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School of Aquatic and Fishery Sciences 
 

In Before-After monitoring studies, statistical models are used to characterize baseline (i.e., pre-

disturbance) conditions, and to detect, quantify, and forecast change during operational 

monitoring (i.e., post-disturbance). To establish best practices for analyzing monitoring data, a 

model evaluation was developed and applied using Marine Renewable Energy (MRE); a case 

study of a disturbance with no best practice monitoring methods. The evaluation was performed 

on normal and non-normal acoustic metrics representative of MRE monitoring data. Evaluated 

models included: generalized regression models, time series models, and nonparametric models. 

10-fold Cross Validation was used to evaluate baseline model fit. Models were then fit to 5 

simulated Before-After change scenarios using Intervention Analysis. A power analysis was used 

to evaluate model ability to detect change. Residual error diagnostics were used to quantify 

model fit and forecast accuracy. State-space models are recommended for baseline 

characterization. Deterministic Parametric models are recommended to detect change. Time 

series and semi-parametric models are recommended to quantify change. Nonparametric models 

are recommended to forecast change. These recommendations form best practices for analyzing 

MRE monitoring data, which enables comparisons among MRE sites and reduces uncertainty in 

environmental effects. The evaluation approach is applicable to any monitoring program.
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Chapter 1:  

General Introduction 

 

1.1     Introduction 

Environmental monitoring programs are used to detect and measure change, and to 

inform environmental management decisions used to prevent or mitigate detrimental effects on 

natural resources (Gitzen 2012, Lindenmayer et al. 2012). Change may be caused by either 

natural or anthropogenic disturbance of pre-existing environmental conditions. Monitoring 

methods, including data collection, study designs, and analytic methods affect the definition, 

size, and shape of change measured in monitoring programs (Lovett et al. 2007, Magurran et al. 

2010, Nuno et al. 2014). Consequently, it is critical to develop consistent and clearly-defined 

monitoring methods. Standardizing monitoring methods reduces uncertainty in the assessment of 

environmental change, and provides comparable data across time and monitoring sites to 

produce the most efficient environmental monitoring programs (Froján et al. 2016).       

A successful monitoring program is dependent on the collection of relevant and 

informative data used to measure environmental change. The stressor-receptor monitoring 

construct is a standard approach used to select monitoring data that represents primary 

environmental effects of concern. Change in the environment is caused by a stressor (i.e., natural 

or anthropogenic disturbance of pre-existing natural conditions) that can be assessed by 

measuring change in components of that environment (i.e., biotic and abiotic elements that 

comprise the environment) (Jackson et al. 2000).  A receptor is defined as a component of the 

ecosystem that responds to the stressor (Boehlert and Gill 2010). The condition of a receptor can 

be measured using environmental indicators. Environmental indicators are measurable proxies of 
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the state of the receptor. These indicators may be physical, chemical, or biological measurements 

(Kurtz et al. 2001). Biological indicators are used to measure change to the structure, function, 

and composition of a receptor, three key attributes of an ecosystem (Noss 1990). Structure is 

defined as the physical organization of a system. Function is defined as ecological and 

evolutionary processes. Composition is the identity and variety of elements in a collection. 

Abundance and distribution are conventional indicators of structure, diversity is a common 

indicator of composition, and behavior is an indicator of function (Noss 1990; Niemi and 

McDonald 2004). Change in these indicators represents change in the state of the environmental 

receptor, and therefore a change in the baseline of an environment. Biological indicator metrics 

(such as abundance counts, diversity indexes, location measurements) are commonly used as 

environmental monitoring data. 

Before-After Intervention Analysis (IA) study designs are a standard approach to 

measuring change in monitoring data (Stewart-Oaten and Bence 2001, Magurran et al. 2010). 

This monitoring design uses baseline (i.e., pre-disturbance) data to estimate any change in 

operational monitoring (i.e., post-disturbance) data from pre- baseline conditions. Baseline 

monitoring data are used to characterize pre-existing trend, environmental relationships, and 

natural variability in the environment prior to any disturbance (Treweek 1996, 2009). Baseline 

characterization can be used to identify perceived effects of a specified disturbance, and enable 

an operational monitoring program that can effectively measure hypothesized change outside of 

the range of natural baseline variability (McCann 2012). Operational monitoring data are critical 

to quantify the size and shape of change, and to forecast future change to both inform 

environmental management decisions, and to minimize or mitigate any detrimental 

environmental effects of a disturbance (Schmitt and Osenberg 1996, Lindenmayer et al. 2012).  
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Statistical models are used to characterize baseline data and to detect, quantify, and 

forecast change in operational monitoring data. The choice of model impacts data 

characterization and estimates of change (e.g., Thomas 1996, Jones-Farrand et al. 2011, Nuno et 

al. 2014). Evaluations of models used to monitor change have been repeatedly conducted in 

ecology (e.g., Thomas 1996, Ward et al. 2014, Bell and Schlaepfer 2016) in an effort to identify 

models that accurately describe pattern in monitoring data. Previous model evaluation studies are 

often limited to a specific class of models, dataset, and/or a single monitoring objective. Any 

model evaluation must encompass a wide range of model classes and scenarios change to 

provide accurate and robust model recommendations. This type of model evaluation is necessary 

for monitoring programs that do not have standards for analyzing monitoring data, including 

baseline characterization and detecting, quantifying, and forecasting change. 

Marine Renewable Energy (MRE) development exemplifies a planned anthropogenic 

disturbance and the need for a model evaluation to recommend standards for analyzing 

monitoring data. The MRE industry continues to grow as the mandated use of renewable energy 

continues to increase (Lewis et al. 2011). Currently, MRE development is at the demonstration 

stage (e.g., 1-2 devices are installed for testing and validation purposes) rather than commercial 

operations.  In North America, the lack of commercial scale MRE projects is partially attributed 

to the uncertainty associated with environmental effects of MRE development. Environmental 

monitoring programs are required for permitting and licensing of MRE sites, but there are  no  

standards for meeting monitoring requirements (McCann 2012). Development and 

standardization of environmental monitoring protocols will ensure effective monitoring 

programs and will expedite the MRE permitting process (Dubbs et al. 2013, Copping et al. 

2016). In an attempt to standardize monitoring protocols, general MRE monitoring guidelines 
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recommend the use of the stressor-receptor construct and Before-After monitoring of receptor 

indicators to ensure comparable and accurate evaluation of environmental change (e.g., McCann 

2012, Klure et al. 2012, Copping et al. 2014). There are no established best practices for 

characterizing baseline data, or detecting, quantifying, and forecasting change in operational 

monitoring. An evaluation of statistical models used to analyze monitoring data is required to 

recommend best practices that will enable cross-site comparisons among MRE sites and to 

reduce uncertainty in the evaluation of effects due to MRE development.    

1.2     Objectives 

 Objectives of this study are to develop and execute an evaluation of statistical models that 

can characterize baseline conditions, and can detect, quantify, and forecast change in operational 

monitoring data. Results of the evaluation will be used to recommend best practices for 

analyzing monitoring data. An empirical baseline dataset that is considered representative of 

common MRE monitoring data is used for the model evaluation. A range of statistical models 

from three classes of monitoring models are included in the evaluation: generalized regression 

models, time series models, and nonparametric models. A scenario analysis is developed to 

evaluate model ability to detect, quantify, and forecast a range of shapes and amplitudes of 

change in simulated Before-After monitoring data. Results from the evaluation are used to 

recommend model(s) that most accurately characterize baseline data, and detect, quantify, and 

forecast change in operational monitoring data. The evaluation approach and model 

recommendations can be used as best practices for the analysis of monitoring data to enable 

accurate and efficient environmental monitoring programs. 
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Chapter 2: 

Characterizing Baseline Environmental Conditions at  

Marine Renewable Energy Sites 

2.1     Introduction 

Marine Renewable Energy (MRE) provides alternate reliable energy that is cleaner than 

fossil fuels. As the mandated use of renewable energy increases, the MRE field continues to 

develop and expand (Lewis et al. 2011). There are numerous unknowns associated with 

development that impede advancements in the industry. Most notably is the effect of site 

development on the environment (Shumchenia et al. 2012). The environment is defined as 

abiotic and biotic components comprising a marine ecosystem. It is critical to understand effects 

of MRE on the environment to minimize, manage, and mitigate any harmful effects and enhance 

any positive effects on the ecosystem. Environmental monitoring of an MRE site before, and 

during operational stages (i.e., construction, operation, maintenance, and decommissioning), is 

designed to track changes relative to baseline conditions and to measure effects of MRE 

development on the environment.   

To understand and document environmental effects, US and UK marine renewable energy 

developers are generally required to have plans accepted for pre-installation environmental 

assessments and post-installation monitoring as part of their application and permit licensing for 

project proposals (DOE 2009, Croll and Andina-Pendas 2009, Portman 2010). The objective of 

pre-installation environmental assessment is to evaluate the potential change to an environment 

and to prevent or minimize anticipated detrimental effects caused by MRE development (Jay et 

al. 2007). Baseline monitoring (i.e., pre-installation monitoring) is a key component of these 

assessments because it characterizes conditions prior to any alterations to the environment 
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(Treweek 2009). Characterization of baseline conditions includes the estimation of natural 

variability, preexisting trends, and relationships between biotic and abiotic components of the 

environment (Treweek 1996, 2009). The characterization of baseline conditions is used to 

structure the design of operational monitoring (i.e., post-installation monitoring) programs used 

to measure environmental change caused by MRE development (McCann 2012). Hypothesized 

effects of MRE development on the environment are formed from baseline characteristics. 

Operational monitoring programs are structured to assess the hypothesized effects (Polagye et al. 

2011). Assessment of baseline variability is used to determine the appropriate frequency and 

scale of sampling to ensure accurate measure of change caused by MRE development outside the 

range of natural variability (McCann 2012). Baseline assessments are a critical first step to 

establish an efficient and effective environmental monitoring program. 

In an effort to ensure efficient, comparable, and informative monitoring programs, 

protocol guidelines have been developed for MRE monitoring study design and data collection. 

These guidelines emphasize the use of the stressor-receptor construct to focus MRE monitoring 

efforts on primary effects of concern (Boehlert and Gill 2010, Klure et al. 2012, Boehlert et al. 

2013). A stressor is defined as an external feature or event associated with renewable energy 

development that causes change in the environment (Boehlert and Gill 2010). Predominant forms 

of stressors in the MRE monitoring literature include: static (e.g., the device), dynamic (e.g., 

device movement), chemical, noise, energy removal, and electromagnetic fields (EMF) (Klure et 

al. 2012, McCann 2012, Boehlert et al. 2013). A receptor is defined as a component of the 

ecosystem that shows some form of response to the stressor (Boehlert and Gill 2010). Marine 

mammals, birds, fish, and habitat are ecosystem components commonly cited as important 

biological receptors (Klure et al. 2012, McCann 2012, Boehlert et al. 2013). The state of a 



7 
 

receptor can be measured using environmental indicators that serve as measurable proxies of the 

state of the receptor. Biological indicators are used to measure changes to the structure, function, 

and composition of a receptor, three key attributes of an ecosystem (Noss 1990). Change in an 

indicator represents change in the state of a biological receptor, and therefore a change relative to 

the baseline of an environment. Indicators recommended for measuring change in the state of 

ecosystem components include abundance, distribution, diversity, and behavior (Noss 1990, 

Nemi and McDonald 2004). Common methods of collecting metrics as proxies of these 

indicators include trawl surveys, trappings, acoustics, and optics (Polagye et al. 2014, Klure et al. 

2012, McCann 2012).  

At this time there are no established standard analytic methods to characterize baseline 

receptor data. Since the choice of statistical method used to model monitoring data can impact 

trend estimates (Thomas and Martin 1996), the choice of model used to characterize baseline 

data potentially impacts assessment of baseline conditions, the hypothesized effects of a stressor, 

and the monitoring used to investigate expected effects. It is important to use the same methods 

in baseline and operational monitoring to quantify change (McCann 2012).  The choice of 

statistical model for characterizing baseline data also affects the measurement of change in 

baseline conditions caused by MRE development. An explicit evaluation of statistical models 

capable of characterizing baseline monitoring data is necessary to aid in the development of best 

practice models for quantifying baseline conditions. 

The objective of this chapter is to evaluate statistical models applicable for analyzing 

monitoring data in an effort to establish best practices to characterize baseline MRE conditions. 

The evaluation was applied to empirical baseline case study data representative of common MRE 

monitoring data. A second objective is to recommend statistical model(s) that are most able to 
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characterize baseline conditions of biological indicators. Recommendations can be used to 

establish best practice statistical models for MRE environmental baseline characterization, which 

will reduce uncertainty in environmental assessments, decrease permitting costs, and enable 

comparison among monitoring sites to enable the most effective operational monitoring program.  

2.2     Methods 

2.2.1     Approach 

 The evaluation was developed to assess the ability of statistical models to characterize 

baseline environmental conditions to identify potential effects of MRE development on the 

environment, and to enable accurate measures of effects in operational monitoring. A wide range 

of statistical models representing model classes used to analyze empirical monitoring data were 

evaluated. Model selection using a quantitative measure of model interpolation accuracy, or 

ability to predict data within the range of the empirical data, was used to parameterize models 

and to evaluate a model’s ability to estimate baseline variability and identify relevant predictors 

(i.e., covariates) of the data. This approach ensured an equal assessment of model accuracy 

across a range of statistical model classes, while at the same time parameterized all candidate 

models to have the greatest probability of success in accurately characterizing the data. Residual 

diagnostics were used to assess the validity of model error distribution and autocorrelation 

structure assumptions. Results from the evaluation were then used to recommend model(s) most 

capable of characterizing the baseline monitoring data. All analysis was conducted in the R 

statistical software environment (R Core Development Team, 2016). 

2.2.2     MRE Baseline Case Study  

Empirical data from a proposed MRE site was used for model evaluation. A tidal turbine 

pilot project proposed by the Snohomish County Public Utility District No. 1 in conjunction with 
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OpenHydro Systems would be located ~1 kilometer off Admiralty Head, Puget Sound 

Washington, at a depth of ~60 meters (Public Utility District No. 1 of Snohomish County 2012). 

The project, suspended due to financial constraints, would deploy two 6 meter turbines 

(http://www.openhydro.com/).  

In 2011, acoustic and midwater trawl sampling was conducted to characterize baseline 

conditions at the site. This study uses the stationary acoustic data from the site (48.18˚ N,            

-122.73˚ W), which is assumed to be representative of a primary monitoring method that would 

be used throughout the life of an MRE project. Acoustic backscatter is representative of nekton 

(i.e., macro-invertebrates and fish that move independently of fluid motion) within the water 

column (MacLennan et al. 2002).  Acoustic backscatter data were recorded using a bottom 

mounted BioSonics DTX echosounder mounted on a Sea Spider platform 

(http://www.oceanscience.com/Products/Seafloor-Platforms/Sea-Spiders.aspx) and operating at 

120 kHz from May 11 to June 8, 2011 (Horne et al. 2013). The echosounder sampled at 5Hz for 

12 minutes every 2 hours. Because of a 3rd surface echo, data values were constrained to 25 m 

from the bottom, a height corresponding to twice that of the proposed OpenHydro tidal turbine. 

A -75 dB re 1m-1 threshold was applied to remove noise (Horne et al. 2013) 

 A suite of metrics derived from the data was used to quantify nekton density and vertical 

distribution in the water column (Burgos and Horne 2007, Urmy et al. 2012). The metrics 

include: mean volume backscattering strength (i.e., Sv) (unit: dB re 1 m-1(Maclennan et al., 

2002) hereafter dB), center of mass (units: M), inertia (units: m2), and aggregation index (units: 

m-1). Sv functions as a proxy for density, center of mass is a weighted measurement of 

distribution in the water column, and inertia and aggregation are measures of the spread and 

dispersion of fish. All metrics are continuous, display periodic autocorrelation (Jacques 2014), 
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and are trend stationary, assuming that the periodicity in the data is associated with 

environmental variability. Values of Sv, center of mass, and inertia metrics are normally 

distributed. Aggregation index (AI) values are right-skewed, non-normally distributed data 

composed primarily of low aggregation values with spikes of high aggregation (Fig. 2.1).  The 

terms low state and high state will be used to refer to the two amplitudes of aggregation index 

values that comprise the empirical data. To maintain efficiency, the evaluation is only applied to 

the Sv data, illustrative of normally distributed metrics, and the non-normal AI data (Fig. 2.1). 

These datasets are considered representative of MRE baseline data, because they are collected 

using common MRE monitoring instrumentation, and are metrics of recommended indicators 

(i.e., abundance and behavior) of the state of fish (Polagye et al. 2011), a primary biological 

receptor of MRE stressors. The properties of these datasets are common for monitoring time 

series data (i.e., temporally continuous, autoregressive, normal and non-normal data) (Chandler 

and Scott 2011, Gitzen 2012). 

Ancillary environmental measurements collected during baseline Admiralty Inlet surveys 

were used as potential covariates in the candidate models (Jacques 2014). Daily tidal range (m), 

tidal speed (m/s), and Julian day of year were matched to each time stamp from May 11th to June 

8, 2011. Tidal range was calculated as integrated tidal speed through the day (Jacques 2014). A 

Fourier series defined by a 24 hour period was also included as an environmental variable to 

represent time-of-day.  
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Figure 2.1. Acoustic-based index values derived from data collected from May 11th to June 8, 

2011 in 2 hour intervals. (a) Nekton density (Sv) was normally distributed. (b) Nekton 

aggregation (AI) ranged from 0 to 1 and consisted of low aggregation values with higher values 

spikes across time. 

2.2.3     Candidate Model Classes  

All candidate models were selected based on the ability to characterize baseline conditions 

and to measure change during operational monitoring, because it is desirable to use the same 

models in all stages of an MRE monitoring program (McCann 2012). Statistical models included 

in the evaluation were: generalized regression models, time series regression models, and non-

parametric regression models (Table 2.1). The model classes encompass models commonly used 

to measure change over time; including parametric, nonparametric, and stochastic statistical 

models (Chandler and Scott 2011).  Generalized regression models include deterministic 
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parametric and semi-parametric regression, time series models include both deterministic and 

stochastic parametric models, and nonparametric models are considered stochastic because they 

included lagged dependent variables.  Deterministic models are defined as assuming a fixed 

trend pattern, whereas a stochastic model does not assume a fixed trend and includes lagged 

dependent variables to model the process (Chandler and Scott 2011). Parametric models have a 

pre-defined functional model structure, nonparametric models do not have predetermined 

function forms and use the data to develop the variable relationships in the model, and semi-

parametric models include parametric and nonparametric model components (Chandler and Scott 

2011).  All of these models are applicable for baseline characterization, prediction of MRE 

development effects on the environment, and measuring change in operational monitoring. 

Models within these classes were chosen based on current use in MRE monitoring studies or 

their potential applicability to fit the case study data characteristics. Candidate model equations 

and defined terms can be found in Appendix 2.1. 

Generalized Regression Models 

The generalized regression model class is composed of a linear regression and parametric 

and semi-parametric models that are generalized extensions of the linear regression model. 

Generalized regression models are most commonly used to analyze MRE monitoring data, 

because they are able to characterize baseline conditions of a biological receptor of interest and 

predict effects of MRE development on those conditions (e.g., Duck et al. 2006, Tollit et al. 

2013, Viehman et al. 2015). These models are capable of measuring natural variability, trend, 

and predictors of an ecosystem component of interest, including external change.  These models 

produce measures of uncertainty around estimates which are often used in monitoring studies to 

assess the confidence of baseline characterization or measured change in those conditions  
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Table 2.1. Description of evaluated candidate regression models including model class, linear or nonlinear form, parametric or 

nonparametric structure, error components (observation and/or process error) and distribution, and autocorrelation structure. 

Model Class Form Parametric/ 
Nonparametric 

Error 
Components 

Error 
Distribution 

Auto-
correlation 
Structure 

Linear  GR Linear Parametric Observation error Normal None 
Generalized least squares (GLS) GR Linear Parametric Observation error Normal Residual 

correlation 
Generalized linear model (GLM) GR Linear Parametric Observation error Exponential 

family 
None 

Generalized linear mixed model 
(GLMM) 

GR Linear Parametric Observation error Exponential 
family 

Residual 
correlation 

Generalized additive model (GAM) GR Nonlinear Semi-parametric Observation error Exponential 
family 

None 

Generalized additive mixed model 
(GAMM) 

GR Nonlinear Semi-parametric Observation error Exponential 
family 

Residual 
correlation 

Multivariate autoregressive state-space 
model (MARSS) 

Time 
series 

Linear Parametric Process and 
Observation error 

Normal AR-1 lagged 
variable 

Regression - autoregressive moving 
average model (Reg-ARMA) 

Time 
series 

Linear Parametric Observation error Normal ARMA error 

Regression - autoregressive moving 
average – generalized autoregressive 
conditional heteroscedasticity model 
(Reg-ARMA-GARCH) 

Time 
series 

Linear Parametric Observation error Generalized 
normal 

ARMA error; 
GARCH residual 
variance 

Random forest (RF) NP Nonlinear Nonparametric N/A None Lagged variables 

Support vector regression (SVR) NP Nonlinear Nonparametric N/A None Lagged variables 

Note: The evaluated model classes are generalized regression (GR), time series, or nonparametric (NP) models. 
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(Schmitt and Osenberg 1996, James et al. 2015). These models have several restrictions that may 

constrain their ability to accurately characterize baseline data.  Parametric and Semi-Parametric 

models require many a priori assumptions, including error distribution and a parametric 

relationship between predictors and the dependent variable. These models only account for 

observation error, and do not model the stochastic nature of time series data that is driven by 

dependence between successive observations through time (Chandler and Scott 2011).  

Linear Regression/Generalized Least Squares 

Linear regression and Generalized Least Squares (GLS) regressions are the traditional 

methods used to detect change in Before-After Control-Impact (BACI) monitoring studies 

(Stewart-Oaten and Bence 2001, Wagner et al. 2002). An analysis of variance (i.e., ANOVA) is 

a special case of linear regression most often used to detect change in BACI monitoring studies 

(Hewitt et al. 2001). A linear regression is the most standard form of a regression model. It is a 

linear, parametric regression model that assumes normal, homoscedastic, and independent errors. 

A Generalized Least Squares model (GLS) additionally can account for autocorrelation in the 

residual correlation structure (Pinheiro and Bates 2000). 

