperformed the others, none of the corrections fully accounted for the effects

of blockage. This could be due, at least in part, to the fact that the turbines were operated

in a Reynolds dependent regime. As the flow speed through the turbines increased with

blockage, the local Reynolds number also increased. Therefore, the performance effects of

increasing the blockage ratio were likely convolved with some Reynolds effects, which are not

accounted for in the analytical theory underlying most blockage corrections. This limitation

suggests that blockage corrections may be more effective when applied to data collected in

a Reynolds independent regime.

The objective of Chapter 6 was to experimentally characterize the effects of blockage on

the wake of a cross-flow current turbine. High blockage arrays of current turbines have the

potential to increase power output above that which could be produced by the same num-

ber of identical turbines operating in isolation. As most array designs require downstream

turbines to operate in the wake of upstream turbines, it is important to understand how

blockage affects turbine wake. We concluded that increasing the blockage ratio resulted in

higher flow speeds through and around the rotor, increased the turbulent kinetic energy in

the shear layer between the core and bypass flows, reduced the overall wake size, and in-

creased the rate of viscous dissipation in the wake. Interestingly, blockage was increased by

changing only the width of the channel, and the extent of the wake was reduced only in the

lateral direction, indicating that lateral and vertical blockage may have independent effects

on wake size. The increased turbulent kinetic energy and viscous dissipation rate suggest

that increasing blockage resulted in a greater loss of upstream energy to viscous dissipation.

These losses highlight the importance of balancing performance gains with the environmen-

tal considerations of extracting more energy from the flow. Furthermore, the fact that these

results are not consistent with some prior studies underscores the importance of consider-
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ing attendant changes in a turbine’s thrust when evaluating blockage effects. Finally, we

observed that, regardless of blockage, wake recovery occurred more quickly in the spanwise

direction. This recovery was driven by high induced velocities caused by tip and dynamic

stall vortices shed from the blades.

7.2 Future Work

The experiments conducted for this work highlighted several potential areas for future re-

search. As discussed in Section 2.3, boundary proximity has been shown to influence turbine

performance [41], but its effects are not fully understood. A more detailed discussion of

boundary proximity and potential future work related to this topic is given in Appendix A.

Another area of future work related to blockage and boundary proximity is confinement

asymmetry, which refers to the ratio of lateral to vertical blockage (or vice versa). As dis-

cussed in Section 2.3, prior work [40] concluded that confinement asymmetry affects turbine

performance but is negligible for CA < 3. However, experimental work on confinement asym-

metry is limited and warrants further investigation. Experimentally evaluating confinement

asymmetry effects would require holding the overall blockage ratio constant while varying

the lateral and vertical blockage ratios. Ideally, confinement asymmetries above and below

CA = 3 would be investigated in order to compare results to past work. Although possible,

this experimental campaign would be complicated, as the relevant geometric parameters, in

addition to the overall blockage ratio, Reynolds number, Froude number, and turbulence

intensity, would need to be held constant.

An additional topic of future work is related to better understanding the underlying fluid

mechanisms that relate changes in the Froude number to turbine performance. In Chapter

4, we demonstrated that the blockage ratio, Reynolds number, and Froude number all affect

turbine performance. The mechanisms that cause the blockage ratio and Reynolds number

to influence a turbine’s power output are fairly well understood. However, our results suggest

that each parameter impacts the fluid dynamics differently, and Froude effects have not been

explored as thoroughly. Investigating how the Froude number augments turbine performance
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could be facilitated by imaging the flow field near the blades to quantify the effects of the

Froude number on near-blade hydrodynamics.

A final topic of future work involves developing an improved blockage correction that

better accounts for the effects of turbine rotation. In Chapter 5, we concluded that the

blockage corrections performed better for the thrust coefficient than for the power coefficient.

We hypothesized that this was due, at least in part, to their basis on axial momentum theory,

which models the turbine as a stationary, porous plate. Therefore, it assumes that turbine

power is the product of the thrust and flow speed through the rotor, which is an idealization

that is demonstrably incorrect for real turbines. A blockage correction based on angular

momentum theory, which accounts for the rotation of the turbine and the resulting angular

induction of the flow, has the potential to better account for blockage effects on the power

coefficient.
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Appendix A

BOUNDARY PROXIMITY EFFECTS

An additional parameter that affects turbine performance is boundary proximity. Chang-

ing the blockage ratio requires varying the size of the channel relative to the size of the

turbine rotor, so the blockage ratio and boundary proximity are fundamentally related. In

other words, it is not possible to change the blockage ratio without changing the actual dis-

tance between the turbine and channel boundaries. However, the boundary proximity can be

varied while maintaining a constant blockage ratio by moving the turbine closer to one of the

channel boundaries. Furthermore, because the lateral and bottom boundaries are solid walls

and the top boundary is typically a deformable free surface, lateral and vertical boundary

proximity likely affect turbine performance differently and are discussed separately in the

following sections. Note that these discussions are relevant to both cross-flow and axial-flow

turbines. However, as mentioned in Section 2.1, we assume a vertically oriented cross-flow

turbine, and boundary proximity effects would likely change for a horizontally oriented cross-

flow turbine.

