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Motivation

Can understanding the dynamics of a cross-
flow turbine system enable more effective
performance evaluation and control?
Simpler prototype Ability to utilize
development & potentially safer
testing control strategies
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Cross-flow turbine dynamics

Critical definitions:

w: Turbine rotation rate Bo, t,

T. lTorque

r:  Turbine radius U

J:  Rotational moment of inertia f»
° ° ° ° ° f

B: Damping coefficient (friction) fﬁ

U_: Water speed —



Cross-flow turbine dynamics

T — Bw—T1,

J

W =

First-order ODE of angular acceleration

Does not include: added mass/inertia, PTO structural stiffness

T




Cross-flow turbine dynamics
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Cross-flow turbine dynamics

THh — Bw—T1,

W = ~ . 1, depends on w: system is nonlinear
Co(A) = aX’ +bX\° +cA+d - Model torque curve
¢ = [Uooa ‘D] > Choose an operating point

7 = Ko+ KyUse »  Linearize torque

UOO = U, — U, ~  Turbulent velocity appears

T




F

Cross-flow turbine dynamics

Replace 7, with linearized version

Th—Bw—T1¢ L (K,—B)o | KyUs

W =

J g W = J | 'J
System dynamic response: sum of two transfer functions

& = [G1(s) Go(8)][Uso 7]T

Ky/J
Gl(S):S éj_/z?w) — Response to turbulence

1/J
G2(S) = 3 B/—Kw — Response to control




Cross-flow turbine open-loop response

Mechanical time constant ({): influence of
inertia relative to damping

Longer time constant: insensitive to smaller J
scales of turbulence or more frequent control C S
action B

Shorter time constant: reactive to more
frequencies, diminished response

Need to know something about turbulence
spectrum to fully interpret




Cross-flow turbine open-loop response
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Cross-flow turbine dynamic stability

Evaluate response to turbulence across range of
frequencies, different operating points
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Cross-flow turbine prototype scaling
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Cross-flow turbine prototype scaling

Full-scale turbine dimensions and test parameters
scaled to replicate physics

Scaling methods:

Geometric similarity: A prototype at 50% scale would have a moment of inertia
roughly 3% of full-scale

Reynolds similarity: A prototype at 50% scale would produce twice as much power
assuming same characteristic curve

Froude similarity: A prototype at 50% scale would produce 9% as much power
assuming same characteristic curve




Time constant scaling

Same time constant without geometric similarity

Intended to achieve similar dynamics to turbulence and control action

Assumes characteristic curve and resource are the same between

scales
J Jscaled X K . .
- —_— > > W = W
C B Bscaled X K scaled
Tscaled X K

A prototype at 50% scale would produce 50% as much power assuming same characteristic curve
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Conclusions

Safety first: Laboratory experiments
Future work at Bamfield Marine Sciences Center




Cavagnaro, R. and B. Polagye Dynamics and System Stall Characteristics of a

I\/l Ot | Vat I O n Cross-Flow Hydrokinetic Turbine, (in preparation).

Can understanding system dynamics
help us determine why a turbine will
cease operation at low tip-speed ratio?

System stall
characterization

T




Motivation
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Motivation
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Motivation
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Cross-flow turbine stability

0.15-  Stalls under
torgque control Stable
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Cross-flow turbine stability
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Cross-flow turbine stability
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Cross-flow turbine stability

Th(A) = 5Co(N)pArUZ,
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Characterizing a stall event

Allow turbine to freewheel in flume

Bring turbine to critical TSR under torque control

Servo motor
with encoder

Allow turbine to rotate until it ceases (stall event) .
6-axis load

cells

A

1Y

Repeat (288 times)

Analyze conditions using turbine sensor data,
classification algorithm, and PIV




Characterizing a stall event
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Characterizing a stall event
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Characterizing a stall event
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Characterizing a stall event
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Characterizing a stall event
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Characterizing a stall event
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Stall statistics
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Flow measurement

5D
Bypass

|
ADV
Can measurements of 125D \\ measurement
. . . point

flow be used to indicate

when system stall will
OCCU r? Inductlon
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Upstream ADV
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Preparing for field testing in Lake
Washington (2012)