The linear regression analysis was conducted using the R statistical package “stats” 

(version 3.4.0), which uses the least squares method for estimating model parameters.  The GLS 

regression analysis was conducted using the R statistical package “nlme” (version 3.1-126), 

which uses Restricted Maximum Likelihood (REML) parameter estimation.  

Generalized Linear (Mixed) Models 

Generalized Linear (Mixed) Models have been used to characterize MRE baseline 

monitoring data and to detect change in data post-installation of MRE devices (e.g., Bergstrom et 
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al. 2013, Wade et al. 2014, Stenberg et al. 2015). Generalized Linear Models (GLM) are an 

extension of linear regression that do not assume that data are normally distributed. Generalized 

Linear Mixed Models (GLMM) are an extension of GLMs that can account for autocorrelation 

within the structure of a mixed-effects model (Pinheiro and Bates 2000).  

The GLM(M)s were only applied to the non-normal dataset, because they do not improve 

modeling capabilities of a linear regression or GLS for a normal dataset. The GLM(M)s assume 

a Gamma distribution with an identity link for the non-normal AI data. The Gamma distribution 

is appropriate for modeling the AI data, because it is a skewed distribution with values >0 and 

the AI values range from >0-1. The Gamma distribution and link assumption of a constant 

coefficient of variation is reasonable for the AI dataset, because the data were collected over a 

full lunar cycle with consistent measurement across time. The identity link was chosen, because 

previous work has identified this link as the most accurate for parameter estimation when 

modeling incremental effects of change (Polgreen and Brooks 2012). Although the GLM(M)  

models are not measuring change in this study,  models use to characterize baseline data  may 

also be used to measure change in all stages of monitoring, and consequently are parameterized 

to be used for this general purpose. Model results were inspected to ensure that the use of an 

identity link did not produce negative predicted values.  

In the GLMM the random effect was a 24 hour count index of time-of-day, used to 

account for variability among hour-of-day, and the residual correlation structure measured any 

remaining 24 hour cyclic autocorrelation. An ACF plot of AI data illustrated a 24 hour pattern of 

residual correlation, which was used to identify data blocks of the time series to define the 

random effect. The GLM analysis used Iterative Weighted Least Squares (IWLS) for the 

estimation process, while the GLMM used Penalized Quasi-Likelihood (PQL). The GLM 
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analysis was conducted using the statistical package “stats” (version 3.4.0), and the GLMM 

analysis was conducted using the statistical package “MASS” (version 7.3-45).  The “MASS” R 

package was specifically used to fit the GLMM, because it is the only available package that 

contains options for estimating autocorrelated correlation structures within the traditional 

GLMM framework. 

Generalized Additive (Mixed) Models  

Generalized Additive (Mixed) Models have been applied to MRE monitoring studies to 

characterize data and detect change caused by MRE development (e.g., Petersen 2011, 

Mackenzie et al. 2013). These models are semi-parametric extensions of GLM(M)s (Wood 

2006). GAM(M)s apply smoother functions of predictor variables to model nonlinear 

relationships (Wood 2006).  

The identity link Gamma distribution was specified for the GAM(M)s for the non-normal 

dataset. Smoother splines were pre-specified for the purposes of this study. The time-of-day 

predictor consisted of 24 hour count variables formatted as a cyclic cubic regression spline, 

suggested for cyclic variables (Wood 2006). This structure was used to model time-of-day in the 

GAM(M)s to be consistent with the shape of a Fourier series, used to model time-of-day in all 

other candidate models, while permitting use of the smoother spline model structure of the 

GAM(M)s. All other variables used the thin-plate-regression spline with shrinkage. The thin 

plate regression splines are the default for the chosen R package, because they are 

computationally efficient, may include multiple covariates, and do not require knot specification 

(Wood 2006), The shrinkage allows the smoothness selection to shrink to 0, which minimizes the 

importance of covariates that should not be included in the model (Zuur et al. 2009). If the 
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estimated degree of freedom of smoother terms was near 1 then the smooth was replaced with a 

parametric term and the results from the 10-fold CV model selection process were re-calculated. 

Any interaction effects included in the GAM(M)s were specified using the “ti” tensor product 

interaction term, which should be used when main effects are already included in the model 

structure (Wood 2015. Both the GAM and GAMM used Restricted Maximum Likelihood 

(REML) for estimation of the smoother functions for the normal data. The GAMM used 

Penalized Quasi-Likelihood (PQL) by default for non-normal smoother estimation. The 

GAM(M) analysis was conducted using the statistical package “mgcv” (version 1.8-12). 

The “mgcv” package does not require the specification of a random effect in the GAMM. 

The wiggly (i.e., penalized) components of the spline functions are automatically treated as 

random effects within the GAMM, and no additional random effect is required for the estimation 

process (Wood 2015).  If no additional random effect is specified, then the response will not be 

grouped, and the residual correlation structure will measure autocorrelation across the entire time 

series rather than only measuring 24 hour autocorrelation (Wood 2015). No additional random 

effect was chosen for the GAMM as it was unnecessary to add more complexity to the data 

structure to capture the temporal correlation in the time series. This was the purpose of extending 

the GAM to a GAMM.  

Time Series Regression Models 

Time series data are thought to be composed of a trend, seasonality, and stationary 

residuals (Chatfield 1989). Time series models are structured to estimate the main components of 

environmental monitoring time series data, including: autocorrelation, seasonality, stationary 

properties, process error (i.e., natural variability in the true state of the population) and/or 

observation error (Pattengill-Semmens et al. 2011). Evaluated time series models included: 
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Regression Autoregressive Integrated Moving Average model (Reg-Arima), Regression 

Autoregressive Integrated Moving Average Generalized Autoregressive Conditional 

Heteroskedasticity model (Reg-ARIMA-GARCH), and a Multivariate Autoregressive State-

Space model (MARSS). 

Regression Auto-Regressive Moving Average Model 

Autoregressive-Moving-Average (ARMA) model is a traditional time series model that is 

commonly used for modeling stochastic trends (Chatfield 1989, Chandler and Scott 2011).  To 

date, an ARMA model has not been used in MRE biological monitoring studies. ARMA models 

assume stationarity and require a large number of observations for accurate estimation (Zuur and 

Pierce 2004, Hyndman and Kostenko 2007). The autoregressive (AR) component regresses a 

process on past values, and the moving average (MA) component models the error using 

previous values of that error.  The ARMA model was formatted as a Regression-ARMA (Reg-

ARMA) to model dependent data using environmental predictors in addition to lagged dependent 

values. A reg-ARMA is structured as a linear regression, but the error term in the regression is 

modeled using the ARMA structure (Hyndman 2015). 

 The ARMA analysis was conducted using the statistical package “forecast” (version 6.2).  

Maximum Likelihood (ML) estimation was used for analysis. This is not the default estimation 

process for the “forecast” package, but it ensures convergence of ARMA parameters if the data 

are non-stationary. Although the baseline data are trend stationary, these models are intended to 

also be used for operational monitoring, and data may become non-stationary if change occurs 

due to MRE development.  

Regression ARMA-Generalized-Autoregressive-Conditional-Heteroskedasticity Model  
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Generalized-Autoregressive-Conditional-Heteroskedasticity (GARCH) models have been 

previously identified as a possible analytic tool for tracking MRE monitoring data over time 

(Horne et al. 2013). A GARCH model is an econometrics model originally intended to fit and 

forecast time varying stock return volatility (i.e., variability, measured as standard deviation of 

returns over time) in financial markets (Engle 2001). A GARCH model is applicable for 

modeling time series with heteroskedastic variance, such as the Aggregation Index data. An 

ARMA-GARCH model uses the ARMA model to estimate autoregressive conditional mean 

values and the GARCH model to estimate autoregressive conditional variance values of the 

ARMA residuals (Engle 2001, Zivot 2009, Ruppert 2011). When independent predictor variables 

are included in an ARMA-GARCH model, then the model becomes a linear regression, with 

errors modeled using an ARMA model, and the variance of the residuals modeled using the 

GARCH model (Ruppert 2011).  

The reg-ARMA-GARCH model assumes a normal distribution for the Sv dataset. A 

skewed-student-t-distribution (sstd) was selected for the AI dataset. GARCH R packages only 

permit the use of skewed and heavy-tailed versions of the normal distribution. The skewed-

student-t distribution (sstd) can be represented as normal mean-variance mixture model with an 

Inverse Gamma mixture distribution (Hu and Kercheval 2008). This distribution aligns most 

closely with the structure of the AI data and the Gamma distribution chosen for the non-normal 

generalized regression models. The GARCH analysis was conducted using the statistical package 

“rugarch” (version 1.3-6).  The “hybrid” solver was selected for parameter estimation, which 

systematically runs through all available estimation algorithms in the R package until a 

successful convergence is produced. 
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Multivariate-Autoregressive-State-Space model  

A Multivariate-Autoregressive-State-Space (MARSS) model is a dynamic time series 

model that has been used in a wide range of fields (e.g., economics, engineering, and ecology; 

Holmes et al. 2012), and has been used to characterize the acoustic baseline data from Admiralty 

Inlet (Jacques 2014). The MARSS model includes an AR-1 lagged dependent process variable to 

model mean-reversion (i.e., how strongly a stationary time-series data reverts to its mean value): 

of the dependent variable over time. The state-space model assumes that the underlying process 

of the data is stochastic and explicitly partitions the total variance into process and observation 

errors (i.e., stochastic environmental variability and measurement variability). 

Two forms of the MARSS model, one with fixed low measurement error and estimated 

high process error (MARSS-P) and the other with fixed low process error and estimated high 

measurement error (MARSS-M), were used as candidate models. To produce the most precise 

estimates and ensure convergence, the mean-reversion (or density-dependence), process, and/or 

observation error parameters may be fixed in a MARSS model depending on the structure of the 

data and a priori knowledge of the data.  Prior knowledge about the measurement error of 

stationary acoustic data collection permitted the fixed estimate of low measurement error in the 

MARSS model.  Indicator metric values are calculated directly from linear backscatter values 

collected from the stationary EK-60 echosounder. We assumed that the only potential sources of 

observation error are due to calibration and hydrographic conditions. These sources of error have 

been suggested to equate to a maximum of 5% each of the total error (Simmonds and 

MacLennan 2005). Therefore, a MARSS model (MARSS-P) was structured with fixed 

measurement error that equated to 10% of the total error for the normal and non-normal data set, 

and process error was estimated as a parameter.  A second MARSS model (MARSS-M) with 
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fixed process error that equated to 10% of the total error, and observation error estimated as a 

parameter, was also used as a candidate model. As an aside, if either of these models were 

estimated in a Bayesian framework, priors could be assigned to these values. Within a MARSS 

model the B parameter estimates mean-reversion: B=1 indicates a non-stationary random walk, 

and B ≤ 1 indicates mean-reversion in the data. B was estimated as a parameter to reflect the 

stationarity exhibited in the baseline data. The R statistical package “MARSS” (version 3.9) was 

used to conduct all analyses. The default estimation method of Maximum Likelihood via an 

Expectation-Maximization algorithm was used for the evaluation process (Holmes et al. 2015). 

Nonparametric Regression Models 

 Nonparametric models are recommended for use when little is known a priori about the 

data, and when accurate predictions are needed (Gitzen 2012). These models do not require a 

specified distribution of the data nor do they assume linearity. These models have previously 

been used in renewable energy power prediction studies (e.g., Foley et al. 2012, Perera et al. 

2014). They do not allow for parametric estimates of predictor variables or measurements of 

statistical significance. Lagged variables can be included in nonparametric models to account for 

autocorrelation in a time series. A Random Forest Regression and Support Vector Regression 

were included in the evaluation. 

Random Forest Regression Model 

Random Forest (RF) regression is a nonparametric machine learning regression model 

that stems from the original Random Forest classification model developed by Brieman (2001). 

with the strength of being accurate predictive models (Cutler et al. 2007, Kane et al. 2014). 

Although RF does not include parametric measures of predictor variables, or the significance of 

these values, it does include a measure of variable importance that can be used to evaluate 
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predictor variables. RF models have previously been used to characterize the importance of 

environmental factors and forecast species distribution in wind renewable energy biological 

monitoring studies (e.g., Belaire et al. 2014, Hayes et al. 2015). A Random Forest is a collection 

of statistical decision trees applied to random bootstrap samples of data that are averaged to 

produce predicted values (Liaw and Wiener 2002).  It is considered a nonlinear local model, 

because it is an ensemble of piece-wise, constant functions applied to local subsets in the data 

(Strobl et al. 2009).  

The R statistical package “randomForest” (version 4.6-12) was used to carry out all 

Random Forest analyses. This package implements the traditional Random Forest methodology 

based on original Fortran code by Breiman and Cutler (2004). 

Support Vector Regression Model 

Support Vector Regression (SVR) is a nonparametric machine learning regression model 

that stems from Support Vector Machine models that were originally used for classifications. 

SVR models have previously been cited for their time series forecasting ability (Tay and Cao 

2001, Hansen et al. 2006), and have been used for species distribution modeling (e.g., Drake et 

al. 2006, Lorena et al. 2011). Unlike Random Forest models, SVR models do not provide a direct 

method for measuring variable importance and parameterized SVR models are more difficult to 

interpret than RF models (Cutler et al. 2007, Lorena et al. 2011).  SVR uses a specified kernel to 

map data into a higher dimensional space to produce a linearly separable regression (Cortes and 

Vapnik 1995, Hsu et al. 2010).  In the common specification of SVR (cf. Vapnik 1995) an Ɛ-

insensitive loss function is used for model estimation, which is similar to an absolute loss 

function but assumes any error < Ɛ, a predefined value of residual error, is equal to zero (Smola 
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and Schölkopf 2004). Detailed information on model parameters and structure can be found in: 

Vapnik (1995), Smola and Schölkopf (2004), and Hsu et al. (2010). 

A Linear kernel SVR (SVR-L) and Radial-Basis-Function kernel (SVR-RBF) were used 

as candidate models in the evaluation. The correct kernel choice may not be known a priori and 

the evaluation of both kernels provides a robust evaluation of the SVR model, as the two forms 

contrast in their flexibility and complexity. The RBF kernel is nonlinear and is the most common 

initial kernel choice because of its ability to flexibly fit nonlinear data and its generally accurate 

predictive performance (Berk 2008, Clarke et al. 2009).  The linear kernel is the simplest and 

least flexible kernel, but it has been shown to predict trended time series more accurately than 

SVR-RBF (e.g., Crone et al. 2006). The R statistical package “e1071” (version 1.6-7) was used 

to carry out all Support Vector analyses. 

2.2.4     Model Selection 

 To identify a statistical model that is capable of characterizing baseline MRE conditions, 

the evaluation must be consistent across models, and at the same time, allow each model to have 

the highest probability of success. Every candidate model underwent the same model selection 

process to ensure an equal opportunity for each model to be optimally structured. Cross-

validation (CV) model selection was used to select the structure of each model and to compare 

the accuracy of the parameterized candidate models.  Cross-validation uses the difference 

between observed and predicted values to calculate model accuracy. This method can be applied 

to all models, and is a standard model selection method (Burnham and Anderson 2002). Cross-

validation has been recommended when there is not high a priori knowledge of model structure, 

and the goal is to interpolate, or predict within the data range (Gitzen et al. 2012). A measure of 
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predictive accuracy, rather than fit to the training data, is most appropriate to quantify model 

accuracy, because the goals of characterizing baseline conditions are to enable future 

measurement of change, and prediction of potential effects of MRE development.  

In cross-validation a portion of the data is used as a training-set to parameterize the 

model. The parameterized model is then fit to the remainder of the dataset, the test-set. Predicted 

values from the model applied to the test-set are used to calculate Root-Mean-Squared-Error 

(RMSE). RMSE is a measure of model accuracy based on the average deviance of model 

predicted values (𝑦�𝑖) from observed values (𝑦𝑖):   

�1
𝑛
∗ ∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛

𝑖=1                                                            (2.1) 

Where 𝑖 is the observed 𝑖𝑡ℎ value, and 𝑛 is the sample size. A RMSE value close to 0 indicates 

a better forecasting ability. Averaging more than a single training/test set allows for a more 

robust model selection process. A 10-fold CV has been suggested as the most effective number 

of training/test sets for model selection (Hastie et al. 2009, Arlot and Celisse 2010), and provides 

a balance between a highly biased model (i.e., one that underfits data), and a highly variable 

model (i.e., one that overfits data) (James et al. 2015). In 10-fold cross-validation 10 equally 

sized random subsets of the data are used repeatedly such that 9 subsets compose a training-set 

and a single subset is the test-set to produce a total of 10 training and test datasets.  The 10-fold 

cross validation model selection allows for the best possible structure of each model, while 

keeping the selection method equal across all models. 

 Model selection was performed on 24 versions of each candidate model. Rather than 

choosing all possible interactions of model covariates (i.e., predictor variables), it is 

recommended to select a set of model versions based on a priori knowledge of the biological 
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system (Burnham and Anderson 2002). Covariates used in each model included Julian day, tidal 

range, tidal speed, and a Fourier series defined by a 24 hour period. All covariates were 

demeaned (i.e., the sample mean was subtracted from observed covariate values to produce a 

zero mean) before analysis to remove estimate error due to multi-collinearity. No three-way 

interactions were included in the analysis.  Final model versions for selection included two-way 

interactions: Julian day-tidal speed, Julian day-tidal range, tidal speed-tidal range, and tidal 

speed- 24 hour period.  An interaction between tidal range and the 24 hour period was not 

included in analysis, because it is an integration of tidal speed throughout the 24 hour period 

(Jacques 2014). Julian day and the 24 hour period did not interact, because 24 hour Fourier series 

creates a cyclic relationship within the nekton data that is consistent across each Julian day. All 

possible combinations of the covariates and these two-way interactions produced 24 versions of 

each candidate model. Two special cases increased the number of model versions. The MARSS 

model allows for covariates in both the process and observation equation (i.e., the model for the 

underlying state of a population process, and the model of observations of that process). 

Combinations of covariates may equally affect both the process and observation of the response. 

Similarly, the reg-ARMA-GARCH model allows for covariates in both the conditional mean and 

variance equation. Therefore, every combination of the 24 models versions in these two-part 

models were also evaluated in the model selection process to produce a total of 576 versions of 

the MARSS and reg-ARMA-GARCH models. 

 A previously established model selection protocol was used in this study to structure 

model selection. The model selection protocol established by Diggle et al. (1994) and Wolfinger 

(1993) and used in Zuur et al. (2009) suggests selecting the residual variance structure prior to 

the predictor variables. The residual variance structure is accounted for first, because it affects 
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the significance of the covariates (Hedeker and Gibbons 2006). All candidate models assume 

independent error, and any autocorrelation must be included in the model selection. 

Autocorrelated error can bias variance estimates of parameters and invalidate hypothesis testing 

(Stewart-Oaten and Bence 2001). Initially, the optimal autocorrelation structure was deduced 

using the 10-fold CV method and the full version of each candidate model (i.e., all main effects 

and interactions), and then the 10-fold CV method was used to select the optimal structure of 

predictor variables. For models that included an Autoregressive Moving Average (ARMA) 

correlation structure, a range of AR and MA lagged variable values were used in the 

autocorrelation selection process. ARMA error structures with an AR or MA lag value larger 

than 3 tend to generate convergence problems and may not be necessary to model autocorrelation 

(Schabenberger and Pierce 2002, Zuur et al. 2009).  Autocorrelation structure selection for 

models that included an ARMA error structure included all combinations of AR and MA lagged 

variable values ranging from 0 to 3. The number of lagged variables in the nonparametric models 

was also initially selected prior to the covariate structure. Autocorrelation Function (ACF) plots 

of the detrended data indicated that the minimum number of data points at which autocorrelation 

was no longer present was 62 for the non-normal data and 50 for the normal data. To be 

consistent in the selection process, 0 to a maximum of 62 lags were included in the non-

parametric model selection for both non-normal and normal datasets.  

The nonparametric models included an additional model selection for tuning parameters. 

The Random Forest regression has three tuning parameters: node size, number of trees, and mtry 

(Breiman 2001).  The node size is the minimum number of data points in the terminal node of a 

tree. Mtry is the number of randomly chosen subsample of predictor variables used to fit data 

within each tree. An increase in node size has previously been shown to have little effect on the 
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fit of a Random Forest model (e.g., Gutierrez 2011, Ishwaran and Malley 2014). The nodesize 

was set at the default value of 5 data points. The number of trees and value of mtry were selected 

using 10-fold cross validation.  The default value of number of trees, 500, was increased by steps 

of 500 until the RMSE value stabilized. As previously suggested for mtry tuning selection, the 

mtry parameter was varied from the default using a step factor of +/- 2 until the RMSE value no 

longer decreased (Liaw and Wiener 2002).  

The Support Vector Regression included kernel tuning parameters. The SVR-L and SVR-

RBF models both include the cost tuning parameter, and SVR-RBF additionally includes the 

gamma tuning parameter. Both parameters affect bias-variance tradeoffs within the SVR (Hastie 

et al. 2009). Cost affects the penalization of estimation error and the smoothness of the estimated 

regression. A high cost indicates a low tolerance for error and can potentially overfit the data. 

The gamma value controls the width of the kernel (Thissen et al. 2003). A high gamma indicates 

a smaller width that increases the localized fit of the model and potentially overfits the data. An 

iterative 10-fold cross validation grid search of cost values ranging from 2-5 to 215 at intervals of 

22 and gamma values ranging from 2-15 to 23 by 22 was used following the recommendation of 

Hsu et al. (2010) and Berk (2008). At each iteration a finer grid search was conducted until the 

RMSE value could not be further reduced.  

2.2.5     Residual Diagnostics 

 Residuals of each parameterized candidate model must be evaluated to determine if there 

is any remaining pattern in the data, which may indicate model assumptions are invalid and/or 

the structure of the data is not being accurately portrayed by the parameterized model. Together, 

results from the 10-fold CV and the residual diagnostics enable an evaluation of a model’s ability 

to characterize baseline data.  The Zuur et al. (2009) protocol used to structure the previous steps 
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of model selection was used for residual diagnostics assessment. The form of each model that 

produces the lowest average RMSE value from the 10-fold CV process was refit to the entire 

dataset. Residual diagnostics included an inspection for homogeneity and independence using 

residual plots and ACF plots.  