A.1 Lateral Boundary Proximity

Lateral boundary proximity refers to the minimum distance between a turbine and channel

side wall. As mentioned previously, changing the lateral blockage ratio requires changing

the boundary proximity. In all of the experiments conducted for this work, the turbine

was centered between the side walls. However, a turbine can be moved closer to one wall,

varying the boundary proximity while holding the blockage ratio constant. It is not immedi-

ately apparent what the appropriate non-dimensionalization is for this variable. The lateral

boundary proximity could be taken as the distance between a side wall and the turbine’s axis
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of rotation or the distance between a side wall and the closest point on the circle swept by

the turbine’s rotor. Furthermore, this value could be non-dimensionalized by the diameter of

the turbine or by the width of the channel. However, the only choice of variables that allows

the dimensionless lateral boundary proximity of a centered turbine to remain unchanged

while the lateral blockage ratio varies is the distance between a side wall and the turbine’s

axis of rotation divided by the width of the channel, i.e., d`/b. Given this parameterization,

the dimensionless lateral boundary proximity was 0.5 for every experiment described in this

work.

A.2 Vertical Boundary Proximity

Because the top boundary of an open channel flow is a deformable free surface, vertical

boundary proximity is distinct from lateral boundary proximity and has been shown to

affect performance, even when the blockage ratio and Froude number are held constant [41].

We will refer to the vertical boundary proximity as the distance between the turbine and free

surface. As for the lateral case, this could be defined as the distance between the free surface

and the midpoint of the blade span or the distance between the free surface and the top of

the rotor. This could be non-dimensionalized by the turbine height, turbine diameter, or

free-stream channel depth. As for the lateral case, the only parameterization that allows the

dimensionless vertical boundary proximity of a centered turbine to remain unchanged while

the vertical blockage ratio varies is the distance between the free surface and the midpoint

of the blade span divided by the free-stream channel depth, i.e., dt/d0. Given this definition,

the dimensionless vertical boundary proximity was not held constant during the experiments

described in Chapter 5. For experiments at UW and BMSC, the turbine was centered

vertically in the channel. However, because the UNH tow tank is several meters deep, it was

not possible to vertically center the turbine due to the cantilever distance between turbine

and servomotor. Instead, the absolute distance between the free surface and the top of the

rotor was held constant between experiments. Notably, non-dimensionalizing the vertical

boundary proximity as the distance between the free surface and the center of the blade
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span divided by the free-stream channel depth may not capture all of the relevant physics,

as a turbine’s diameter may affect free surface deformation. The influence of both lateral

and vertical boundary proximity, and the proper dimensionless parameters to capture these

effects, remain topics worthy of future investigation.
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Appendix B

REYNOLDS DEPENDENCE ON TEMPERATURE

As discussed in Sections 2.2, 4.2.1, and 7.1, the Reynolds number and turbine performance

are sensitive to changes in the fluid temperature, which affects viscosity. This sensitivity is

particularly acute in water, as the viscosity changes rapidly with temperature between ap-

proximately 10 and 30◦C, the typical operating range for laboratory facilities. The kinematic

viscosity of water as a function of temperature is illustrated in Figure B.1, with the typical

experimental temperature range highlighted in red.

If a turbine is operating in a Reynolds dependent regime, performance can vary with

small changes in water temperature. Figure B.2 shows the power coefficient of a cross-

flow turbine that was operated continuously in the BMSC flume over a period of multiple

hours during the collection of wake data. The turbine was operating at a chord-based

Reynolds number of approximately 23,000. Water temperature in the flume was controlled

by a chiller that can hold the temperature to within ±0.5◦C of a target. As illustrated by

the figure, the target temperature was 10.2◦C, and it fluctuated between approximately 9.7

and 10.7◦C. Notably, turbine performance visibly tracks the water temperature. Although

the performance changes are small, the temperature changes are minimal as well.

The performance effects of water temperature on a larger scale are illustrated by Figure

B.3. The left-hand plot shows the power coefficient of a cross-flow current turbine operating

at 15◦C at two different free-stream velocities. Increasing the free-stream velocity from 0.60

m/s to 0.94 m/s affected the Reynolds number and, to a lesser extent, the Froude number,

causing the CP to almost double. The right-hand plot shows the same turbine operating at

a free-stream velocity of 0.60 m/s. Here, the water temperature was increased from 15.0◦C

to 32.9◦C. This increase in water temperature affected the turbine’s CP almost as much
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Figure B.1: Kinematic viscosity of water as a function of temperature. The typical temper-

ature range of laboratory facilities is highlighted in red.
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Figure B.2: The power coefficient of a turbine tracking small changes in water temperature.
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Figure B.3: Power coefficients as functions of tip-speed ratio for a variable free-stream ve-

locity (a) and temperature (b).

as varying the free-stream velocity but, crucially, affected only the Reynolds number. As

viscosity does not appear in any other dimensionless parameters, it can be varied without

convolving other effects. Furthermore, the ability to increase water temperature gives experi-

mental facilities with a limited range of inflow speeds another method of increasing Reynolds

number. While this technique appears infrequently in the recent experimental literature, the

construction of “sauna tanks” to increase water temperature to 90◦C has been contemplated

in the ocean engineering literature [13].

The results presented in this section emphasize the importance of accounting for water

temperature when controlling Reynolds number in a laboratory setting. Even small changes

in water temperature can significantly affect a turbine’s power coefficient and introduce error

into performance measurements.