I\/l Ot ivat i O n Cavagnaro, R. and Polagye, B. (2016) Field performance assessment of a hydrokinetic

turbine, International Journal of Marine Energy, doi:/10.1016/j.ijome.2016.01.009.
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Field-scale turbine and test rig

@D
Parameter Value P N
Blade profile NACA 0018 / \
Turbine diameter (D) 72.4 cm 4 N
Turbine height (H) 101.3 cm 4
Turbine aspect ratio (H/D) 1.40 |
Helical pitch angle (6) 60° = t
Helical sweep angle (¢) 90° 1IN y
Blade chord length (c¢) 17.3 cm /
Blade thickness (t) 3.1 cm —
Solidity ratio (o) 0.30 2
Mounting point




Field-scale turbine and test rig

Generator

Vessel with load bank and

Gearbox data acquisition

Turbine towed through
guiescent lake

Torque sensor

Nominal dynamic
surface

Upstream ADV measures s
inflow velocity

ADYV head

Sensors for measuring
torgue and rotation rate

1.01

ADV

Power through gearbox &

generator to resistive load olesne
bank S




Power take-off dynamometry

Dynamometer measures efficiency of E :

generator and allows determination of | S - i_f \_1
gearbox efficiency =

0.17

0.19

Utilizes same load bank and rotation rates
as field test

Measures torque, rotation rate, & electrical
power

B0.02
@0.01




Efficiency formulations

Skipping some derivation...

1/ Gearbox &
Total - o
system  Generator SYSjtem aa”fif? system
efficiency  speed efﬁatency = ICIfenCy
_ VI  TqWwg VI _  TgWg
s (12, wg) - Cp(R,wg) = 1/2pAUS, v VI — 1/2pAU3,

¢ }

Resistance ‘ Rotor mean efficiency with
1/ Ge” two dyno measurements and
efficiency two field measurements

setting




Results

System efficiency

PTO efficiency
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Results

Generator efficiency
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Results

Generator efficiency
surface
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Motivation

Cavagnaro, R. J., Neely, J. C., Fay, F.-X., Mendia, J. L., Rea, J. A. (2016) Evaluation of electromechanical systems dynamically
emulating a candidate hydrokinetic Turbine, IEEE Transactions on Sustainable Energy, vol.7, no.1, pp.390-399

Cavagnaro, R. J., Polagye, B., Thomson, J., Fabien, B., Forbush, D., Kilcher, L., Donegan, J., McEntee, J. Emulation of a
hydrokinetic turbine to assess control and grid integration, Proceedings of the 11t European Wave and Tidal Energy
Conference, (EWTEC 2015), Nantes, France. Sept. 6-11, 2015

FIELD TEST VESSEL FOR NAVFAC MHK

DEVELOPMENT

=

sV HENDEBZON
e T e

Can we use our knowledge of turbine
and system dynamics to test control

strategies and grid integration in the
lab?

Turbine dynamic
emulation




Electromechanical emulation
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Electromechanical emulation

Round-robin testing on three machines

Electronics

Panel
- Generator

Evaluated reference model 50 kW device
scaled to maintain time constant

Prime-Mover

i
5 l; l’/;.\
vhee
R
Gearbox

=

Benchmark test is response to step rise in
inflow speed

s 4 — - & : Torque
4 - ' Sensor

Velocity from tidal channel used to drive
emulation

Grid-connected and controlled with
o.ptimal_ Kw? scheme, compared to DOE RM2 Conn emulator,
simulation turbine Cork, Ireland




Results: comparison of performance
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Emulation of RivGen Turbine

Results compared to ORPC RivGen turbine
Turbine scaled to maintain time constant

Realistic time-series from river
measurements driving emulation

Efficiency under speed and TSR controllers ey e |
compared with optimal Kw? scheme and
simulation ———

—
——

ORPC RivGen cross-flow turbine




Results: emulation of RivGen

2 t
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Conclusions

°System time constant qualitatively describes
bandwidth and magnitude of response

oA turbine system stalls probabilistically

°Characterization of system components reduces
required field measurements

cEmulators can successfully replicate the dynamics
of a hydrokinetic turbine

T




Future work

MHK test platform
°Lab EEM

oField PTO (turbine & WEC)
>Controller development

Benchtop PTO for landside development

T
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