2.3     Results 

2.3.1     Nekton Density (Sv) Data 

Model Selection Results 

The most flexible models produced the most accurate interpolation of the data (i.e., 

prediction of the test data in 10-fold cross-validation model selection) based on average Root-

Mean-Squared-Error (Table 2.2). The two nonlinear, non-parametric models, SVR-RBF and RF, 

produced the best interpolation of the data based on their average RMSE values of 3.05 and 3.16, 

followed by SVR-L (average RMSE of 3.22). The most flexible linear parametric models, the 

MARSS-P and MARSS-M models, were the next most accurate candidate models (Table 2.2). 

The GAM(M)s produced better interpolation of the data than all other parametric regression 

models, further highlighting the order of model performance from most to least flexible 

candidate models. The simplest candidate models, GLS and linear regression, had the worst 

interpolative accuracy (average RMSE value of ~3.54 each). 
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Table 2.2. Parameterized candidate models from the 10-fold Cross-Validation model selection 
for the Sv data, including environmental predictors, autocorrelation structure, associated average 
Root-Mean-Squared-Error (RMSE), and presence of autocorrelation in the residual ACF plots. 
Model Environmental Predictors Auto-

correlation 
Structure 
(AR,MA) 

Average 
RMSE 

Residual 
Auto-
correlation 

SVR-RBF Day, Fourier Series, Tidal Range, 
Tidal Speed 

(1,0) 3.05 
(0.147) 

Yes 

RF All Environmental Predictors (14,0) 3.16 
(0.274) 

No 

SVR-L Fourier Series (13,0) 3.22 
(0.313) 

No 

MARSS-P Process Eq: Day, Fourier Series, Tidal 
Range 
Observation Eq: Day, Tidal Range, 
Day-Tidal Range 

(1,0) 3.30 
(0.238) 

Yes 

MARSS-M Process Eq: Tidal Range, Tidal Speed, 
Tidal Speed-Tidal Range 
Observation Eq: Day, Fourier Series, 
Tidal Speed 

(1,0) 3.34 
(0.239) 

Yes 

GAM Day, Fourier Series, Tidal Range†, 
Day:Tidal Range†   

NA 3.43 
(0.190) 

Yes 

GAMM Day, Fourier Series, Tidal Range† (1,0) 3.45 
(0.190) 

Yes 

Reg-
ARMA-
GARCH 

Mean Eq: Day, Fourier Series, Tidal 
Range, Day: Tidal Range 
Variance Eq: Day, Fourier Series, 
Tidal Range,  

ARMA:(1,0) 
GARCH:(2,3) 

3.53 
(0.169) 

Yes 

Reg-
ARIMA 

Day, Fourier Series, Tidal Range, 
Day: Tidal Range 

(1,0) 3.54 
(0.168) 

Yes 

GLS Day, Fourier Series, Tidal Range, 
Day: Tidal Range 

(1,0) 3.54 
(0.161) 

Yes 

LM Day, Fourier Series, Tidal Range, 
Day: Tidal Range 

NA 3.54 
(0.163) 

Yes 

Notes: Models are ranked in descending order of average RMSE and associated variances of 
average RMSE are shown in parenthesis. The number of autoregressive (AR) and moving-
average (MA) variables in model autocorrelation structures is shown in parenthesis as (AR, 
MA). The specified (AR, MA) structure of the nonparametric models indicates the number of 
lagged dependent variables included in the parameterized models. The environmental predictors 
are listed in alphabetical order of main effects followed by interactions. The Tidal Range* 
predictor is parametric in the GAM(M)s. 
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Predictor Variables 

All candidate models included the 24 hour Fourier series as an environmental predictor of 

the Sv data (Table 2.2). SVR-L is the only candidate model that did not also include day and 

tidal range as environmental predictors (Table 2.2). All parametric regression models also 

contained the day-tidal range interaction predictor variable, except for MARSS-M and GAMM 

(Table 2.2). MARSS-M and SVR-RBF are the only candidate models that included tidal speed as 

a relevant environmental predictor, except for RF, which included all environmental predictors 

and their subsequent interactions in the model (Table 2.2). The SVR-L and RF models included 

up to 26 and 28 hour lagged dependent variables as model covariates, whereas SVR-RBF only 

included a 2 hour lagged dependent variable. 

Residual Diagnostics 

 All models displayed autocorrelated residuals except for SVR-L and RF (Table 2.2). 

All candidate models that were not structured to account for autocorrelation (i.e., linear 

regression and GAM) displayed a 2 hour correlation in addition to a 24 hour correlation in the 

residuals. The candidate models that did account for autocorrelation all modeled a lag-1 

correlation in their respective model structures, and did not exhibit the 2 hour residual 

correlation. SVR-RBF had autocorrelated residuals at an 18 hour lag, which is a different pattern 

than all other candidate models. All residuals were homogenous for all candidate models, 

indicating that the assumption of normality was appropriate for modeling the distribution of the 

nekton density data. 
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2.3.2     Nekton Aggregation (AI) Data 

Model Selection Results 

Unlike the model selection results for nekton density, model ability to accurately 

interpolate the data did not appear to be ranked by the most to least flexible model. The SVR-

RBF model produced the lowest average RMSE value (0.0667), while the other two non-

parametric models, RF (0.0681) and SVR-L (0.0689), produced the highest average RMSE 

values (Table 2.3). The MARSS-P model was the second best interpolative model (RMSE = 

0.0673) while MARSS-M was the third worst interpolative model (RMSE = 0.0678). The 

GLM(M)s were the 3rd and 4th best interpolative models, and displayed greater average 

predictive accuracy than all other parametric regression models, except for MARSS-P. The most 

simplistic and inflexible models, GLS and linear regression, ranked directly below the GLM(M)s 

in interpolation performance (Table 2.3).  

 Predictor Variables 

All models included the 24 hour Fourier series as an environmental predictor, except for 

GLMM, which only included day and tidal range as predictor variables (Table 2.3). The majority 

of candidate models included few environmental predictors (≤ 3 per model equation), and no 

interaction effects. RF and GAM included tidal speed as a predictor variable in addition to the 24 

hour Fourier series, whereas GLM and MARSS-M included the day predictor variable in 

addition to the 24 hour Fourier series (Table 2.3). The Reg-ARMA-GARCH model was the 

parametric model with the most extensive set of environmental predictors, including day and 

tidal-range in addition to the 24 hour Fourier series (Table 2.3). The SVR-RBF and SVR-L 

models included the highest number of environmental predictors (7 variables), and are the only 
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Table 2.3. Parameterized candidate models from the 10-fold Cross-Validation model selection 
for the AI data, including environmental predictors, autocorrelation structure, error distribution, 
and associated average Root-Mean-Squared-Error (RMSE).  

Model Environmental Predictors Auto-
correlation 
Structure 
(AR,MA) 

Error 
Distribution 

Average 
RMSE 

SVR- RBF Day, Fourier Series, Tidal 
Speed, Day: Tidal Speed, Tidal 
Speed: Fourier Series 

(13,0) NA 0.0667 
(0.000920) 

MARSS- P Observation Eq: Fourier Series (1,0) Normal 0.0673 
(0.000869) 

GLM Day, Fourier Series NA Gamma 
(identity) 

0.0674 
(0.000847) 

GLMM Day, Tidal Range (1,0) Gamma  
(identity) 

0.0674 
(0.000855) 

GLS Fourier Series (1,0) Normal 0.0675 
(0.000859) 

LM Fourier Series NA Normal 0.0675 
(0.000858) 

Reg-ARIMA Fourier Series (1,2) Normal 0.0675 
(0.000865) 

Reg-ARMA-
GARCH 

Mean Eq: Day, Fourier Series, 
Tidal Range  
Variance Eq: Fourier Series 

ARMA: (1,0); 
GARCH: 

(2,0) 

Skewed- 
student-t 

0.0675 
(0.000953) 

GAM Fourier Series, Tidal Speed NA Gamma 
(identity) 

0.0677 
(0.000874) 

GAMM Fourier Series (2,0) Gamma 
(identity) 

0.0677 
(0.000877) 

MARSS-M Process Eq: Day  
Observation Eq: Day, Fourier 
Series 

(1,0) Normal 0.0677 
(0.000880) 

RF Fourier Series, Tidal Speed (2,0) NA 0.0681 
(0.000888) 

SVR-L Day, Fourier Series, Tidal 
Range, Day: Tidal Range, 
Tidal Range: Fourier Series 

(1,0) NA 0.0689 
(0.000858) 

Notes: Models are ranked in descending order of average RMSE and associated variances of 
average RMSE are shown in parenthesis. The number of autoregressive (AR) and moving-
average (MA) variables in model autocorrelation structures is shown in parenthesis as (AR, 
MA). The specified (AR, MA) structure of the nonparametric models indicates the number of 
lagged dependent variables included in the parameterized models. The environmental predictors 
are listed in alphabetical order of main effects followed by interactions. 
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candidate models that included interaction effects between the predictors. Both these models 

included tidal speed and the 24 hour Fourier series. The SVR-RBF identified the day predictor as 

a relevant predictor, whereas the SVR-L model replaced the day predictor with tidal-range within 

the model formula (Table 2.3). The SVR-L and RF models included fewer lagged dependent 

variables than SVR-RBF. SVR-L and RF included up to 2 and 4 hour lagged dependent 

variables, whereas SVR-RBF included up to 26 hour lagged dependent variables in the model. 

Residual Diagnostics 

No candidate model had autocorrelated residuals. All model residuals were 

heteroskedastic, indicating that no model was able to capture the highly right-skewed distribution 

of AI data. 

2.3.3     Data Characteristics- Nekton Density (Sv) 

Variability 

Ranking of models in the 10-fold CV selection is ordered most to least flexible model. 

This result suggests that the data have a highly variable range around the mean, because flexible 

models were required to most accurately predict the structure of the data. The high variability of 

nekton density is validated by the ranking of the MARSS models. The MARSS models differed 

in their partitioning of the total error into process and observation errors (MARSS-P modeled 

high process error, and MARSS-M modeled low process error). The difference in error structure 

between these two models affected parameterization of the mean-reversion (parameter B) in the 

data. MARSS-P estimated higher mean-reversion B<0.6, whereas MARSS-M estimated low 

mean-reversion B>0.9. Results of the 10-fold CV model selection suggest that estimating high 

natural variability and a more mean-reverting population produces a more accurate interpolation 
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of the data compared to attributing variability as low density-dependence. The nonlinear 

GAM(M)s produced the best interpolation of the data after the MARSS models. The smoothing 

parameters in the GAM(M)s do not exhibit strongly nonlinear patterns in the data not modeled 

by the other candidate models. The only nonlinear smoothing parameters in the GAM(M)s, is the 

day covariate (i.e., GAM EDF = 2.74, GAMM EDF = 2.69) (Fig. 2.2). The ability of the 

GAM(M)s to capture the slightly concave trend in nekton density across days enables these 

models to produce a better fit to the data than the parametric models. Results of the 10-fold CV 

model selection indicate that the range of nekton density is highly variable, but the data are not 

strongly nonlinear.

Figure 2.2. Parameterized nonlinear relationship between the demeaned day covariate and nekton 

density (Sv), and the corresponding effective degrees of freedom (EDF) estimated from the 

GAM. The dashed line represents 2 standard error bounds on the estimated values. Note: Tidal 

range is a parametric variable in the parameterized GAM. The day covariate smoother spline in 

the GAMM is similarly parameterized (not shown).  
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Environmental Predictors 

The pattern of environmental variables included in the final version of each candidate 

model provides insight into important predictors of nekton density. The most accurate 

interpolative models included at least one lagged dependent variable, indicating the 

autoregressive nature of the nekton density, which has previously been documented (Jacques 

2014). There is also an indication of strong periodicity in the data, as either tidal range and/or 24 

hour Fourier series were included in all final models. The inclusion of the day environmental 

variable in most candidate models suggests a trend in nekton density across the one month data 

collection period. 

Distribution and Autocorrelation 

Residual diagnostics from candidate models supports the assumption of a normal 

distribution, and reflects the autoregressive structure of the data. All models had homoscedastic 

residuals, confirming the assumption that the data are normally distributed. Nonparametric 

models that included 13-14 lagged variables were the only models that did not contain a 24 hour 

periodic autocorrelation in the residuals, demonstrating a strong periodic daily cycle in nekton 

density.  

2.3.4     Data Characteristics- Nekton Aggregation (AI) 

Variability 

Model selection results highlight the low variability of the low state AI data, and the 

inability of the candidate models to characterize variability of the spikes in aggregation index 

values. Differences in performance of the MARSS models provide insight to the structure of 
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variability in the AI data. The parameterized MARSS-P model estimated high mean reversion 

(i.e., B>0.1), compared to the MARSS-M (B>0.7).  The MARSS-M model assumes that the 

spikes are process error, whereas MARSS-M accounts for spikes in aggregation index values as 

observation error. The 10-fold CV results indicate that the MARSS-P model is a more 

appropriate model for the data, suggesting that spikes in nekton aggregation are natural 

stochasticity, not observation error, and that the AI data is strongly mean-reverting. The rank of 

the most simplistic and least flexible candidate models (i.e., GLM(M), GLS, and linear 

regression) as the next best interpolation models after MARSS-P validates the characterization of 

the low state AI data as stationary and low variability as parameterized by the MARSS-P model. 

The greater interpolation accuracy of the linear regression models over the nonlinear GAM(M)s, 

remaining time series models, and the nonparametric RF and SVR-L models highlights the 

inability of the more flexible models to better capture variability of nekton aggregation or 

accurately predict spikes in nekton aggregation. 

Environmental Predictors 

The range of environmental predictor variables included in all candidate models provides 

insight to the dominant processes influencing nekton aggregation. The 24 hour Fourier series is 

the most consistent environmental predictor among all candidate models, appearing in all but the 

GLMM, and the only predictor in 5 of the 13 candidate models. The ubiquity of the 24 hour 

Fourier series highlights the diel periodicity of nekton aggregation (Urmy et al. 2012, Wiesebron 

et al. 2016). The lack of consistent environmental predictors besides the Fourier series may 

indicate that the AI data are not predictable using the chosen environmental predictors. By 

definition nekton movements are independent of fluid motions, and therefore tidal variables may 

not be primary drivers of nekton aggregation patterns over time (Urmy et al. 2012).   
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Distribution and Autocorrelation 

All candidate models display heteroskedastic errors, illustrating the inability of any 

candidate model to model the spiked structure of the AI data, regardless of distributional 

assumptions. Although the SVR-RBF model interpolated the data more accurately relative to all 

other candidate models, it was still not able to consistently estimate the occurrence and 

magnitude of spikes in nekton aggregation index values, as reflected by its heteroskedastic error. 

The MARSS-P model had a much smaller range of residual values compared to other models 

(0.006 vs ~0.5). The smaller range of the MARSS-P residuals highlights the ability of the 

MARSS-P model to better fit the structure of the AI data relative to the other candidate models 

by allocating the spikes in aggregation as process variation. The MARSS-P residuals are 

heteroskedastic, which highlights the inability of the MARSS models to correctly fit the non-

normal distribution of the AI data. All models, including those that did not account for 

autocorrelation, do not have autocorrelated residuals, suggesting that temporal correlation in the 

data is weak, and can be modeled by including diel environmental predictors. 

2.4     Discussion 

2.4.1     Model Efficacy 

Overall, the evaluation illustrates the strengths and weaknesses of models used to 

characterize acoustic-based, empirical MRE baseline monitoring data. State-space models are 

identified as a suitable model to characterize baseline MRE monitoring data. MARSS state-space 

models provide the most thorough description of baseline data by accurately interpolating nekton 

density and aggregation, and quantifying parametric estimates of environmental predictors, and 

process and observation error. Nonparametric models also excel in interpolating data, but their 
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predictor variables are not as interpretable or consistent as state-space models, making them 

unsuitable for data characterization. Deterministic parametric and semi-parametric models (i.e., 

Reg-ARMA, reg-GARCH, GLS, Lin, GLM(M), and GAM(M)) were less accurate in 

interpolating data than MARSS models. MARSS state-space models have previously been 

recommended to characterize renewable energy monitoring data due to their incorporation of 

process and observation error, inclusion of environmental predictors in the model structure, and 

predictive abilities (Jacques 2014, Diffendorfer et al. 2015). 

Interpolation Accuracy 

All nonparametric models excel in interpolating nekton density data, but SVM-RBF is 

the only nonparametric model that also accurately interpolates nekton aggregation data relative 

to all other candidate models. RF and SVR models are known for their predictive accuracy due 

to their lack of structural assumptions (James et al. 2015). RF and SVR-RBF models are also 

highly flexible due to their inclusion of lagged, dependent variables and nonlinear, localized 

structure (i.e., fit to local subsets of data rather than fitting a global trend to the data). Localized 

models are able to interpolate highly variable data because they do not assume a constant global 

variance (Taddy et al. 2011). SVR-RBF models tend to have greater interpolation accuracy than 

SVR-L models because of their more flexible kernel, but both have been shown to excel in data 

prediction (e.g., Crone et al. 2006, Kordon 2009).  

In addition to nonparametric models, state-space models also accurately interpolate 

nekton density and aggregation data relative to all other candidate models. The MARSS estimate 

of both process and observation error, and the lag-1 structure of the process equation provide the 

flexibility to accurately fit the stochastic nature of time series data (Dornelas et al. 2012, 



39 
 

Hampton et al. 2013).  The MARSS-P model produced a more accurate interpolation of both 

datasets compared to the MARSS-M model, because the fixed low measurement error was a 

more appropriate assumption for linear backscatter values by a stationary echosounder.  

Deterministic parametric and semi-parametric models (i.e., Reg-ARMA, reg-GARCH, 

GLS, Lin, GLM(M), and GAM(M)) generally produced less accurate interpolations of the 

nekton density and aggregation data than nonparametric and state-space models. The time-series 

models, Reg-ARMA and Reg-ARMA-GARCH, predict both nekton datasets similarly to the 

linear regression, GLS, GLM, and GLMMs, which is not a surprising result as these time-series 

models are also linear, parametric, and their predictions are deterministic, regardless of their 

inclusion of autocorrelated error (Hyndman and Athanasopoulos 2014). Due to the similarity in 

model structure and predictive abilities, time series (i.e., Reg-ARMA and Reg-ARMA-GARCH) 

and parametric (i.e., linear regression, GLS, GLM, and GLMM) models are grouped together as 

deterministic parametric models. Parametric regression models are known for their relative 

inability to accurately estimate complex, variable data patterns (compared to more flexible 

models; see Barry and Elith 2006, Shmueli 2010). This inability of parametric models to 

accurately estimate complex data patterns was validated in the current study. The nekton density 

data have a highly variable range and an autoregressive structure, as identified in the model 

evaluation. The nekton aggregation index data includes highly variable spikes and are non-

normally distributed. Deterministic parametric and semi-parametric models could not accurately 

interpolate these complex datasets due to their inflexible properties, the lack of lagged dependent 

variables, not including stochastic variability as process error, and the assumption of pre-

specified error distributions.  
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Partitioning of Residual Error 

 The partitioning of total error into process and observation components in a state-space 

model has been shown to reduce bias and improve accuracy in estimating population abundances 

(e.g., De Valpine and Hastings 2002, Lindley 2003, Ward et al. 2010). The MARSS models are 

the only evaluated models that include both process and observation error parameters, which 

enables a more thorough and accurate characterization of baseline nekton variability. Given that 

nekton at MRE monitoring sites are known to vary in both in density and behavior (e.g. Jacques 

2014, Wiesebron et al. 2016), the MARSS-P model is an appropriate choice as it can quantify 

variability when using high process error estimates. The MARSS-P model characterized spikes 

in aggregation index values as process error, which aligns with results of a previous study 

attributing spikes in AI data to natural variability in nekton aggregations (Urmy et al. 2012). The 

remaining parametric and semi-parametric regression models did not perform well as they do not 

explicitly include process error in model structure, and implicitly assume that spikes in 

aggregation data are observation error. Similarly, nonparametric models did not partition residual 

model error, because they do not provide explicit estimates of process or observation error.   

Environmental Predictors 

Even though nonparametric models are flexible and excellent predictive models, they do 

not consistently identify the same environmental predictors, and are difficult to interpret relative 

to all other evaluated models. Consistent selection of variables by different statistical models can 

reduce uncertainty in the choice of relevant environmental predictors (Burnham and Anderson 

2002, Jones-Farrand et al. 2011). Covariates identified by nonparametric models generally 

differed from covariates selected in other models, which reduces confidence in the selected 
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predictor variables. It is also difficult to assess if the selected predictor variables in 

nonparametric models were misspecified due to their lack of measureable parameters.  SVR-L 

and SVR-RBF models differed in their environmental predictors, number of lagged dependent 

variables, and interpolation accuracy for both the nekton density and aggregation data; 

illustrating the influence of kernel choice and tuning on model characterization of data. The SVR 

model is known to be highly sensitive to choice of kernel and tuning parameters, and difficult to 

interpret due to its nonparametric structure (Berk 2008, Lorena et al. 2011). These attributes 

reduce the ability of SVR models to provide reliable and interpretable characterizations of 

baseline MRE monitoring data. Unlike the SVR models, the RF model estimates variable 

importance, which enables the RF model to be used for exploratory analysis of relevant 

predictors of a dataset (Strobl et al. 2008, Gitzen et al. 2012).  

The MARSS state-space models provide parametric estimates of predictor variables, 

which is an advantage over nonparametric models for making inferences (James et al. 2015). 

Selection of predictor variables in the MARSS models was influenced by the parameterization of 

process or observation error in the MARSS models. Fixing the amount of process or observation 

error in a state-space model as low or high relative to the total variability produces an inverse 

estimate of the other error parameter (Dennis et al. 2006, Hampton et al. 2013). For example, 

fixed low observation error produces an estimate of higher process error, while fixed high 

observation error produces an estimate of lower process error. Proportion choice of observation 

and process error alters the predictor variables included in MARSS models as illustrated by the 

difference in the MARSS-P and MARSS-M 10-fold CV model selection results. The MARSS-P 

models’ choice of covariates generally align more with the covariates included in other models, 

compared to those included in the MARSS-M model. This consistency validates the MARSS-P 
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model’s specification of environmental predictors. In addition, the MARSS-P model more 

accurately interpolated the nekton density and aggregation data compared to the MARSS-M 

model, and the low measurement error in the MARSS-P model aligns with a priori knowledge of 

error associated with stationary acoustic data collection. Predictor variables in the MARSS-P 

model are deemed a more reliable characterization of both baseline nekton datasets compared to 

the MARSS-M model. 

The deterministic parametric and semi-parametric models are not advantageous for 

interpolating nekton baseline data, and differences in the selection of predictor variables further 

illustrate effects of model assumptions and structure on baseline characterization. For instance, 

GAM(M)s varied in their environmental predictors of both nekton density and aggregation due 

to the structure of smoother splines. GAMs are known to over-fit nonlinear smoother splines in 

the presence of autocorrelation, while GAMMs are known to have difficulty converging while 

estimating both autocorrelation and smoother splines (Wood 2006, 2015). Therefore, the GAM 

may over-estimate variable parameters, or include irrelevant predictors, while the GAMM may 

converge on a simpler model with few predictors. Distributional assumptions will also impact 

environmental predictors included in parameterized models. Gamma distributed GLM(M)s both 

include day as a predictor of nekton aggregation, whereas linear regression and GLS only 

include the 24 hour Fourier series as a predictor variable. The difference in distributional 

assumptions between these models consistently impacted the inclusion of day as a predictor of 

nekton aggregation, regardless of other differences in model structure. Effects of model structure 

and assumptions illustrate the importance of using a model that is consistent with properties of 

the data to ensure accurate data characterization (Barry and Elith 2006).  
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2.4.2     Implications for Operational Monitoring Programs 

The model evaluation demonstrated the effect of model choice and parameterization on the 

characterization of baseline data. Comparisons of models used to monitor change in biological 

indicators have been repeatedly conducted in ecology (e.g., Thomas 1996, Ward et al. 2014, Bell 

and Schlaepfer 2016), but have not been used to recommend models for environmental baseline 

characterization in Marine Renewable Energy monitoring programs. The choice of model has 

been shown to alter data characterization (e.g., Thomas 1996, Jones-Farrand et al. 2011).This 

study reinforces these findings, and emphasizes that the choice of a state-space model to 

characterize MRE baseline data will contribute to an effective design of MRE monitoring 

programs. 

Accurate estimation of baseline variability is critical to designing a monitoring program that 

has the power to detect change outside the natural range of variability (Klure et al. 2012, 

McCann 2012). The baseline estimate of variability can be used in a power analysis to calculate 

the sample size needed detect a predetermined size of change in operational monitoring (Carey 

and Keough 2002). The accurate interpolation of nekton density and aggregation index data by 

the nonparametric and state-space models emphasizes the need to use flexible models to 

accurately predict nekton data variability.  Partitioning of residual variability as process and 

observation error in a state-space model provides an additional assessment of variability that can 

be used to formulate sampling designs for operational MRE monitoring programs. To illustrate 

by example, if estimated process error in a state-space model is greater than observation error,  

then this indicates a need to increase the number of samples, relative to baseline sampling, to 

improve precision of model fit (e.g., See and Holmes 2015). If the estimate of process error is 

less than observation error, fewer samples are needed to reach the same target precision of model 
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fit, which reduces monitoring costs (e.g., See and Holmes 2015). Identifying the need for fewer 

samples is especially valuable when using traditional sampling techniques (e.g., trawl or trapping 

surveys) that are associated with greater monitoring costs than remotely sensed, acoustic 

technology used to collect the case study data. Using a state-space model to characterize baseline 

data also provides an additional tool when designing operational monitoring programs to 

measure environmental change caused by MRE development. 

 Model structure and assumptions influenced the selection of environmental predictors of 

nekton density and aggregation index data, which also influence the design of MRE operational 

monitoring programs. Environmental predictors in baseline models and their relationship to the 

dependent variable are used to understand and identify potential effects of development on the 

ecosystem (Treweek 1996). Perceived effects of MRE development are then used to design 

monitoring programs for detecting change from baseline conditions, including  sampling 

resolutions and data collection methods (Klure et al. 2012, McCann 2012, Boehlert et al. 2013). 

Subsequently, these monitoring programs are used to detect change and inform managers and 

regulators how to minimize and mitigate harmful effects. As an example, the inclusion of day as 

a predictor of nekton density and/or aggregation infers a trend across time. By not including day 

in the baseline model, change may be falsely detected (positive trend) after MRE development. 

Conversely, if day is included in a baseline model, but its importance is overestimated, then 

change may be missed (negative trend) after MRE development. Given that the form of predictor 

variables can influence management decisions (Nuno et al. 2014), a linear trend may infer a 

constant increase or decrease in the measured indicator, compared to that from an asymptotic, 

nonlinear trend that infers a possible stabilization over time (Nuno et al. 2014). These two forms 



45 
 

of trend in MRE baseline data will generate different conclusions on the effects of MRE 

development.  

The effect of predictor variables on the design of monitoring programs and subsequent 

application of monitoring data for management decisions emphasizes the need for a baseline 

model with predictor variables that provide an interpretable characterization of baseline data.  

Parametric models are often used in MRE monitoring to provide quantitative measures of the 

size and shape of predictor variables, and uncertainty around those estimates (Maclean et al. 

2014). State-space models consistently produced the most accurate parametric interpolation of 

nekton data. Therefore, the use of state-space models to characterize nekton data would result in 

the most accurate and comprehensible assessment of environmental predictors of baseline data, 

which should lead to the most effective design of operational monitoring programs.  

2.4.3     MRE Monitoring Model Recommendations  

Recommendations for characterizing baseline MRE monitoring data (Fig. 2.3) are 

derived from the model evaluation. Criteria used to recommend models include results from the 

10-fold CV and residual diagnostics. Advantages or disadvantages of models to provide 

interpretable and reliable measures of baseline predictor variables were also used to develop 

model recommendations. As nekton density data was chosen as a representative metric of 

normally distributed data, the recommended models for characterizing baseline nekton density 

(i.e., Sv) are identical to those used to characterize Center of Mass and Inertia baseline data.   
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Figure 2.3. Schematic of recommended models to characterize environmental receptor 

indicators. An example framework for MRE monitoring consists of a stressor (i.e., MRE 

development), a receptor (e.g., fish), indicators of the state of the receptor (i.e., abundance, 

distribution, behavior), and metrics representative of the indicator (i.e., Sv (unit: dB re 1 m-1), 

center of mass (units: M), inertia (units: m2), and aggregation index (units: m-1)). The dashed box 

indicates the need for further evaluation to identify a two state, state-space model for 

characterization of aggregation index data. 

Normally Distributed Data 

 The Random Forest regression is recommended as a preliminary model to investigate 

potential autocorrelation in normally distributed data, and to identify predictor variables for 

normally distributed, baseline data characterization (Fig. 2.3). The RF model was the second best 
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interpolator of normally distributed nekton data after SVR-RBF. The inclusion of 14 lagged 

dependent variables in the RF model captured the 24 hour autocorrelation in the data. The RF 

model is also able to quantify the importance of all environmental predictors used to characterize 

the data. The RF model provides the most accurate and complete initial assessment of 

autocorrelation and relevant environmental predictors of normally distributed metrics. It does not 

provide explicit estimates of model parameters, or partition observation and process error in the 

data.  

 The parametric, state-space MARSS-P model is recommended for baseline 

characterization of normally distributed nekton data after the application of the RF model (Fig. 

2.3). The MARSS-P model was the best interpolator of the data among parametric/semi-

parametric models. The parametric estimates of process error, measurement error, density-

dependence, and predictor variables provide an interpretable assessment of all primary 

components of baseline nekton characterization. Environmental predictors in the MARSS-P 

model were consistent with predictors included in the majority of evaluated models, and have 

been shown to impact nekton densities and distributions (e.g. Urmy et al. 2012, Wiesebron et al. 

2016). Even though there was a 24 hour autocorrelation in the residuals of the MARSS-P model, 

it did not affect the 10-fold cross-validation RMSE measurement or the resulting 

recommendation. The MARSS model structure is flexible and adjustable, and may be altered to 

include a 24 hour lag in the data to remove the observed autocorrelation (Hampton et al. 2013). 

Non-normally Distributed Data  

 No model fully characterized the nekton aggregation data, based on residual 

diagnostics and 10-fold CV results. Of all candidates, the MARSS-P model best characterized 

non-normal index data. The MARSS-P model was the second best interpolator of aggregation 
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index data, after SVR-RBF. The MARSS-P model was also able to characterize spikes in the 

aggregation data as process error, which is more biologically accurate than the assumption of 

spikes as observation error as suggested in all other parametric/semi-parametric models. It is 

important to note that spikes in nekton aggregation may not be random variation, but a periodic 

pattern driven by diel vertical migration (Urmy et al. 2012). A state-space model that includes 

diel vertical migration as a covariate may estimate nekton aggregation index data more 

accurately than a model without this variable, as omission of relevant predictor variables will 

bias estimated values (Barry and Elith 2006). The MARSS model did have heteroskedastic 

errors, because it assumes a normal distribution of the data, and as a result, did not fully 

characterize the distribution of empirical data. Residual diagnostics suggested that a Box-Cox 

power transformation (Box and Cox 1964) may be necessary to better fit the assumptions of a 

normal, state-space model. 

 The model evaluation may not have identified a candidate model that accurately 

captured all properties of the non-normal baseline data, but it did highlight advantages of using a 

state-space model to characterize the data. A non-normal, state-space model may provide a more 

accurate interpolation of data and reduce heteroskedasticity in the residuals. It may also be 

necessary to fit a state-space model that characterizes spikes in aggregation index data as more 

than process error. As an example, a Markovian switching, state-space model is capable of 

modeling AI data as a two-state structure, with the probability of being in the low or high state 

dependent on the state at the previous time-step (Ghahramani and Hinton 2000). This two-state 

approach may be a more appropriate way to characterize short period, variable data.  
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Note on SVR models 

 The SVR models were not recommended for baseline characterization of either the 

normal or non-normal data regardless of their performance in the model selection process. 

Although SVR models may be able to accurately interpolate baseline data, the lack of methods to 

identify predictor variable importance restricts their use as descriptive models for MRE baseline 

characterization. Choice of predictor variables in SVR models was also dependent on kernel 

choice and parameter tuning. A SVR model cannot be used as an exploratory or descriptive 

model, but would be effective as a predictive model of nekton density and possibly nekton 

aggregation after a Box-Cox data transformation.  

2.5     Conclusion 

 This study was motivated by the absence of an evaluation of models capable of 

characterizing Marine Renewable Energy baseline environmental monitoring data. Including all 

primary classes of regression models provided a palette of candidate models that could be used 

to characterize normal and non-normal baseline data. The recommended Random Forest and 

MARRS state-space models have not been commonly used in MRE monitoring studies. 

Recommended models and the approach used to identify them may be combined as a best 

practice for the analysis of monitoring data with similar properties as those from the case study. 

For example, the RF and MARSS model combination recommended for characterizing nekton 

density is applicable for any temporally continuous, normally distributed data. The combination 

of RF and MARSS models can also be used to standardize monitoring protocols (Fig. 2.3). The 

standardization of MRE monitoring, including the choice of analytic model, will reduce cost and 

uncertainty in MRE permitting in the United States (Dubbs et al. 2013) or consenting in the 

United Kingdom. The use of recommended models also ensures accurate characterization of 
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MRE baseline environmental monitoring data. Accurate baseline assessments will lead to the 

development of effective operational MRE monitoring programs.  

 The data used as a case study was assumed representative of MRE site baseline data. 

Models used in the evaluation were assumed to be representative of regression models 

commonly used in ecological monitoring studies. Mechanistic or Bayesian models were not used 

to characterize baseline data, but could be evaluated using the same approach. Evaluation of 

candidate models for characterizing non-normal AI data led to a better understanding of data 

structure and highlighted the inability of models to characterize short period, large amplitude 

fluctuations. This insight may be extended by adding diel vertical migration predictors as 

potential model covariates, using a transformation of the AI data to a normal distribution, or 

additionally evaluating state-space models that better match the structure of spiky aggregation 

index data.  

This study explicitly developed and applied an evaluation to recommend statistical 

models capable of characterizing baseline monitoring data. There is an additional need to 

accurately detect change relative to baseline conditions during MRE operations. To guarantee 

consistent and comparable results in baseline and operational monitoring, the same techniques 

should be used during both phases of MRE site development. Therefore, models used for 

baseline characterization must also be able to detect and forecast change in monitoring variables. 

An additional evaluation of model ability to detect change is needed to complete a best practices 

procedure for analyzing Marine Renewable Energy environmental monitoring data.
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Chapter 3: 

Evaluating Statistical Models to Measure  

Environmental Change 

3.1     Introduction 

The need to detect and measure change is ubiquitous in all environmental monitoring to 

prevent or mitigate detrimental effects on natural resources (e.g., Ferretti 1997, Lovett et al. 

2007, Ingersoll et al. 2013). Monitoring programs are used to measure change in the 

environment, either natural or anthropogenic, and to inform environmental management 

decisions (Legg and Nagy 2006). Criteria specified to define change and to estimate the size and 

shape of change affect inferences made about the observed ecosystem (Underwood 1992, Nuno 

et al. 2014). Monitoring programs often fail to provide accurate and definitive measures of 

change due to high costs of sampling, analyzing data, time-constraints, and unclear objectives 

(Busch and Trexler 2003, Gitzen 2012, Lindenmayer et al. 2012).  It is critical to define the goals 

of environmental monitoring and to develop best practice methods for achieving those goals to 

ensure efficient and accurate measures of change. 

Primary objectives of environmental monitoring often include detecting, quantifying, and 

forecasting change. These objectives are developed from a hypothesis testing framework that is 

commonly used to structure environmental monitoring programs (Vos et al. 2000, Yoccoz et al. 

2001, Nichols and Williams 2006). The hypothesis testing framework uses baseline (i.e., pre-

disturbance) environmental studies to identify and assess perceived effects of future natural or 

anthropogenic disturbance on baseline conditions. Operational monitoring (i.e., post-disturbance 
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monitoring) is then used to evaluate hypothesized environmental change against the null 

hypothesis of no change (Fairweather 1991). Quantifying change is used to assess perceived 

effects of disturbance from baseline assessment to inform environmental management decisions 

about future monitoring and mitigation plans (Schmitt and Osenberg 1996, Hewitt et al. 2001, 

Shumchenia et al. 2012).  A third objective of monitoring, forecasting, is used to develop future 

monitoring and mitigation efforts and to provide early warning detection of data reaching a 

threshold, or predefined level, of change (Magurran et al. 2010, Dornelas et al. 2012, 

Lindenmayer et al. 2012). 

Marine Renewable Energy (MRE) development provides a timely case study of 

anthropogenic disturbance and exemplifies the need for efficient and effective environmental 

monitoring methods. Although MRE technology is rapidly expanding, projects within the United 

States are primarily in demonstration stages rather than full-scale commercial operations. This 

lag is attributed in part, to the sampling requirements for both baseline and operational 

monitoring. To comply with the National Environmental Policy Act (NEPA), an environmental 

assessment prior to project installation is mandatory to obtain permits for any MRE project 

(FERC 2008, DOE 2009, Portman 2010). Plans for post-installation, compliance monitoring in a 

Site Assessment Plan (SAP) or Construction and Operations Plan (COP) are commonly required 

for commercial leases of MRE sites (BOEM 2016). At this time, there are no specific monitoring 

requirements under these regulations, but the standardization of environmental monitoring 

protocols has been cited as critical for expediting the MRE permitting process and advancing 

MRE development (Dubbs et al. 2013, Copping et al. 2016).   

To ensure comparable and accurate evaluation of environmental change, limited efforts 

attempted to develop standard monitoring guidelines for MRE monitoring design and data 
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collection (e.g., McCann 2012, Copping et al. 2014). These guidelines use the stressor-receptor 

construct previously defined in Chapter 2 to focus monitoring efforts on effects of concern 

(Boehlert and Gill 2010, Klure et al. 2012, Boehlert et al. 2013). Predominant MRE 

environmental stressors include: device presence (i.e., static effects), operational device 

movement (i.e., dynamic effects), chemical, noise, energy removal, and electromagnetic fields 

(EMF) (cf., McCann 2012, Klure et al. 2012, Boehlert et al. 2013). Hypothesized effects of these 

MRE stressors on biological receptors (e.g., fish, marine mammals, birds) are used to structure 

the design of monitoring programs. The Before-After-Control-Impact (BACI) design is 

commonly suggested for MRE monitoring studies (McCann 2012, Copping et al. 2014). A BACI 

design includes sampling a site before and after installation and/or using separate control and 

impact sites to identify change in the environment. It may be difficult to find control sites that 

match the characteristics of impact sites due to high environmental variability at MRE device 

sites (Polagye et al. 2011, Copping et al. 2014). An alternate approach is to use a Before-After 

monitoring design (McCann 2012). McCann (2012) is the only monitoring guideline document 

to provide examples of possible statistical methods to measure change caused by stressors, but 

these recommendations are based on previous applications and do not explicitly compare or 

evaluate statistical methods.  

Previous statistical models used to measure change in MRE Before-After studies vary 

based on objectives and data properties. To detect change, hypothesis tests (i.e., ANOVA, Mann-

Whitney U test) (e.g., Hammar et al. 2013) or significance of change indicator variables in 

parametric (e.g., Bergström et al. 2013) or semi-parametric regression models (e.g., Peterson et 

al. 2013) have been used.  Parametric and semi-parametric regression models used to 

characterize trends and patterns in MRE monitoring studies include: linear regression (e.g., 
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Hammar et al. 2013, ORPC 2014), Generalized Linear (Mixed) Models (GLM(M)s) (e.g., 

Embling et al. 2013, Stenberg et al. 2015), and Generalized Additive (Mixed) Models 

(GAM(M)s) (e.g., Tollit et al. 2013). These models are also used to predict data patterns in MRE 

Before-After monitoring studies (e.g., Mackenzie et al. 2013, Waggitt et al. 2014, Warwick-

Evans et al. 2016). The limited list of statistical models highlights the low diversity of parametric 

or semi-parametric regression models currently used in MRE monitoring studies. Mackenzie et 

al. (2013) is the only previous study that evaluated statistical models used to detect 

environmental change associated with MRE development. This study evaluated three semi-

parametric regression models in three scenarios of Before-After step shifts in abundance and 

distribution of bird and cetacean data at a MRE site.  

An evaluation of statistical model classes is needed to identify the most appropriate 

models capable of measuring change in MRE monitoring data.  Objectives of this study are to 

develop an approach that can be used to evaluate candidate statistical models and to recommend 

best practices to accurately detect, quantify, and forecast change in environmental monitoring 

data. Empirical active acoustic data that is representative of common MRE monitoring data are 

used to develop a scenario analysis evaluation. This approach encompasses a wide range of 

forms and amplitudes of change in monitoring data caused by hypothesized effects of MRE 

development. Three classes of statistical models used to analyze monitoring data are evaluated. 

Results of the evaluation are used to recommend statistical model(s) that are able to detect, 

quantify, and forecast change in monitoring data. Recommendations from the evaluation can be 

used to develop best practices for measuring change in monitoring data. Standardizing best 

practice models shrinks monitoring costs, enables cross-site comparisons among MRE sites, and 

reduces uncertainty in effects of MRE development.  
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3.2     Methods 

3.2.1     Approach 

Models were evaluated using a series of change scenarios in simulated Before-After 

monitoring studies generated from empirical MRE baseline case study data. A range of 

amplitudes and relevant scenarios of lagged change were used to assess sensitivity of model 

performance. Models were parameterized using baseline data (cf., Chapter 2), and indicator 

variable(s) were added to the parameterized models to measure change in baseline conditions. 

The evaluation was developed to allow for an equal comparison across classes of parametric and 

nonparametric models, while allowing each model to have the greatest probability of success.  

Candidate statistical models were evaluated on their ability to detect, quantify, and 

forecast change. A power analysis was used to estimate model ability to detect change. Model 

power to detect change was defined as inclusion of an indicator variable(s) producing a more 

accurate interpolation (i.e., prediction of data within the range of the empirical data) of change 

scenarios than the model without indicator variable(s). This binary definition of power to detect 

change aligns with traditional hypothesis testing used to detect change in monitoring data at a 

predetermined level of significance (Morrison 2007). Model ability to quantify change is defined 

as the accurate measure of size and shape of change, and was evaluated using both fit and 

forecast accuracy metrics. The use of fit and forecast accuracy metrics provides a comprehensive 

assessment of model behavior (Shmueli 2010) and ability to quantify change. A model fit to time 

series data may have high fit accuracy while misspecifying the deterministic and stochastic 

components of the time series data (Allen and Fildes 2001). Forecast estimates are based solely 

on parameterized mean model estimates, and consequently any change attributed to stochastic 

error can be evaluated by comparing forecast accuracy to fit accuracy. The model forecast 
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accuracy metric can also be used to assess a model’s ability to forecast change. Results from the 

evaluation were then used to recommend model(s) capable of accurately detecting, quantifying, 

and forecasting change. All analysis was conducted in the R statistical software environment (R 

Core Development Team 2016). 

3.2.2     Case Study Data  

Empirical data from Admiralty Inlet, WA (see Chapter 2 for details) was used as case study 

data. The data was collected from a tidal turbine pilot project site considered by the Snohomish 

County Public Utility District No. 1, located ~1 kilometer off Admiralty head shoreline, Puget 

Sound Washington (48.18˚ N, -122.73˚ W), at a depth of ~60 meters (Public Utility District No. 

1 of Snohomish County, 2012). This study uses acoustic backscatter data from a Simrad EK60 

echosounder, which is are assumed representative of monitoring data throughout the life of an 

MRE project. Acoustic backscatter data serve as a proxy of nekton (i.e., macro-invertebrates and 

fish that move independently of fluid motion) within the water column (MacLennan et al. 2002). 

A suite of metrics derived from the data were used to quantify nekton density and vertical 

distribution (Burgos and Horne 2007, Urmy et al. 2012). Two acoustic backscatter metrics were 

used to represent MRE monitoring data: mean volume backscattering strength (Sv) (dB re 1 m-1) 

and aggregation index (m-1). Sv is a proxy for nekton density and the aggregation index (AI) 

measures patchiness of nekton.  Both metrics are continuous, display periodic autocorrelation 

(Jacques 2014), and are trend-stationary (i.e., statistical data properties are constant over time, 

assuming that the periodicity and trend in the data are associated with deterministic 

environmental variables). Sv data are considered representative of all normally distributed 

metrics (cf., Chapter 2). Aggregation index (AI) values are right-skewed, non-normally 

distributed data composed primarily of low values with high amplitude spikes. The terms low 
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state and high state will be used to refer to the two amplitudes of aggregation index values. 

Characteristics of these two metrics represent data properties common to all monitoring data 

(i.e., temporally continuous, autoregressive, normal and non-normal data) (Chandler and Scott 

2011, Gitzen 2012).  

3.2.3     Baseline Simulation Models 

 A Multivariate-Autoregressive-State-Space (MARSS) model was used to simulate 

baseline nekton density data, representative of normally distributed MRE monitoring data.  The 

MARSS model adheres to the characteristics of nekton density data because it assumes a 

normally distributed error structure, and can include an autoregressive lagged dependent process 

variable to estimate mean-reversion (i.e., how strongly a stationary time-series data reverts to its 

mean value). The model is also able to estimate both process and observation error that are 

components of time series data (Pattengill-Semmens et al. 2011, Dornelas et al. 2012).The 

MARSS model with fixed low measurement error (i.e., MARSS-P) recommended for 

characterizing normal MRE baseline monitoring data in Chapter 2 was used to simulate the 

normal data in the current study.  

A Hidden-Markov Model (HMM) was used to simulate baseline nekton aggregation 

index data, representative of non-normally distributed MRE monitoring data. An HMM assumes 

that there is an underlying process that governs the observed state, where the state at time t 

depends on the state at time t-1 (Zucchini and MacDonald 2009). The model estimates the 

probability of the data being within any given number of states at a specified time. This model is 

applicable to the aggregation data, which contains aperiodic low and high states of aggregation 

index data.  



59 
 

Normal Data Baseline Simulation Model Specification 

 MARSS-P was structured using a fixed measurement error of 10% of the total error, and 

process error was estimated as a parameter. We assumed that observation error in linear 

backscatter data collected from a stationary echosounder results from calibration and 

hydrographic conditions. These sources of error have been suggested to each equate to a 

maximum of 5% of the total error (Simmonds and MacLennan 2005). Within a MARSS model 

the B parameter estimates mean-reversion: B=1 indicates a non-stationary random walk and B 

<1 indicates mean-reversion in the data (Holmes et al. 2014). No MARSS model parameters, 

including B, were fixed prior to parameterizing the model. The MARSS simulation model was fit 

to the empirical Sv data using the R statistical package “MARSS” (version 3.9). 

Non-Normal Baseline Data Simulation Model Specification   

The HMM model assumed a log-link Gamma distribution for the nekton aggregation 

index (AI) data. The HMM statistical package used to fit the AI data requires the input of 

observed values, Gamma distribution parameters for each data state, chosen covariates within 

each state, and a transition intensity matrix (𝑄) to estimate the expected AI data values. 𝑄 

estimates the rate of transitioning from states i to j, and is used to calculate the transition 

probability matrix that is needed to estimate the expected data state at time 𝑡: 

𝑃(𝑡) = exp (𝑡𝑄)     (3.1) 

where 𝑄 is the transition intensity matrix at time 𝑡, and 𝑃 is the probability transition matrix.  

The expected state of data at time 𝑡, either low-state or high-state aggregation, was estimated by 

applying the Viterbi algorithm (Viterbi 1967) to the parameterized model.  The expected states 



60 
 

and the linear, parametric, Gamma distributed parameters and covariates within each state were 

used to simulate the expected AI values. Detailed information on model parameters and structure 

can be found in Cappé et al. (2005), Zucchini and MacDonald (2009), and Jackson (2016). The 

HMM simulation model was fit to the empirical AI data using the R statistical package “msm” 

(version 1.6).   

 The HMM R statistical package requires initial estimates of the low and high state 

Gamma distribution parameters (i.e., rate and shape) to estimate expected aggregation index 

values. A visual inspection was used to initially separate low and high state values using the 

maximum aggregation index value within the low state of the data. The R statistical package 

“fitdistr” (version 7.3-45) was used to estimate initial Gamma parameters of identified low and 

high state AI data.  The “msm” package also requires a preliminary estimate of the 𝑄 matrix. 

Random numbers were generated to fit the requirements of the matrix (i.e., the rows must sum to 

zero, and the diagonal elements are the negative sum of the other elements in a row) (Jackson 

2016). An HMM model including all environmental predictors of the AI data within each 

aggregation state, the randomly generated q matrix, and estimated Gamma distribution 

parameters was fit to the empirical data to produce an initial estimate of model parameters and 

the two states of AI data. Results from the initial HMM model indicated that the maximum AI 

value within the lower state of aggregation was ~0.06.  This value was used to separate the high 

and low state of AI data and re-estimate the Gamma parameters of both states. The re-estimated 

Gamma parameters, and estimated q matrix, were pre-specified in the HMM model selection to 

produce the most accurate parameterized simulation model.  
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3.2.4.     Simulation Model Selection  

The same ancillary environmental covariates (i.e., daily tidal range (m), tidal speed (m/s), 

Julian day of year, and a 24 hour Fourier series) used to structure models in Chapter 2 were used 

to develop 24 versions of each simulation model that were evaluated to select the optimal 

parameterized structure of the simulation models. Akaike Information Criterion (AIC) was used 

to select the most accurate version of the simulation models. AIC is a commonly recommended 

model selection tool that can efficiently select the most parsimonious MARSS and HMM model 

(Anderson and Burnham 2002, Johnson and Omland 2004).  AIC is approximately equivalent to 

leave-one-out cross-validation model selection (i.e., a single data point is used as the test set 

repeatedly until all data points have been used). The MARSS model allows for covariates in both 

the process and observation equation. Combinations of covariates may equally affect both the 

process and observation of the response. Similarly, the HMM model contains separate equations 

to estimate expected values in the two states of aggregation. Every combination of the 24 model 

versions in these two-part models was evaluated in the model selection process to produce a total 

of 576 model versions. The model version with the lowest AIC and complete convergence was 

chosen as the simulation model (Table 3.1). 

Table 3.1. Parameterized normal data simulation model (MARSS) and non-normal data 

simulation model (HMM), including selected environmental predictors and error distributions. 

Model Environmental Predictors  Error 
Distribution 

MARSS-P Process Eq: Day, Tidal Range, Day:Tidal Range 
Observation Eq: Fourier Series 

Normal 

HMM Low State: Day, Fourier Series, Tidal Range, Tidal Speed 
High State: Day, Fourier Series 

Gamma (log) 
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3.2.5     Change Scenarios 

 Change scenarios were developed based on the perceived effects of MRE development, 

but the scenarios are representative of change that may occur in monitoring data from any natural 

or anthropogenic disturbance. A literature review resulted in 5 change scenarios in monitoring 

data hypothesized from effects of primary MRE stressors on nekton indicators: a step shift in 

mean from device noise (e.g., Inger et al. 2009, Boehlert and Gill 2010), a change in variance 

resulting from a shift in data caused by dynamic device movement (e.g., Polagye 2011, Klure et 

al. 2012, McCann 2012), a linear or nonlinear gradual change in mean from the presence of a 

device acting as a Fish Aggregation Device (FAD) (e.g., Klure et al. 2012, Shields and Payne 

2014), and a step reduction in mean plus nonlinear change back to baseline conditions from a 

chemical spill (e.g., Polagye et al. 2011, Boehlert et al. 2013,  Fodrie et al. 2014) (Table 3.2). 

The specific forms of change hypothesized from effects of MRE stressors were structured using 

BACI and Intervention Analysis (Box and Tiao 1975) literature that indicate change may occur 

in the mean and/or variance of a metric, and may be a step-change, linear, or nonlinear (Box and 

Tiao 1975, Underwood 1994, and Scheiner and Gurevitch 2001). 
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Table 3.2. Change scenarios modeled in the “After” portion of “Before-After” simulated nekton density and aggregation index data. 

Change scenarios were developed from hypothesized effects of MRE development stressors on the fish receptor. The predicted effect 

on fish density and aggregation data, shape of change, the changed statistical property of the data, and change function are identified 

for each change scenario.  

Stressor Predicted Effect 
on Fish 

Shape of Change Changed 
Statistical 
Property 

Change Function 

Noise Decrease Step shift Mean −𝜇𝛿 
Device Operation 
Movement 

Variable increase 
and decrease 

Periodic shift Variance +/− 𝜇𝑋   
 

Device Presence 
(FAD) 

Increase 
 

Linear trend 
 

Mean 
�

2𝜇𝛿
𝑛 − 1

� 𝑡𝑖−1 

Device Presence 
(FAD) 

Increase Nonlinear trend Mean 
 

2𝜇𝛿
1 + 4450𝑒−0.05𝑡𝑖−1

 
Chemical Spill Decrease Step-change + nonlinear return to 

baseline (i.e., Abrupt trend) 
Mean �

1
1 + 4450𝑒−0.05𝑡𝑖−1

− 1�  2𝜇𝛿 

 
Notes: 𝜇 is the mean of simulated “before” data, 𝛿 is the amplitude of change in the mean, 𝑡 is time-point in the data series, 𝑋 is a 

proportional value of 𝜇.  The logistic function used to simulate nonlinear FAD and chemical spill scenarios was structured to have an 

inflection point at 50% of the total mean change at 𝑡 =168. To simulate the MRE device movement change, the tidal speed was found 

such that there was a 50:50 divide of data values corresponding to a speed less than or more than 1.07 m/s. The mean (𝜇) multiplied by 

an arbitrarily chosen proportion of the mean (𝑋) was added to the data values corresponding to a lower tidal speed, and subtracted 10 

from the data values corresponding to a higher tidal speed to produce a change in variance rather than mean. 
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Change Attributes- Amplitude and Lag of Change 

Attributes of change (i.e., shape, size, and lag) were varied in the change scenarios to 

evaluate the sensitivity of a model’s ability to measure change. Previous MRE environmental 

monitoring studies have simulated varying levels of data attributes (e.g., sample size, effect size, 

and study duration) to quantify the sensitivity in the power of a study design to detect change in 

data (e.g., Terrill et al. 2009,  Maclean et al. 2013, Vanermen et al. 2015). This approach was 

incorporated into the current study by altering the amplitude (i.e., size) of change within each of 

the 5 change scenarios, and including a lag in the onset of change in the FAD change scenarios. 

Current MRE monitoring guidelines do not specify sizes of change that are significant, 

because there are no vetted biological thresholds available. Consequently, a range of amplitudes 

was chosen that included: 10% of the mean, 25% of the mean, and a mean outside the 5-95th 

percentile (Munkittrick et al. 2009).  For the change in variance scenario, a change of 10%, 25% 

and 2 times the standard deviation were used.  

A time lag in the onset of change was incorporated into the evaluation, because it is 

critical to be able to detect change that may not be immediately apparent during post-

development MRE monitoring (McCann 2012). The potential for a lag in the onset of change is 

most probable in the FAD scenario, which may not cause an immediate change in fish presence 

post- MRE installation. The increasing presence of fish around a FAD is not predicted to be 

immediate as it may take several weeks for fish to appear around a FAD after placement 

(Matsumoto 1981, FAO 2016). New habitat and algae growth created by a FAD attract smaller 

fish which in turn attract predators (Barnabe and Barnabe-Quet 2000, Spellman 2015). A lag of 2 

weeks in the onset of change was applied to the Fish Aggregation Device change scenarios. To 
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explore sensitivity to a lagged change, scenarios were only simulated in the 10% and 95% 

percentile linear and nonlinear scenarios of change. 

Simulating Change Data 

 A function was added to simulated baseline data to create the desired shape and size of 

change in the “after” (i.e., post-installation) data (Table 3.2). Initially, baseline simulation 

models were used to generate the same baseline data in the “before” and “after” datasets. Change 

was then induced by adding an external function to the “after” dataset to simulate an appropriate 

size and shape of change in the baseline data (Table 3.2). Parameterized covariates and error 

distributions of each baseline simulation model were kept constant while only the added function 

produced the change in baseline conditions (e.g., Benedetti-Cecchi 2001, Mackenzie et al. 2013, 

Vanermen et al. 2015). Changes to the simulated baseline nekton density data were applied to the 

linear units of acoustic backscatter data and then the data was retransformed to logarithmic (dB) 

units.  “After” data was generated using a different random seed for error distribution than the 

“before” data to simulate natural variability between the two monitoring periods. Change in lag 

scenarios was simulated in the same manner, except that the change was only added to the 

second half of the “after” data.  “Before” and “after” simulated datasets each consisted of 336 

data points, matching the empirical baseline dataset. 

3.2.6     Candidate Models 

The same suite of candidate models used in the Chapter 2 baseline model evaluation study 

were evaluated on their ability to measure change in nekton density and aggregation index values 

using simulated Before-After datasets (Table 3.3). Since the primary goal of environmental 

monitoring is to track and measure change relative to baseline conditions (Shumchenia et al. 
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2012), it is important to use the same methods in baseline and operational monitoring to quantify 

change (McCann 2012). Evaluation of candidate model abilities to measure change will be used 

to construct a best practice approach for analyzing data for any and all stages of a monitoring 

project. All parameterized models from the baseline evaluation study (Tables 3.4 and 3.5) were 

evaluated on their ability to detect, quantify, and forecast change regardless of model caveats 

discovered in the previous study, to produce a complete understanding of model behavior.  

The MARSS-P candidate model is also used as the normal data baseline simulation 

model (cf., Chapter 2). Any bias in the MARSS evaluation was minimized by using AIC, 

because it is a different model selection metric than the metric used to parameterize the candidate 

models (cf., Chapter 2). An HMM model was not included as a candidate model in the current 

evaluation to reduce any bias produced from using a HMM as a simulation model. The HMM 

and MARSS models are both members of the state-space model class, and therefore the MARSS 

evaluation results indicate possible advantages or disadvantages of using a HMM for measuring 

change in MRE monitoring data. 
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Table 3.3. Description of evaluated candidate regression models including model class, linear or nonlinear form, parametric or 

nonparametric structure, error components (observation and/or process error) and distribution, and autocorrelation structure. 

Model Class Form Parametric/ 
Nonparametric 

Error 
Components 

Error 
Distribution 

Auto-
correlation 
Structure 

Linear  GR Linear Parametric Observation error Normal None 
Generalized least squares (GLS) GR Linear Parametric Observation error Normal Residual 

correlation 
Generalized linear model (GLM) GR Linear Parametric Observation error Gamma 

(identity) 
None 

Generalized linear mixed model 
(GLMM) 

GR Linear Parametric Observation error Gamma 
(identity) 

Residual 
correlation 

Generalized additive model (GAM) GR Nonlinear Semi-parametric Observation error Gamma 
(identity) 

None 

Generalized additive mixed model 
(GAMM) 

GR Nonlinear Semi-parametric Observation error Gamma 
(identity) 

Residual 
correlation 

Multivariate autoregressive state-space 
model (MARSS) 

Time 
series 

Linear Parametric Process and 
Observation error 

Normal AR-1 lagged 
variable 

Regression - autoregressive moving 
average model (Reg-ARMA) 

Time 
series 

Linear Parametric Observation error Normal ARMA error 

Regression - autoregressive moving 
average – generalized autoregressive 
conditional heteroscedasticity model 
(Reg-ARMA-GARCH) 

Time 
series 

Linear Parametric Observation error Skewed-
student-t 

ARMA error; 
GARCH residual 
variance 

Random forest (RF) NP Nonlinear Nonparametric N/A None Lagged variables 

Support vector regression (SVR) NP Nonlinear Nonparametric N/A None Lagged variables 
Note: The evaluated model classes are generalized regression (GR), time series, or nonparametric (NP) models.
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Table 3.4. Candidate models parameterized using the empirical baseline nekton density (Sv) data with selected environmental 

predictors and autocorrelation structure for each candidate model. All models assumed a normal distribution. 

Model Environmental Predictors Autocorrelation 
Structure (AR,MA) 

LM Day, Fourier Series, Tidal Range, Day: Tidal Range NA 
GLS Day, Fourier Series, Tidal Range, Day: Tidal Range (1,0) 
GAM Day, Fourier Series, Tidal Range†, Day:Tidal Range†  NA 
GAMM Day, Fourier Series, Tidal Range† (1,0) 
Reg-ARIMA Day, Fourier Series, Tidal Range, Day: Tidal Range (1,0) 
Reg-ARMA-GARCH Mean Eq: Day, Fourier Series, Tidal Range, Day: Tidal Range 

Variance Eq: Day, Fourier Series, Tidal Range,  
ARMA:(1,0) 

GARCH:(2,3) 
MARSS-M Process Eq: Tidal Range, Tidal Speed, Tidal Speed-Tidal Range 

Observation Eq: Day, Fourier Series, Tidal Speed 
(1,0) 

MARSS-P Process Eq: Day, Fourier Series, Tidal Range 
Observation Eq: Day, Tidal Range, Day-Tidal Range 

(1,0) 

RF All Environmental Predictors (14,0) 
SVM-L Fourier Series (13,0) 
SVM-RBF Day, Fourier Series, Tidal Range, Tidal Speed (1,0) 
Note: The evaluation includes a MARSS model with fixed low observation error (MARSS-P) and fixed low process error (MARSS-
M). A SVR model with a linear kernel (SVR-L) and a nonlinear Radial Basis Function kernel (SVR-RBF) were evaluated. The 
number of autoregressive (AR) and moving-average (MA) variables in model autocorrelation structures is shown in parenthesis as 
(AR, MA). The specified (AR, MA) structure of the nonparametric models indicates the number of lagged dependent variables 
included in the parameterized models. Environmental predictors are listed in alphabetical order of main effects followed by 10 
interactions. The Tidal Range† predictor is parametric in the GAM(M)s. 
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Table 3.5.Baseline candidate models parameterized using the empirical nekton aggregation (AI) data with selected environmental 

predictors, autocorrelation structure, and error distribution for each candidate model. 

Model Environmental Predictors Autocorrelation 
Structure (AR,MA) 

Error Distribution 

LM Fourier Series NA Normal 
GLS Fourier Series (1,0) Normal 
GLM Day, Fourier Series NA Gamma (identity) 
GLM Day, Tidal Range (1,0) Gamma (identity) 
GAM Fourier Series, Tidal Speed NA Gamma (identity) 
GAMM Fourier Series (2,0) Gamma (identity) 
Reg-ARIMA Fourier Series (1,2) Normal 
Reg-ARMA-GARCH Mean Eq: Day, Fourier Series, Tidal Range  

Variance Eq: Fourier Series 
ARMA: 

(1,0) 
GARCH: 

(2,0) 

Skewed-student-t 

MARSS-M Process Eq: Day  
Observation Eq: Day, Fourier Series 

(1,0) Normal 

MARSS-P Observation Eq: Fourier Series (1,0) Normal 
RF Fourier Series, Tidal Speed (2,0) NA 
SVM-L Day, Fourier Series, Tidal Range, Day: Tidal 

Range, Tidal Range: Fourier Series 
(1,0) NA 

SVM-RBF Day, Fourier Series, Tidal Speed, Day: Tidal 
Speed, Tidal Speed: Fourier Series 

(13,0)  
 

NA 
Note: The evaluation includes a MARSS model with fixed low observation error (MARSS-P) and fixed low process error (MARSS-
M). A SVR model with a linear kernel (SVR-L) and a nonlinear Radial Basis Function kernel (SVR-RBF) were evaluated. The 
number of autoregressive (AR) and moving-average (MA) variables in model autocorrelation structures is shown in parenthesis as 
(AR, MA). The specified (AR, MA) structure of the nonparametric models indicates the number of lagged dependent variables 
included in the parameterized models. The environmental predictors are listed in alphabetical order of main effects followed by 
interactions.  
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3.2.7     Quantifying Model Ability to Measure Change 

Intervention Analysis is a standard method used to detect change post-intervention in time 

series data with known serial correlation (Stewart-Oaten and Bence 2001, Gilmour et al. 2006). 

The approach used in Intervention Analysis (IA) was used to structure each model to measure 

change in baseline conditions.  In the original IA literature an ARIMA model is fit to baseline 

data, and then that same ARIMA model is fit to the entire dataset (pre- and post- intervention) 

with the addition of an indicator, or intervention function to model change in baseline conditions 

post-intervention (Biglan et al. 2000, Lagarde 2011).  In the current study, an intervention 

function was added to the parameterized candidate models from Chapter 2 to measure change in 

the simulated Before-After datasets.  

Intervention Model Specification 

Candidate models were structured to model change using two intervention-functions: step 

and ramp (Lewis-Beck et al. 2004, Cryer and Chan 2008).  The step function is an indicator 

variable consisting of 0’s before an intervention and 1’s after the intervention. The step function 

was added to all models to measure a step change in mean or variance (i.e., Step and Periodic 

change scenarios) in the simulated post-installation MRE monitoring data. A ramp function 

consists of 0’s pre-installation, and values equivalent to an indexed data count of time post-

installation of MRE devices: 𝑡 − 𝑛𝑏𝑒𝑓𝑜𝑟𝑒; where n is equal to the number of data points before 

the MRE development. This intervention-function models a linear change in slope. A step-plus-

ramp function was added to all models to measure linear, nonlinear, or abrupt change in the 

simulated post-installation MRE monitoring data. Given that the exact shape of the change 

would not be known a priori, it is most realistic to use the basic step and ramp intervention 



71 
 

functions to model change. The two specified intervention functions were added to each baseline 

parameterized candidate model to measure change:  

𝑦 = 𝑎 + 𝐵𝑋 + 𝑏2𝐼2 + 𝑏3𝐼3                                            (3.2) 

where 𝐵𝑋 is a matrix of all parameterized covariates used in the baseline model, 𝑎 is an 

intercept, 𝐼2 is a step function (an indicator variable equal to 0 before the MRE development, 1 

after), and 𝐼3 is a ramp function (an indicator variable equal to 0 before the MRE development, 

and an indexed data count 𝑡 − 𝑛𝑏𝑒𝑓𝑜𝑟𝑒 after the intervention). The ramp function was only 

included in scenarios with a change in trend (i.e., FAD and chemical spill). The ramp function 

was structured as a smoother spline within the GAM(M)s. 

 The MARSS models required additional specification of the intervention variables within 

the process and observation equations. The step intervention was only included in the 

observation equation of the MARSS models to align with the structure of the observation-only 

candidate models. The ramp intervention was included in the MARSS models by altering the 

trend parameter ( 𝑢) in the process equation. The 𝑢 parameter was estimated before and after the 

intervention in the simulated monitoring data to allow for a change in the trend parameter.  

3.2.8     Quasi-Power Analysis 

 A quasi-power analysis was used to evaluate model ability to detect change.  Statistical 

power is defined as the probability of rejecting the null hypothesis when it is false. Power can be 

interpreted as the ability to accurately detect a difference between the null and alternative 

hypotheses (i.e., change in the data). Therefore, the idea of statistical power is vital to planning 

and interpreting environmental assessment studies (Osenberg et al. 1994). Power analysis can be 
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used to compare the probability of different models to detect change. Mackenzie et al. (2013) 

suggested the use of a power analysis to quantify the ability of statistical models to detect change 

in MRE monitoring data.  

A 10-fold cross-validation (10-fold CV) model selection was used to conduct the power 

analysis. This method is equally applicable across all candidate models, and was used for model 

selection in Chapter 2. Model detection of change is commonly identified by using the statistical 

significance or confidence intervals of indicator variable(s) in the model (Schmitt and Osenberg 

1996, Morrison 2007), but these methods were not used because the estimate of statistically 

significant change may be biased in models that do not account for autocorrelation (Schmitt and 

Osenberg 1996, Stewart-Oaten and Bence 2001), and evaluated nonparametric models do not 

include interpretable finite dimensional parameter estimates and confidence intervals equivalent 

to parametric models. In 10-fold cross-validation 10 equally sized random subsets of the data are 

used repeatedly such that 9 subsets compose a “training-set” and a single subset is the “test-set” 

to produce a total of 10 training and test datasets. The predicted values from the model applied to 

the test-set are used to calculate Root-Mean-Squared-Error (RMSE). RMSE is a measure of 

model accuracy based on the average deviance of predicted from observed values:   

RMSE =�1
𝑛
∑ (𝑦𝑖 − 𝑦�𝑖)2𝑛
𝑖=1                                                            (3.3) 

where 𝑦𝑖 is the observed 𝑖𝑡ℎ value, 𝑦�𝑖 is the model predicted value, and 𝑛 is the sample size.  

A RMSE value closer to 0 indicates a more accurate interpolation of the data.  The 10-fold CV 

model selection was applied to each candidate model with and without the indicator variable(s). 

If the IA version of a model produced a lower average RMSE than the baseline version of that 

model, then the inclusion of indicator variable(s) produced a more accurate interpolation of the 
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data. The form of the candidate model that accounted for change in post-installation monitoring 

data was selected as the more accurate model of the data.  The selection of the IA form of a 

candidate model was defined as the model “detecting” change.  

 The 10-fold CV model selection process was applied to 1000 simulated Before-After 

datasets for every change scenario, and the proportion of the 1000 simulated datasets that each 

candidate model detected change was used to quantify the power of each model. The use of 1000 

simulated datasets is validated by previous MRE environmental monitoring studies that used 

1000 simulations or less to quantify study design statistical power (Benedetti-Cecchi 2001, 

Maclean 2013, Mackenzie et al. 2013, Vanermen et al. 2015). To ensure datasets were not 

identical, different random error seeds were used to create each dataset’s error distribution. 

3.2.9     Model Fit and Forecast Accuracy Metrics 

 Root-Mean-Squared Error (RMSE) and Mean-Absolute-Scaled Error (MASE) (Chai and 

Draxler 2014) were used to evaluate model ability to quantify and forecast change. The RMSE 

metric was used to quantify model fit to the Before-After monitoring data. The RMSE fit metric 

was calculated using the first 90% of the data. The remaining 10% of the data (72 data points) 

was used to estimate forecasting ability. Both RMSE and MASE were used to quantify model 

forecasting ability. The MASE metric is the average absolute difference between observed and 

model forecasted value at each time point scaled by the in-sample naïve forecast, which uses the 

observed value from point 𝑡 − 1 as the forecast of point 𝑡 (Hyndman and Koehler 2006): 

MASE = ∑ |𝑦𝑖−𝑦�𝑖|𝑛
𝑖=1

1
𝑛−1

∑ |𝑦𝑖−𝑦𝑖−1|𝑛
𝑖=2

                                                             (3.4) 

where 𝑦𝑖 is the observed 𝑖𝑡ℎ value, 𝑦�𝑖 is the model predicted value, and 𝑛 is the total sample size.  
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A MASE value <1 indicates a better average performance than the naïve in-sample forecast. The 

MASE metric tends to be less sensitive to outliers compared to RMSE (Ward et al. 2014). Using 

both metrics provides a more representative description of model performance (Chai and Draxler 

2014). RMSE and MASE evaluation metrics were averaged from 30 simulated datasets of every 

change scenario, each using a different random error seed, to ensure robust evaluation metrics.  

3.2.10     Ranking Methods 

To identify models that most accurately quantify and forecast change, the models were 

ranked from most to least accurate using average fit and forecast metrics for each scenario. 

Power estimates were not explicitly ranked due to the patterns of similarity among models and 

across change scenarios.  It may be misleading to suggest one model outperformed another based 

on rank position if their average performances are similar. Traditional statistical testing used to 

quantify performance similarity is not appropriate for this simulation study because p-values are 

affected by the number of simulations run (White et al. 2014). After an initial ranking, the 

Empirical Cumulative Distribution Function (ECDF) and associated Kolmogrov-Smirnov D-

statistic of the 30 metric values produced for each scenario were used to group models that had 

similar accuracy. ECDF plots and D-statistics are common nonparametric tools used to assess the 

similarity of two probability distributions (Bennett et al. 2013).  

D-statistic values equaled the maximum distance between each model’s individual 

Empirical Cumulative Distribution Function (ECDF) and the cumulative ECDF of all other 

models. To illustrate by example, if the D-statistic of a model is +0.5 or -0.5, then the maximum 

distance between the ECDF of the given model and all other models is 50%, and the given model 

either has a greater (+) or lesser (-) cumulative probability of producing the estimated RMSE or 
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MASE value at the point of observed maximum distance. In the context of this study, a more 

positive D-statistic generally indicates a more accurate fit or forecast of a model relative to all 

other candidate models. D-statistic values were first inspected to identify similar performing 

models, and then followed by a visual inspection of ECDF plots to ensure robust and accurate 

grouping of similarly performing models. If the plot of a model’s ECDF displayed greater or less 

probability of estimating a specified RMSE or MASE value than other models for >50% of 30 

metric samples, then the model was ranked separately. After similarly performing models were 

grouped, all candidate models were re-ranked. Models were re-ranked using a dense ranking 

method (cf., Kellenberger and Groom 2015), which is defined as ranking grouped models 

equally using the value of the originally minimum ranked model in the group, and ranking the 

next models using the immediately following ranking number. The dense ranking method 

provides the most transparent quantitative values of relative accuracy of model fit and forecast of 

change in monitoring data.  

3.3 Results 

 To standardize use of labels and to avoid ambiguity in subsequent text sections several 

terms are explicitly defined and used to group result patterns. The Linear, Nonlinear, and Abrupt 

change scenarios are referred to as “trended” change scenarios. The 95% amplitude of change is 

used to refer to both the 95% mean-change in all Step and trended scenarios, as well as the 2x 

standard deviation change (i.e., largest amplitude of variance-change) in all Periodic scenarios. A 

summary of the results is provided at the end of the Results section (Table 3.6). The ranked fit 

and forecast model results, and associated average evaluation metrics and D-statistic values, for 

all change scenarios of the normal and non-normal data are provided in Appendix A and B. 
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3.3.1     Power 

Mean-Change 

Normal Data (Sv)  

Overall, all models reached ~100% power at the 95% amplitude of change for all mean-

change scenarios in the normally distributed monitoring data. 

Non-Lagged Dependent Variable (Non-LDV) Models  

Models that did not include lagged dependent variables as mean predictors (i.e., Linear 

regression, GLS, ARIMA, GARCH, and GAM(M)) all produced a similar range of power values 

for all scenarios of change. All Non-LDV models had zero power for the Step no-change 

scenario, and low power for trended no-change scenarios (11.8% - 14.6%). The GAMM 

displayed the largest difference in results relative to all other Non-LDV models at the 10% 

amplitude of all mean-change scenarios (Fig. 3.1). This pattern continued for these scenarios in 

the 25% amplitude of change, but the difference in power was smaller. All of these models 

reached >96% power by the 25% amplitude of change for all mean change scenarios. 

Lagged Dependent Variable (LDV) Models 

Overall, models with lagged dependent variables (i.e., MARSS-M, MARSS-P, RF, SVM-

L, and SVM-RBF) exhibited lower power than non-LDV models for the 10-25% mean-change 

scenarios (Fig. 3.1). The RF model had the greatest power of all LDV models. RF also had the 

greatest power of all candidate models in the 10% trended (≥ 70%) and no-change (63.6% for 

trended no-change and 52.7% for the Step no-change) scenarios. SVM-RBF and SVM-L had 

distinctly different power in the 10-25% scenarios of change, in which SVM-RBF had the lowest 
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power of all candidate models, and SVM-L had relatively high power compared to all other LDV 

models (Fig. 3.1). MARSS-P consistently had lower power in the 10% amplitude mean-change 

scenarios, but had higher power than MARSS-M in the 25% amplitude of mean-change 

scenarios. The LDV models generally all detected change in the Step no-change scenario, and 

displayed greater power in the trended no-change scenarios compared to the non-LDV models. 

MARSS-P has zero power for all no-change scenarios.  
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Figure 3.1. Power of candidate models to detect change in simulated normally distributed Before-After MRE monitoring data. Power 

is calculated across varying forms: Step, Linear, Nonlinear, Abrupt, and Periodic; and amplitudes 0%, 10%, 25%, 95%. Models that 

included lagged dependent variables (i.e., LDV models) are shown in grey, and the models without lagged dependent variables (i.e., 

non-LDV models) are shown in black. 
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Non-Normal Data (AI) 

Overall, model power was higher for detecting change in non-normal data relative to 

normal data. Non-LDV, MARSS-P, and SVM-L models generally reached ~100% power at the 

25% amplitude of change for all mean-change scenarios. The models did not display consistent 

patterns in power to detect change in non-normal data compared to patterns observed in normal 

data.  

Non-LDV Models 

All non-LDV models displayed ~100% power for all 25-95% mean-change scenarios, 

and had ~0% power in the Step no-change scenario, except for the reg-ARMA-GARCH model. 

The varying power results in the 0% and 10% scenarios of change were primarily influenced by 

the inclusion of the day predictor variable. The GLM(M)s, which included day as a covariate, 

had lower power in the 0% and 10% trended change scenarios, and greater power in the 10% 

Step change scenario relative to the other non-LDV models (Fig. 3.2). The GLM(M)s had ~2% 

power in the trended no-change scenarios, whereas the power of the other non-LDV models 

ranged from 13.7%  (GAMM) to 40.9% (GAM and reg-ARMA-GARCH model). The linear 

regression, GLS, and reg-ARMA models displayed consistently similar power for all no-change 

scenarios. This group of models and the GAM(M)s all had similar power for all trended change 

scenarios (Fig. 3.2). The reg-ARMA-GARCH power results were not consistent with the other 

non-LDV models (Fig. 3.2). Similar to the GLM(M)s, the reg-ARMA-GARCH included the day 

covariate in both its mean and variance equation, but unlike the GLM(M)s reg-ARMA-GARCH 

and high power in the trended no-change scenarios (40.9%), and also had high power in the Step 
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no-change scenario (49.1%). The reg-ARMA-GARCH model power did not reach 100% for the 

Step 25-95% scenarios or Abrupt 25% scenario. 

LDV Models 

 LDV models exhibited a wider range of power to detect change in non-normal data 

relative to the change observed in the normal data. SVM-L generally displayed ~100% power for 

all mean-change scenarios, whereas SVM-RBF had almost no power for all mean-change 

scenarios. The greatest SVM-RBF power was 33% in the Linear 95% scenario followed by 19% 

power in the Step 95% scenario (Fig. 3.2). RF also had little power for all mean-change 

scenarios, but had higher power in the Linear and Nonlinear 95% scenarios (94.6% and 96.7%) 

(Fig. 3.2). The MARSS models had similar power as all non-LDV models in the 25-95% 

amplitudes of mean-change, and power similar to the non-LDV models with the lowest power in 

the 10% mean-change scenarios. The MARSS-P model had ~100% power in all 25% scenarios, 

whereas MARSS-M did not reach 100% for any mean-change scenario until 95% amplitude of 

change. 
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Figure 3.2. Power of candidate models to detect change in simulated non-normally distributed Before-After MRE monitoring data. 

Power is calculated across varying forms: Step, Linear, Nonlinear, Abrupt, and Periodic; and amplitudes 0%, 10%, 25%, 95%. Models 

that included lagged dependent variables (i.e., LDV models) are shown in grey, and the models without lagged dependent variables 

(i.e., non-LDV models) are shown in black. 
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Variance-Change  

Normal Data (Sv) 

The Periodic no-change power results are identical to Step no-change scenario results, 

with the exception of reg-ARMA-GARCH, which had 49.9% power in the Periodic scenario. RF 

had the greatest power for all Periodic scenarios, followed by SVM-RBF, and reg-ARMA-

GARCH. All other models exhibited less than 25% power for all Periodic scenarios. As the 

amplitude of change increased in the Periodic scenario, the only consistent power increase 

occurred in the RF and SVM-RBF models; their power reached 100% by the 95% amplitude of 

change.  

Non-Normal Data (AI) 

Patterns in model power to detect change in variance within non-normal data are very 

similar to normal data. The main difference is that the SVM-RBF model displayed higher power 

for the Periodic 10-25% scenarios than RF. Both models reached 100% power by the 95% 

amplitude of change.  

Lagged Change Scenarios 

 Ability to detect change was not affected by the introduction of a lag in the onset of 

change. In general, all candidate models had lower power in the 10% lagged scenarios of change, 

and consistent or only slightly lower power in the 95% lagged scenarios of change. The relative 

pattern in the power results among models was consistent with scenarios that did not include a 

lag in the onset of change. 
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3.3.2     Fit 

Normal Data (Sv) 

 Model fit performance was consistent across all scenarios and amplitudes of change.  

Top Performers  

 Across all scenarios MARSS-P, followed by SVM-RBF, had the most accurate fit to 

change scenarios based on RMSE (Fig. 3.3). MARSS-M displayed the 3rd best model fit 

performance for all mean-change scenarios (Fig. 3.3). The other time series models, reg-ARMA 

and reg-ARMA-GARCH, were grouped together as the 4th most accurate models for all mean-

change scenarios (Fig. 3.3).  

Weak Performers 

 Overall, the GAMM was least able to accurately fit mean-change scenarios (Fig. 3.3). 

RF was generally the second weakest performer for all mean-change scenarios (Fig. 3.3). The 

linear regression, GLS, and GAM all performed similarly to RF. GAM generally ranked one 

position higher in performance than the linear regression and GLS models, but had a relatively 

similar performance as indicated by its D-statistic values (Fig. 3.3). 
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Fig 3.3. Kolmogorov-Smirnov D statistic values of model fit for all change scenarios in normally 

distributed data. The D statistic was calculated from the Empirical Cumulative Distribution 

Function (ECDF) of the root-mean-squared-error (RMSE) values of model fit across all 

amplitudes of: step mean-change (a), trended mean-change (b), and variance-change (c).  

Exceptions to General Fit Performance Patterns 

 Exceptions to observed performance patterns illustrate the relative improvement of 

GAM(M)s in nonlinear trend scenarios, and the RF regression in the variance-change scenarios. 

In the Nonlinear 95% scenario GAM ranked 5th in fit, outperforming the generally 5th ranked 

model, SVM-L (Table 3.A.1). In the Abrupt 95% scenario, the GAM and GAMM ranked 5th and 

6th, outperforming all other candidate models generally considered weak performers (Table 

3.A.1). The linear regression and GLS models were grouped as the worst trend fit models for the 

Nonlinear and Abrupt 95% scenarios rather than GAMM. In the variance-change scenarios RF 

outperformed all other “weak performers”, and was ranked 3rd in fit accuracy in the 95% 

scenario (Table 3.A.1). 
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Lagged Change Scenario Highlights 

 The lagged scenario results were generally consistent with fit performance results from 

the corresponding non-lagged scenarios. Both 95% lagged scenarios displayed the same relative 

rank of model fit performance as shown in the non-lagged Nonlinear 95% scenario, with the 

exception that the GAM model did not outperform SVM-L (Table 3.A.2). 

Non-Normal Data (AI)   

 There appeared to be a generally consistent pattern of model fit performance across all 

change scenarios in non-normal data.  

Top Performers 

 Similar to the normal data results, the top 3 ranked fit models were generally MARSS-

P, SVM-RBF, and MARSS-M (Fig. 3.4). There was less of a difference between the fit 

performance of these top models and all other candidate models relative to the normal data 

results. The MARSS-P and SVM-RBF D-statistics are > 0.5 for all scenarios, compared to >0.75 

for the normal data (Table 3.B.1). The MARSS-M D-statistic is <0.25 for all scenarios, 

compared to ~0.5 for the normal data (Table 3.B.1). RF was the 3rd most accurate model for 

fitting all variance-change scenarios (Fig. 3.4).  

Weak Performers 

 SVM-L, RF, and reg-ARMA-GARCH were generally the worst fit models for the 

mean-change scenarios (Fig. 3.4). These models were ranked as the bottom 3 worst fit models 

for all mean-change scenarios except Nonlinear 95%. SVM-L was the least accurate fit model 

for all 10-25% mean-change scenarios. The SVM-L and reg-ARMA-GARCH models also 
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generally ranked among the bottom 3 worst fit models for the variance-change scenarios; 

although their fit performances were relatively similar to the majority of other candidate models 

(Fig. 3.4).  

 

Fig 3.4. Kolmogorov-Smirnov D statistic values of model fit for all change scenarios in non-

normally distributed data. The D statistic was calculated from the Empirical Cumulative 

Distribution Function (ECDF) of the root-mean-squared-error (RMSE) values of model fit across 

all amplitudes of: step mean-change (a), trended mean-change (b), and variance-change (c).  

Exceptions to General Fit Performance Patterns 

 The majority of candidate models performed similarly in all change scenarios except 

in the Nonlinear 95% scenario (Table 3.B.1). Following the general top 3 performers, the 

GAM(M)s were the best performers, ranking 4th and 5th in fit accuracy. Linear regression and 

GLS were grouped with reg-ARMA for all other mean-change scenarios, with the exception of 
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reg-ARMA followed by RF, out-ranked these models in the Nonlinear 95% scenario. Reg-

ARMA-GARCH, GLMM, and GLM were ranked as the 3 worst fit models for this scenario. 

Lagged Change Scenario Highlights 

 The lagged scenario results were generally consistent with fit performance results from 

the corresponding non-lagged scenarios. Both 95% lagged scenarios displayed the same relative 

rank of model fit performance as shown in the non-lagged Nonlinear 95% scenario. In one 

exception, the GLM(M)s out-performed the SVM-L and reg-ARMA-GARCH models, which 

were the worst performing models for both lagged 95% scenarios (Table 3.B.2). 

3.3.3     Forecast 

Normal Data (Sv) 

 MASE and RMSE forecast results displayed the same general trends for the normal data 

and are grouped unless results differed. As the amplitude of change increased the range in model 

forecasting performance became wider. Differences in performance between ranked models were 

greatest at the 95% amplitude of change. The relative performance of candidate models was most 

consistent in the Step scenarios. 

Optimal Performers 

 The SVM-L model was generally the most accurate forecast model for all mean-change 

scenarios (Fig. 3.5). RF was the best forecast model for all variance-change scenarios and the 

Abrupt 95% mean-change scenario. RF was the second best forecast model for almost all other 

mean-change scenarios. SVM-RBF out-ranked SVM-L in the Periodic 95% scenario as the 2nd 

best forecast model.  
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Weak Performers 

 SVM-RBF and GAMM were the worst forecasting models (Fig. 3.5). Although, SVM-

RBF performed well in variance-change scenarios (Fig. 3.5). GAM generally had poor forecast 

accuracy relative to the majority of models, but had a better performance than the GAMM (Fig. 

3.5). The MARSS-P and MARSS-M model generally had poor forecast accuracy in the 95% 

trended mean-change scenarios (Table 3.A.3-4). These models, along with SVM-RBF, were 

ranked as the 3 worst forecast models for the Linear and Nonlinear 95% scenario (Table 3.A.3-

4). In both cases, MARSS-P had less accurate forecasts than MARSS-M. MARSS-P was the 

worst forecasting model for the Abrupt 95% scenario, whereas MARSS-M was ranked 4th for 

this scenario (Table 3.A.3-4).  

 

Fig 3.5. Kolmogorov-Smirnov D statistics of model forecast for all change scenarios in normally 

distributed data. The D statistic was calculated from the Empirical Cumulative Distribution 

Function (ECDF) of the mean-absolute-scaled-error (MASE) values of model forecast across all 

amplitudes of: step mean-change (a), trended mean-change (b), and variance-change (c), and the 
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root-mean-squared-error (RMSE) values of model forecast across all amplitudes of: step mean-

change (d), trended mean-change (e), and variance-change (f). 

Exceptions to General Fit Performance Patterns 

 The only scenario in which SVM-L and RF were not the top two performers was the 

Linear 95% scenario, in which the linear regression, GLS, reg-ARMA, and reg-ARMA-GARCH 

were all grouped as the top performing forecast models (Table 3.A.3-4). The relative 

performance of the GAM(M)s improved in this scenario. GAM and GAMM were ranked 3rd and 

5th best forecasting models (Table 3.A.3-4). The GAM(M)s demonstrated a wide ECDF of both 

RMSE and MASE values in the Abrupt 95% and Nonlinear 95% change scenarios, spanning 

almost the entire range of metric values from the other candidate models (Fig. 3.6). This wide 

distribution pattern indicates the presence of outliers in model predictions.  

 

Fig. 3.6. Empirical cumulative probability of the mean-absolute-scaled-error (MASE) values of 

model forecasts, with the GAM(M) forecasts highlighted for the Abrupt (a) and Nonlinear (b) 

95% change scenarios in normally distributed data. MASE plots are representative of the pattern 
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also displayed in the corresponding root-mean-squared-error (RMSE) cumulative probability 

plots (not shown).  

Lagged Change Scenario Highlights 

 Results from the lagged change scenarios were similar to those from non-lagged 

scenarios. The main contrast was between the top forecast performers for the 95% change 

scenarios. Unlike the 95% non-lagged scenarios, GAM was the top forecast model for the 95% 

lagged scenarios (Fig. 3.7). GAMM was also a top forecast model along with SVM-L and RF 

(Fig. 3.7). GAMM and SVM-L were the 2nd and 3rd most accurate forecast models for the Linear 

95% scenario, depending on the use of the RMSE or MASE metric, with RF being the 4th best 

forecaster (Fig. 3.7). The GAMM performance worsened in the Nonlinear 95% scenario, with a 

ranking that dropped to 4th best forecast model. The poor performance of MARSS-M, MARSS-

P, and SVM-RBF in the 95% non-lagged scenarios was generally consistent in the corresponding 

lagged scenarios (Fig. 3.7). In the Nonlinear 95% scenario MARSS-M was the 5thranked model, 

out-ranking the grouped Linear regression, GLS, reg-ARMA-GARCH, and reg-ARMA models.  
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Fig. 3.7. Kolmogorov-Smirnov D statistic values of model forecast for the Linear (a) and 

Nonlinear (b) 95% change scenarios in normally distributed data. The D statistic was calculated 

from the Empirical Cumulative Distribution Function (ECDF) of the mean-absolute-scaled-error 

(MASE) values of model forecast in both the non-lagged scenarios (solid circles) and 

corresponding lagged scenarios (open circles). MASE plots are representative of the similar 

pattern displayed in the corresponding root-mean-squared-error (RMSE) cumulative probability 

plots (not shown). 

Non-normal data (AI) 

Interpretation of the non-normal data forecast results differed depending on use of the 

RMSE or MASE metric. Similar to the normal data results, increased range of relative model 

performance as the amplitude of change increased was apparent in non-normal data results. 

MASE 

Optimal Performers 

 SVM-L was generally the most accurate forecast model among all mean-change 

scenarios, followed by reg-ARMA-GARCH (Fig. 3.8). RF, GAM, SVM-L, and SVM-RBF were 

the most accurate forecast models in all Periodic scenarios (Fig. 3.8). SVM-L was ranked above 

SVM-RBF until the 95% scenario, where SVM-RBF out-ranked SVM-L (Table 3.B.3). SVM-

RBF and MARSS-P ranked among the top 4 forecast models in the 10-25% amplitudes of 

trended mean-change scenarios (Table 3.B.3). The GLM(M)s generally performed similarly and 

had better forecast accuracy than the other parametric/semi-parametric regression models for all 

trended mean-change scenarios (Fig. 3.8). 

Weak Performers 
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 In general the GAM was a poor forecast model for the trended mean-change scenarios 

(Fig. 3.8). RF was also generally poor at forecasting the trended mean-change scenarios at the 

10-25% amplitudes (Fig. 3.8). The GAMM generally had similar or better forecast accuracy than 

all other candidate models in its class, but it was ranked among the 3 worst forecast models for 

Abrupt and Nonlinear 25-95% scenarios (Table 3.B.3). Similar to the normal data results, 

MARSS-P was a poor forecast model for 95% trended mean-change scenarios. MARSS-P was 

the worst forecast model for the Linear and Nonlinear 95% scenarios (Table 3.B.3). MARSS-M 

and SVM-RBF were respectively the 3rd and 2nd worst forecast models for the Linear 95% 

scenario (Table 3.B.3). MARSS-M was the worst forecast model for all Step scenarios (Fig. 3.8). 

The GLM(M)s were also weak performers for all Step scenarios, along with SVM-RBF and RF 

in the 25-95% scenario (Fig. 3.8). 

 

Fig. 3.8. Kolmogorov-Smirnov D statistic values of model forecast for all change scenarios in 

non-normally distributed data. The D statistic was calculated from the Empirical Cumulative 

Distribution Function (ECDF) of the mean-absolute-scaled-error (MASE) values of model 
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forecast across all amplitudes of: step mean-change (a), trended mean-change (b), and variance-

change (c), and the root-mean-squared-error (RMSE) values of model forecast across all 

amplitudes of: step mean-change (d), trended mean-change (e), and variance-change (f). 

Exceptions to General Fit Performance Patterns 

 Top performing forecast models in the Nonlinear and Abrupt 95% scenarios were 

inconsistent with the general pattern of top performing models in all other change scenarios. 

GLM, RF, and GLMM were the top 3 forecast models for the Nonlinear 95% scenario (Table 

3.B.3). Reg-ARMA was grouped in ranked performance with the linear regression and GLS 

model for all scenarios. In the Nonlinear 95% scenario it was ranked as a more accurate forecast 

model (Table 3.B.3). The majority of candidate models performed similarly in the Abrupt 95% 

scenario, but SVM-RBF, GLM(M), and MARSS-M all performed slightly better than reg-

ARMA-GARCH, resulting in a grouping as the 2nd and 3rd most accurate forecast models (Table 

3.B.3).  

RMSE 

 The model forecast performance based on the RMSE metric was similar for all models. 

An inspection of the D-statistic values and corresponding ECDFs of the forecasting performance 

showed that differences among models were only distinct in the Periodic and the 95% trended 

mean-change scenarios. 

Optimal Performers 

 Optimal performers for forecasting the Periodic scenario based on the RMSE metric were 

the same as those based on the MASE metric results (Fig. 3.8). Overall, there were no distinct 

optimal performers for the mean-change scenarios.  
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Weak Performers 

 The poorest forecast performances occurred in the 95% trended mean-change scenarios. 

Weak performers in these scenarios matched those based on the MASE metric results. The only 

exception occurred in the Abrupt 25-95% scenarios, in which MARSS-P was the worst forecast 

model based on the RMSE metric (Table 3.B.4). The SVM-L and GARCH were the two worst 

forecasting models for all Step scenarios (Fig. 3.8). In the remaining change scenarios there were 

generally no specific weak performers among candidate models. 

Exceptions in General Fit Performance Patterns 

 Although there was generally no single best forecast model for the mean-change 

scenarios based on the RMSE metric, there were a few exceptions. RF and SVM-RBF were the 

most accurate models for the Step 10-25% scenarios (Table 3.B.4). RF, SVM-L, and MARSS-M 

were the top 3 forecast models for the Nonlinear 95% scenario (Table 3.B.4). All 

parametric/semi-parametric regression models and reg-ARMA model were grouped as the most 

accurate forecast models for the Linear 95% scenario. 

Lag Scenario Highlights 

MASE and RMSE forecast results displayed the same general trends for the lagged 

change scenarios and the lag scenario highlights apply to both MASE and RMSE results. Results 

from the 10% lagged change scenarios were similar to those from 10% non-lagged scenarios. 

The main contrast was in the 95% lagged change scenarios. Top performers in the 95% lagged 

scenarios differed from those in the 95% non-lagged scenarios. GAMM, GAM, RF, and reg-

ARMA were the top 4 ranked forecast performers for the Linear and Nonlinear 95% lagged 
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scenarios (Fig. 3.9). Unlike the non-lagged 95% scenarios, GLM(M), reg-ARMA-GARCH, and 

SVM-L models were all poor forecast models in the lagged 95% scenarios (Fig. 3.9).  

 

Fig. 3.9. Kolmogorov-Smirnov D statistic values of model forecast for the Linear (a) and 

Nonlinear (b) 95% change scenarios in non-normally distributed data. The D statistic was 

calculated from the Empirical Cumulative Distribution Function (ECDF) of the mean-absolute-

scaled-error (MASE) values of model forecast in both the non-lagged scenarios (solid circles) 

and corresponding lagged scenarios (open circles). MASE plots are representative of the similar 

pattern displayed in the corresponding root-mean-squared-error (RMSE) cumulative probability 

plots (not shown).
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Table 3.6. Summary of model evaluation results. Results are listed based on monitoring objective (i.e., detect, fit, or forecast change) 
and data (i.e., normal or non-normal data).  
Monitoring 
objective 

Data 
type 

Top 
performing 
model(s) 

Weak 
performing 
model(s) 

Exceptions Lagged change 
highlights 

Notes 

Detect 
change 

Normal Non-LDV, 
SVM-L 

LDV • RF, SVM-RBF are best in 
variance-change scenarios 

None • Results dependent on 
baseline covariates 

 Non-
normal 

Non-LDV LDV • SVM-RBF, RF are best in 
variance-change scenarios 

None • Results dependent on 
baseline covariates 

Fit change Normal MARSS-P, 
SVM-RBF, 
MARSS-M 

GAMM 
 

• RF 3rd best for 95% 
variance-change 

• GAM(M)s relatively 
improve in Nonlinear and 
Abrupt 95% change 

None • ARMA, GARCH 
grouped as 4th top 
performing models 

 Non-
normal 

MARSS-P, 
SVM-RBF, 
MARSS-M 

SVM-L, 
GARCH, RF 

• RF 3rd top performer for all 
variance-change scenarios 

None • Model results similar 
except for Nonlinear 
95% change 

Forecast 
change 

Normal SVM-L, RF SVM-RBF, 
GAMM 

• GAMM improves in relative 
performance in Linear and 
Nonlinear 95% scenarios 

• MARSS models poor 
performers in 95% trended 
mean-change scenarios 

• GAM(M)s top 
performers for 95% 
lagged change 

• RF best for all 
variance-change  

 

 Non-
normal 
(MASE 
only) 

SVM-L, 
GARCH 

GAM and RF 
(trended 
change); 
MARSS-M 
(Step change) 
(See results 
for other 
patterns) 

• GLM, RF, GLMM top 
performers for Nonlinear 
95% change 

• SVM-RBF, GLM(M), 
MARSS-M outperform 
GARCH for Abrupt 95% 
change 

• GAM(M), RF, 
ARMA top 
performers; 
GARCH, SVM-L 
weak performers 
for lagged 95% 
change 

• RF best for all 
variance-change  

• MARSS-P poor 
performer for 95% 
trended change  
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Notes: Forecast results for the normal data were consistent for both RMSE and MASE metrics. Only the MASE forecast results for the 

non-normal data are listed, because model performances were similar based on the RMSE metric, and any specific patterns in model 

results did not further contribute to the overall model evaluation findings. The listed lagged change scenario highlights only indicate 

patterns that differed in the lagged scenarios relative to the corresponding non-lagged scenarios. Reg-ARMA and reg-ARMA-GARCH 

are listed as ARMA and GARCH. 
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3.4     Discussion 

3.4.1     Model Behavior 

A plethora of previous ecological studies have highlighted the strengths and weaknesses 

of modeling approaches with varying levels of complexity for making data inference and 

predictions (i.e., Thomas 1996, Elith and Graham 2009, Grilli and Shumchenia 2015). This 

evaluation is the first to quantify strengths and weaknesses of parametric and nonparametric 

statistical models that are used to measure change in MRE monitoring data, and to recommend 

model classes able to detect, quantify, and forecast change. The evaluation also illustrates that 

the ability of a model to measure change depends on the monitoring objective, which may 

include detecting, quantifying, and/or forecasting change. Deterministic, parametric models 

(linear regression, including ANOVA) are most capable of detecting change, while the more 

flexible time-series models and semi-parametric models are advantageous for quantifying 

change. To forecast change, the most accurate results were produced by nonparametric models. 

Findings from this study provide a broad understanding of model behavior in the context of 

MRE monitoring change scenarios. Recommendations developed here can be used as best 

practices for measuring change in monitoring data, which will enable effective and efficient 

environmental monitoring programs that will expedite MRE permitting and development.  

Detect Change 

Non Lag Dependent Variable (Non-LDV) Models 

Non-lagged dependent variable models (i.e., deterministic parametric and semi-

parametric models) generally have the greatest power to detect change in the mean-change 

scenarios, but their ability to detect change is dependent on baseline predictors and model 
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assumptions (Table 3.6). For example, in the non-normal data change scenarios, GLM(M)s are 

the only non-LDV models (except reg-ARMA-GARCH) to include day as a covariate. The 

inclusion of day as a covariate influenced the difference in power results between the GLM(M)s 

and all other non-LDV models at the 0% and 10% amplitudes of mean-change. Day was 

included as a covariate in both the high-state and low-state equations of the HMM model used to 

simulate non-normal data (Table 3.5). Therefore, the simulated non-normal data are known to 

have a trend across days. By not accounting for baseline trend, any measure of change may be 

positively biased (Manolov et al. 2010, Parker et al. 2011). If covariates included in the 

simulation model are assumed to be relevant predictors of the empirical baseline data, then non-

LDV models that do not include day as a covariate may be prone to type I error, as illustrated by 

their higher power in the trended, no-change scenarios relative to the GLM(M)s. Power results 

for the reg-ARMA-GARCH model and non-normal data highlight the effect of model structure 

and convergence on model ability to detect change. The reg-ARMA-GARCH model has been 

shown to have convergence difficulties when including an indicator variable in the mean model 

equation, especially when outliers are present in the data (e.g., Doornik and Ooms 2005, 2008). 

The inconsistency of reg-ARMA-GARCH model convergence when including an indicator 

variable as a covariate may have caused its unique pattern of power results relative to all other 

models.   

Lagged Dependent Variable (LDV) Models 

Lagged dependent variable models (i.e., all nonparametric models and MARSS models) 

generally had lower power to detect mean-change compared to non-LDV models (Table 3.6). 

The inclusion of lagged predictor variables has been shown to reduce explanatory power of other 

variables (Achen 2000).  Lagged dependent variables account for change in the data as a function 
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of the dependent variable at previous time steps, suppressing the effect of the indicator variable 

(Plumper et al. 2005). In this study, lagged dependent variables reduced the explanatory power 

of the change indicator variable(s). The ability by LDV models to fit change without an indicator 

variable reduces the power of the model, and indicates that they are less effective than non-LDV 

models for accurately detecting change.  

The effect of including lagged predictor variables as model covariates is best illustrated 

by the difference in the MARSS-P and MARSS-M power results. The estimate of process and/or 

observation error in a MARSS model has previously been shown to affect the estimate of mean-

reversion; greater process error relative to observation error produces a higher estimate of mean-

reversion (Hampton et al. 2013). MARSS-P estimated greater mean-reversion in the normal and 

non-normal data change scenarios, and generally had greater power than the MARSS-M model. 

MARSS-M had lower power than MARSS-P, because it estimated less mean-reversion (i.e., a 

larger effect of the lagged dependent variable), and was better able to flexibly fit change in the 

data without an indicator variable. Both MARSS-M and MARSS-P models estimate greater 

mean reversion in the non-normal data relative to the normal data, producing similar power as 

the non-LDV models for the non-normal data. 

The SVM-RBF and RF nonparametric models are the only evaluated models capable of 

detecting change in variance (Table 3.6). This finding is not surprising as these models have a 

localized structure, which is better able to detect change in variance because they do not assume 

a constant global variance (Taddy et al. 2011). However, the ability of the SVM-RBF to measure 

change in variance may not be as robust or consistent as an RF. The localization of SVM-RBF 

predicted values is dependent on kernel parameter estimates, which are highly sensitive to their 
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tuning and prone to overfitting (Eitrich and Lang 2006, Ben-Hur and Weston 2010, Lorena et al. 

2011).  

Quantifying Change 

The MARSS models, especially MARSS-P, excel in accurately fitting change scenarios 

in normal and non-normal data, but are unable to accurately forecast trended change in 

monitoring data relative to all other models (Table 3.6). This is due to the baseline 

parameterization of MARSS models. The baseline structure of evaluated models was not altered, 

besides inclusion of indicator variable(s), to measure change in baseline conditions.  To be 

consistent with the stationary structure of the baseline data, the 𝐵 MARSS parameter is estimated 

as <1 in both MARSS-P and MARSS-M. When the 𝐵 parameter is <1, the model estimates 

mean-reversion in the data with the mean level estimated as 𝑢
1−𝐵

, otherwise the 𝑢 parameter 

estimates trend in the data (Holmes et al. 2014).  Because the 𝐵 parameter is not fixed as 𝐵 = 1 

in baseline models, both baseline MARSS-P and MARSS-M account for trended change as 

process error. The MARSS models inaccurately forecast predicted values in trended change 

scenarios, because they do not correctly attribute change to the 𝑢 trend indicator variable(s).  

The reg-ARMA and reg-ARMA-GARCH time series models do not have the same 

difficulties in attributing change to indicator variable(s), and provide advantages over other 

parametric models for quantifying change in monitoring data. Generally, the reg-ARMA and reg-

ARMA-GARCH predictions are similar to those from the other parametric models, because they 

are also linear, parametric models, and their predictions are deterministic, regardless of their 

inclusion of autocorrelated error (Hyndman and Athanasopoulos 2014). However, reg-ARMA 

and reg-ARMA-GARCH measure stochastic observation error, which provides a more flexible 
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fit to data than the other parametric models.  To illustrate by example, reg-ARMA excels in fit 

and forecast in the scenarios of lagged 95% change in non-normal data relative to the other 

parametric models. Reg-ARMA is capable of estimating linear, trend-stationary data. A 

nonlinear trend may cause non-stationary variable estimates (Hyndman and Athanasopoulos 

2014). Reg-ARMA accounts for the non-stationarity by estimating high autocorrelation in the 

ARMA error structure.  The estimate of highly autocorrelated error results in a better fit to 

nonlinear data (Granger and Newbold 1974, Hyndman and Athanasopoulos 2014). The estimate 

of autocorrelated error in the deterministic time-series models (i.e., reg-ARMA and reg-ARMA-

GARCH) provides greater insight to the form of change (i.e., linear or nonlinear) than other 

parametric models. 

Semi-parametric models (i.e., GAM(M)) excel in fit and forecast in the lagged scenarios 

of change in normal and non-normal data, indicating their advantage for quantifying nonlinear 

change (Table 3.6). GAMMs are the only models capable of estimating nonlinear change and 

providing a quantifiable measure of the nonlinear estimate. However, the inability of GAM(M)s 

to outperform other models in general fit and forecast accuracy highlight the instability of 

GAMM estimates. GAMMs are known to have difficulty converging when estimating both 

autocorrelation and smoother splines (Wood 2006, 2015). GAMs are known to over-fit data by 

estimating highly nonlinear smoother splines in the presence of autocorrelation (Wood 2006, 

2015). As a result, these models are highly sensitive to their parameterization, but are capable of 

quantifying nonlinear change. 

The remaining parametric models do not stand out for either fit or forecast accuracy, and 

do not provide any advantages over the semi-parametric or deterministic time-series models for 

quantifying change. These models are unable to fit and forecast nonlinear change, which is 
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imperative for a model that is to be recommended as a best practice to quantify any change in 

monitoring data. 

 Accuracy of nonparametric models to fit change is lower than other models. The SVM-

RBF model produced the second most accurate fit for change scenarios in the normal and non-

normal data, but its poor forecast of the normal data indicates overfitting. The SVM-RBF does 

not appear to overfit non-normal data, but the model’s forecast accuracy generally decreases as 

the amplitude of mean-change increases. The SVM-RBF model is more sensitive to model 

misspecification than SVM-L, which is attributed to its additional tuning parameter (Bahramy 

and Crone 2013), but both models are known for their sensitivity to tuning parameters (Lorena et 

al. 2011).  As the amplitude of change increases from baseline data, the baseline tuning of the 

SVM models may not be appropriate for the change scenario datasets. The inability of 

nonparametric models to provide direct estimates of size and shape of change renders them 

inappropriate for quantifying change.  

Forecasting Change 

Nonparametric models, specifically SVM-L and RF, generally excel in forecasting 

change scenarios relative to all other evaluated models (Table 3.6). These results are not 

surprising, as these models are regularly cited for their ability to predict both classification (e.g., 

Cutler et al. 2007, Grilli and Shumchenia 2015) and time-series data (Thissen et al. 2003, Kane 

et al. 2014). Consistent with this study, SVM-L has been shown to be a more accurate forecast 

model for trended time-series data than SVM-RBF (e.g., Crone et al. 2006). The relatively high 

forecast accuracy of the nonparametric models compared to all others decreases by the 95% 

lagged scenarios. The test data are further outside of the range of the training data in the lagged 
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scenarios compared to the non-lagged scenarios, as the test data in the lagged scenarios must 

have a steeper slope to produce the same amplitude of change in the second half of the “after” 

data. Consequently, model forecast performance in the 95% lagged scenarios illustrates models’ 

abilities to extrapolate outside the range of training data more than the corresponding non-lagged 

scenarios.  Due to the sensitivity of SVM model performance to the model’s kernel parameters, 

baseline SVM models may need to be re-parameterized in these lagged scenarios to accurately 

forecast outside the data range. The structure of the RF prohibits the model from extrapolating 

outside the training data range (Kacprzyk and Pedrycz 2015).  

            The remaining models (i.e., time-series models and parametric regression models) do not 

generally stand out for their forecasting performance relative to the nonparametric and semi-

parametric regression models. The linear regression, GLS, reg-ARIMA, and reg-GARCH are 

more accurate forecast models than nonparametric models in the normal data Linear 95% change 

scenario. This result is also not surprising as the data are linear and the complexity of 

nonparametric models is unnecessary for predicting future change (Merow et al. 2014). Reg-

ARMA-GARCH excels in forecasting the non-lagged, non-normal change scenarios based on the 

MASE metric. Models that had a lower MASE value tended to forecast closer to the low-state 

non-normal data, because the MASE metric is less sensitive to outliers (i.e., high-state non-

normal data) than RMSE (Hyndman and Koehler 2006). The reg-ARMA-GARCH is better able 

to forecast the low-state non-normal data compared to the other models, except for SVM-L, 

which may be a result of its measure of heteroskedastic, autoregressive error and its skewed-

student-t distribution. As the GARCH model is intended to model stock return volatility (Engle 

2001, Ghalanos 2015) (i.e., variability, measured as standard deviation of returns over time), the 

GARCH R packages only permit the use of skewed and heavy-tailed versions of the normal 
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distribution to model data. Reg-ARMA-GARCH may be more consistent in its ability to forecast 

with a transformation of non-normal data to a normal distribution. 

3.4.2     Monitoring Application 

Power  

Non-lagged, dependent variable parametric models are recommended for detecting mean-

change in monitoring data. This recommendation is consistent with the previous use of these 

models to detect change in MRE monitoring studies (e.g., Hammar et al. 2013, Vanermen et al. 

2015). Traditionally, linear regression, GLS, or ARMA models are used to measure the effect of 

a development and/or intervention on baseline conditions (Hewitt et al. 2001, Stewart and Bence 

2001). Previous MRE monitoring studies have substituted these traditional methods with 

GLM(M) or GAM(M)s that use non-normal error distributions (e.g., Poisson or negative 

binomial distributions) that are more appropriate for the data (e.g., Tollit et al. 2013, Stenberg et 

al. 2015). This study illustrates the effect of model assumptions and baseline predictor variables 

on model ability to accurately detect change. For instance, the non-LDV models that did not 

include day as a covariate had a higher rate of false change detection (i.e., type I error) in non-

normal data compared to GLM(M)s. This result suggests that a model that does not account for a 

baseline trend when it is present may produce a type I error, while a model that accounts for a 

baseline trend when it is not present may produce a type II error when measuring change. A type 

II error indicates the failure to detect environmental change and a type I error that falsely 

estimates environmental change can result in unnecessary costs associated with implementing 

monitoring and mitigation measures to negate any negative perceived environmental change 

(Field et al. 2005, Levine et al. 2014). Deterministic parametric and semi-parametric models are 
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recommended for detecting change in monitoring data, but choice of specific model is dependent 

on model structure, assumptions, and potential covariates. In the current study the appropriate 

model covariates are known since the Before-After monitoring data are generated using 

parameterized simulation models. To identify what may be considered an appropriate baseline 

characterization, an initial exploration of data characteristics, and a model selection process, as 

conducted in Chapter 2, using any a priori knowledge of the data can be used to make the most 

valid inferences about the data (Anderson and Burnham 2002).  

For monitoring, the inability of the lagged dependent variable models to detect the 

importance of the indicator variable suggests that they cannot accurately detect change from 

baseline conditions. Failure to detect change in monitoring data may result in environmental 

impacts at MRE or other monitoring sites (Fairweather 1991, Legg and Nagy 2006). 

Nonparametric models do not provide estimates of parameterized variables, so it is not possible 

to discern how the model is quantifying uncertainty in the estimate of change. Monitoring 

literature emphasizes the advantage of quantifying the measure and uncertainty of effect size 

rather than only providing a binary detection of change. The use of a parametric model best 

aligns with these monitoring goals (Schmitt and Osenberg 1996, Morrison 2007). A quantitative 

measure of confidence around the detection of change provided by parametric models acts as an 

objective measure that managers can use to assess risk of alternative management decisions in 

environmental monitoring (Vos et al. 2000). 

Variance 

Localized nonparametric models are recommended for detecting, quantifying, and 

forecasting variance change, because these models were the only candidate models capable of 
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detecting variance change in the evaluation. Reg-ARMA-GARCH may have also detected 

variance change through its estimate of heteroskedastic residual error, but this is not reflected as 

a change in the model’s fitted or forecasted predicted values. The Reg-ARMA-GARCH 

predicted values are based on a mean model equation that does not include residual variance 

estimates. Model predictions were the only criteria used to evaluate the ability to measure 

change. This approach facilitated an equal comparison across all parametric and nonparametric 

models. Previous MRE monitoring studies largely used ANOVA hypothesis testing or indicator 

variables in parametric/semi-parametric regression models to measure change in mean rather 

than variance (e.g., Bergstrom et al. 2013, Hammar et al. 2013, Broadhurst and Orme 2014). 

This evaluation highlights the inability of commonly used parametric/semi-parametric regression 

models to measure change in variance. It is imperative to measure a change in variance rather 

than just the mean, because altered variability of populations may indicate perturbations in a 

population (Underwood 1991, Chapman et al. 1995, Jacques 2014). 

Quantifying Change 

Deterministic time-series models and semi-parametric regression models are 

recommended for quantifying change in monitoring data. Deterministic time-series models (i.e., 

reg-ARMA and reg-ARMA-GARCH) have not previously been used in MRE monitoring 

studies. GAM(M)s have been used in MRE monitoring studies to measure change in monitoring 

data that may have nonlinear trends (e.g., Petersen et al. 2011, Tollit et al. 2013). The Mackenzie 

et al. (2013) MRE model evaluation study limited the candidate models to semi-parametric 

models (i.e., GAM, GAMM, and CReSS models), because of their ability to quantify nonlinear 

trend. Mackenzie et al. (2013) recommended CReSS models for measuring change in monitoring 

data. Unlike GAM(M)s, CReSS models incorporate a Spatially Adaptive Local Smoothing 
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Algorithm (SALSA) (cf., Walker et al. 2011, Mackenzie et al. 2013). The results of the current 

study cannot be directly compared to the Mackenzie et al. (2013) study, because the previous 

evaluation was limited to three scenarios of Before-After step shifts in abundance and 

distribution of bird and cetacean data, and the study used different evaluation metrics than the 

current study. The current study evaluated a wider range of model classes, and assumed 

candidate models are representative of models with similar statistical properties and structures. 

Therefore, the evaluation results of the GAM(M)s lead to a recommendation of semi-parametric 

smoother models for quantifying nonlinear trend, which is consistent with the limited evaluation 

of smoother models in the Mackenzie et al. (2013) study.  

The current study illustrates that the reg-ARMA and reg-ARMA-GARCH models 

generally quantify change similarly to other parametric models, but provide additional 

information about change in monitoring data by quantifying autocorrelated error. ARMA and 

ARMA-GARCH models have been used to forecast wind speed because of their ability to 

measure autocorrelated and heteroskedastic data (e.g., Taylor et al. 2009, Liu et al. 2011). 

Deterministic time-series models are advantageous for an initial estimate of change in temporally 

correlated monitoring data, and if the estimate of autocorrelated error is high, then the use of 

GAM(M)s will directly measure nonlinear change. The use of deterministic time-series and 

GAM(M)s to quantify change provides robust assessments of both linear and nonlinear change. 

Accurate assessment of change is imperative for an effective MRE monitoring program because 

it determines the validity of hypothesized effects from baseline characterization (Treweek 2009), 

and informs decisions on evolving management practices or mitigation measures (Treweek 2009, 

Lindenmayer et al. 2012). 
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 MARSS models are not recommended as a primary method for quantifying change in 

monitoring data, because they are unable to accurately measure trended change using their 

baseline parameterization. However, an initial estimate of change using the recommended 

deterministic time-series and semi-parametric models may be used to specify an appropriate 

parameterization of a state-space model to additionally quantify process error (i.e., stochastic 

variability) in the data. The estimate of both process and observation error in state-space models 

provides a more thorough and informative estimate of change by separately quantifying change 

attributed to natural variability in baseline conditions and systemic change in those conditions 

(Dornelas et al. 2012). The partitioning of total error into process and observation components 

may reduce bias and improve accuracy in change estimates (e.g., Lindley 2003, Ward et al. 

2010). MARSS models can be parameterized to estimate many different hypothesized structures 

of population data (Ward et al. 2010, Holmes et al. 2014). Consequently, the initial inspection of 

change using the primary recommended models may be used to structure state-space models to 

assess systemic change compared to natural variability in Before-After monitoring data.   

Forecasting Change 

Nonparametric models have not been used in Before-After biological MRE monitoring 

studies, but are recommended for forecasting change in MRE monitoring data. Parametric or 

semi-parametric models in MRE monitoring studies have been used to predict change (e.g., 

Wade et al. 2014, Warwick-Evans et al. 2016), but MRE monitoring studies do not appear to use 

models to forecast estimates of a biological variables for early-warning threshold detection. The 

lack of forecast studies in the MRE biological monitoring literature is attributed to the early stage 

of development, the retrospective focus of BA(CI) studies to detect if a change occurred, and/or 

the lack of identified change in existing studies. Selection of accurate forecast models is 



110 
 

imperative for monitoring programs and informing management on timing or conditions when 

pre-emptive mitigation measures will minimize negative effects of MRE development (Clark et 

al. 2001, Lindenmayer et al. 2012). 

Nonparametric models are recommended for forecasting change because accuracy in 

prediction rather than estimate of casual relationships is of primary concern. Forecasting change 

in a monitored response variable does not require hypothesis testing, and does not require 

parametric measures of casual relationships (Shmueli 2010). Misspecification of structural 

relationships in parametric models can negatively affect forecasting ability, whereas the 

flexibility of nonparametric models provides robust predictions against uncertainty (Perretti et al. 

2013).  

Based on the ability of semi-parametric regression models to provide relatively accurate 

forecasts in highly nonlinear scenarios, they are recommended as a secondary forecast model for 

nonparametric data estimates. The measure of change shape may provide further insight into the 

future trend of the data. For instance, if the change is characterized as highly nonlinear, then the 

SVM baseline regression model may require a re-tuning of its parameters to provide an accurate 

forecast. The explicit measure of change can be used to quantify uncertainty around the 

forecasted change, providing additional information for future monitoring and mitigation efforts 

(Clark et al. 2001).  

3.4.3     MRE Monitoring Model Recommendations 

Within the recommended model classes, specific models are suggested for detecting, 

quantifying, and forecasting change in the MRE case study data (Fig. 3.10). Model 

recommendations made for the nekton aggregation data are based on the constraints and results 
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of this study, but may produce biased estimates since they fail to accurately fit the spiked 

structure of the aggregation data (Barry and Elith 2006). The objective of this study was to 

evaluate model ability to measure change in monitoring data, not to transform the data to fit 

requirements of a specific model. Although no models were able to accurately measure spikes in 

aggregation, the evaluation provided insight into model behavior when fit to highly skewed data. 

In the future, nekton aggregation data may be altered using a Box-Cox normal data 

transformation (Box and Cox 1964), to produce unbiased estimates using the recommended 

models.  
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Figure 3.10. Schematic of recommended models to detect, quantify, and forecast change in MRE monitoring data. Models are 

recommended for detecting, quantifying, or forecasting change in the statistical property of mean or variance of either Sv data 

(representative of normally distributed data) or AI monitoring data (representative of non-normally distributed data). The dashed 

boxes indicate potential bias associated with recommended models based on their inability to fit the spikes in aggregation index data. 
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Detecting Mean Change 

Normal Data (Sv)  

Reg-ARMA models are recommended for detecting mean change in nekton density data 

(Fig. 3.10). The reg-ARMA model accurately characterizes data properties, because it assumes a 

normal distribution, includes environmental covariates that were used as predictor variables in 

the simulation model, and accounts for autocorrelation. This recommendation is consistent with 

the recommendation for quantifying change in normal MRE monitoring data. 

Non-Normal Data (AI) 

The GLMM is recommended for detecting change in nekton aggregation data (Fig. 3.10). 

Non-LDV models were previously recommended to detect change in MRE monitoring data, and 

within this group GLMM does not assume normality, appropriately accounts for the day baseline 

trend in the simulated data, and estimates autocorrelation.  

Quantifying Mean Change 

Normal Data (Sv) 

A reg-ARMA model is recommended for an initial inspection of mean change in the 

nekton density data, and a GAMM is recommended to provide additional change estimates (Fig. 

3.10). A reg-ARMA model is less prone to convergence issues than a GAMM and produces 

more accurate trend estimations for all scenarios, with the exception of a nonlinear trend. If the 

reg-ARMA model indicates potential non-stationarity via estimation of highly autocorrelated 

error, then there may be a nonlinear change. The GAMM may be fit to this data to estimate shape 

and size of nonlinear trend.  
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Non-Normal Data (AI) 

The reg-ARMA-GARCH model is recommended for an initial inspection of mean change 

in non-normal data, with the addition of a GAMM to further estimate change (Fig. 3.10). The 

reg-ARMA-GARCH model is recommended because it generally excels in forecasting the low-

state non-normal data, appropriately included the day baseline trend in simulated data, and 

provides estimates of the spikes in aggregation data through the heteroskedastic residual variance 

equation. The model may have less convergence difficulties and produce more accurate 

estimates with a transformation of the data to a normal distribution.  

Forecast Mean Change 

Normal Data (Sv) 

SVM-L is recommended for forecasting change in mean nekton density data (Fig. 3.10). 

Overall, the SVM-L model was the most accurate forecast model for all mean-change scenarios. 

In the future, re-tuning the baseline SVM-L model to post-construction monitoring data may 

further improve forecast estimates. A GAMM may be used to provide a semi-parametric 

assessment of nonlinear forecasts. Although GAMM is sensitive to convergence difficulties in 

autocorrelated data, the model’s ability to fit and extrapolate nonlinear trend allows the GAMM 

to excel in forecast performance in highly nonlinear data.  

Non-Normal Data (AI) 

Similar to the normal data recommendations, a SVM-L in conjunction with a GAMM 

may be used to forecast change in low-state non-normal data (Fig. 3.10). The SVM-L model is 

most able to accurately forecast mean change in the low-state, non-normal data for almost all 
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scenarios, with the exception of nonlinear change. No model was able to capture the spiked 

structure of the non-normal data, and therefore no model can accurately forecast spikes in non-

normal data.  

Variance Change 

 The Random Forest regression model is recommended for detecting, quantifying, and 

forecasting change in variance in both nekton density and aggregation data (Fig. 3.10).  The RF 

and SVM-RBF model are the only two evaluated models that are capable of measuring change in 

variance. The RF model is recommended over the SVM-RBF model because it had greater 

forecast accuracy for both datasets. The RF model is more robust in its parameter estimates 

compared to a SVM-RBF model (Lorena et al. 2011), and the measure of variable importance 

can be used to interpret the relative importance of an indicator variable in the model.  

3.5     Conclusion 

Recommended models and the approach used to identify them may be combined as a best 

practice for the analysis of monitoring data. Standardization of MRE monitoring protocols, 

including the choice of analytic model, will reduce time and costs of MRE permitting (Dubbs et 

al. 2013). Standard monitoring methods also enable cross-site comparison, which reduces 

uncertainty of environmental effects and can streamline monitoring efforts (Froján et al. 2016). 

The evaluation approach ensures the use of best practices for detecting, quantifying, and 

forecasting change in monitoring data. The development of best practices for analyzing 

monitoring data will help lead to the most efficient and effective operational MRE monitoring 

programs.  
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 The evaluation was applied to MRE monitoring data as a case study of planned 

anthropogenic disturbance monitoring, but the approach can be applied to assess models and 

measure change in any monitoring program. Scenarios of change enable a robust estimate of 

model ability to measure change across the most common range of amplitudes and shapes of 

change found in ecological literature. The case-study data are assumed representative of 

monitoring data, and the evaluated statistical models are assumed representative of models used 

to measure change in monitoring studies. Insight gained on the advantages and disadvantages of 

the model classes for measuring change are generally applicable.  
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Chapter 4:  

Conclusions and Significance 

 

4.1     Summary of Conclusions 
 

Marine Renewable Energy monitoring data was used as a case study of environmental 

disturbance monitoring to develop and apply an evaluation of models applicable for analyzing 

baseline (pre-disturbance) and operational (post-disturbance) monitoring data.  Evaluation results 

enabled specific recommendations of best practices for characterizing baseline data and to detect, 

quantify, and forecast change in operational monitoring data. Although a single model was not 

identified for analyzing monitoring data, the evaluation produced consistent patterns in model 

behavior that highlighted strengths and weaknesses of each evaluated model. The evaluation 

approach and general model behavior patterns can be applied to identify accurate and robust 

analytic models for any monitoring program, while specific model recommendations may help 

standardize MRE monitoring methods and advance MRE development. 

The baseline model evaluation resulted in the recommendation of state-space time series 

models to ensure the most accurate and informative characterization of empirical normal and 

non-normal baseline monitoring data. Although state-space models have previously been 

recommended for analyzing renewable energy monitoring data (e.g., Jacques 2014, Diffendorfer 

et al. 2015), these models are not commonly used in baseline MRE monitoring studies. These 

models did not only produce an accurate interpolation of the data relative to a wide range of 

candidate models, but also provided interpretable quantitative estimates, and associated 

confidence intervals of environmental covariates, data stationarity, and both process and 

observation error in monitoring data. State-space models are recommended as best practices for 
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characterizing baseline monitoring data, and can be used to develop effective operational 

monitoring for measuring change.  

Deterministic parametric models were recommended to accurately detect any change in 

the mean of MRE monitoring data, while localized nonparametric models were identified as the 

only models capable of detecting and measuring change in the variance of monitoring data. The 

evaluation results validate the previous use of deterministic parametric models to detect mean-

change in MRE monitoring studies (e.g., Hammar et al. 2013, Stenberg et al. 2015, Vanermen et 

al. 2015), while also highlighting the inability of these models to detect change in variance. The 

evaluation was critical for identifying statistical models capable of accurately detecting 

environmental changes caused by a disturbance that only alters the variability of a response 

variable rather than its mean (Underwood 1991, Chapman et al. 1995). Validation of the 

previous use of deterministic parametric models to detect mean change in MRE monitoring data 

reduces uncertainty associated with previous study findings, and the continuing use of these 

models allows for comparison of future findings with previous studies. 

Coupled deterministic time series models and semi-parametric GAM(M)s were 

recommended to quantify the size and shape of change in monitoring data. Deterministic time 

series models are not commonly used in MRE monitoring studies, but GAM(M)s have 

previously been used to quantify change in MRE monitoring studies (e.g., Embling et al. 2013, 

Tollit et al. 2013). Deterministic time series models provide a robust estimate of linear change, 

and can be used to identify when GAM(M)s are needed to quantify nonlinear change. The 

evaluation identified potential convergence problems with GAM(M)s, but also highlighted the 

ability of GAM(M)s to accurately estimate nonlinear change. The coupling of deterministic time-

series models and GAM(M)s provides assessments of both linear and nonlinear change, and will 
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provide a base for decisions on environmental management practices and/or mitigation measures 

(Treweek 2009, Lindenmayer et al. 2012). 

Nonparametric models were identified as capable of forecasting change in environmental 

monitoring data. Nonparametric models have not commonly been used in MRE monitoring 

studies to forecast change, but are generally cited for their predictive accuracy in time-series data 

(e.g., Thissen et al. 2003, Perretti et al. 2013, Kane et al. 2014). The evaluation highlighted the 

ability of nonparametric models to accurately forecast a range of change shapes and amplitudes. 

Selection of accurate forecast models is imperative for informing management on timing or 

conditions when pre-emptive mitigation measures will minimize negative effects of MRE 

development (Clark et al. 2001, Lindenmayer et al. 2012).  

4.2     Significance 

Recommended models and the approach used to identify them may be combined as a best 

practice for the analysis of monitoring data. Models that can be used for the analysis of both 

baseline and operational MRE monitoring data are critical for ensuring consistent and accurate 

estimates of environmental change. Standardization of MRE monitoring methods allows for 

comparable results of studies across sites and MRE projects (Copping et al. 2016). By enabling 

precise and comparable analyses of monitoring data, best practice statistical models reduce 

uncertainty associated with effects of MRE development, and sustain efficient and robust 

monitoring efforts. In combination, the approach and recommended models provide a pathway to 

expedite the MRE permitting process (Dubbs et al. 2013). 

 Evaluations of models that accurately characterize monitoring data are routinely used 

across a wide range of environmental fields, including fisheries (e.g., Olden and Jackson 2002), 
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air pollution (e.g., Jerrett et al. 2004), and agriculture (e.g., Michel and Makowski 2013). The 

evaluation approach developed here can be applied to any monitoring program to provide a 

comprehensive assessment of model ability to characterize baseline data, and to detect, quantify, 

and forecast change in operational monitoring data. The case study data are assumed 

representative of monitoring data, and the evaluated statistical models are assumed representative 

of models used to measure change in monitoring studies. The scenarios of change simulated as 

operational monitoring data enable a robust estimate of model ability to measure change across 

the most common range of amplitudes and shapes of change found in ecological literature. 

Insight gained on model behavior and advantages and disadvantages of model classes for both 

characterizing baseline data and measuring change are generally applicable.  

4.3     Study Caveats  

This approach was specifically structured to allow for an equal comparison across classes 

of parametric and nonparametric models, while allowing each model to have the greatest 

probability of success. Consequently, specific parametric model measurements of environmental 

covariates and indicator variables were not analyzed. An investigation into the estimate and 

associated uncertainty of environmental covariates included in baseline candidate models may 

provide a more thorough comparison of parametric models and important environmental 

predictors of baseline data. Measuring amplitudes and uncertainties of indicator variable(s) in 

parametric models may also provide additional support for the recommended parametric models 

to detect and quantify change. Empirical data used in the evaluation was purposely not altered 

from its raw form, because the purpose of the project was to evaluate model ability to analyze 

characteristics of the monitoring data. None of the evaluated models, regardless of assumptions, 

were able to fit the spikes in the non-normal aggregation index data, which may also bias model 
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estimates of change in the data. To provide more precise model recommendations for the non-

normal data, the approach could be repeated on a normalized version of the nekton aggregation 

index data.  

Differences in model recommendations are attributed to differences in the objectives of 

baseline and operational stages of a monitoring program. Baseline characterization requires 

statistical models that are able to describe and quantify pattern, including: mean trend, important 

environmental covariates, and variability within data. Objectives of operational monitoring (i.e., 

detect, quantify, and forecast change) require an accurate estimate of change from a specified 

statistical property (i.e., mean and/or variance) of the Before-After dataset. Often the properties 

of a model that are advantageous for model description may not match other objectives, such as 

prediction (Shmueli 2010). The model evaluation quantified strengths and weaknesses of 

candidate models to analyze monitoring data, and resulted in different models that met each 

monitoring objective. The model recommendation frameworks differ for baseline and 

operational monitoring but are consistent with the objectives within these stages of a monitoring 

program.  

4.4     Future Work 

The next logical step in developing best practice environmental monitoring methods is to 

extend the results of the evaluation, based on a known point of anthropogenic disturbance, to 

scenarios of unknown change in real-time monitoring. In the context of MRE, real-time 

monitoring is becoming more prevalent as the technology for adaptive monitoring is being 

developed (e.g., Rush et al. 2014, Horne et al. 2016). As real-time operational monitoring 

continues during an anthropogenic disturbance, there may be unknown points of change 

(Anderson and Thomas 2004). In future work, the recommended models for detecting, 
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quantifying, and forecasting change may be evaluated on their ability to measure change in a 

real-time monitoring context in which change-points may not be known a priori. 
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Appendix 2.A: Candidate model equations and definition of terms 

 

2.A.1 Linear Regression  

𝑦 = 𝑎 + 𝑏𝑥 + 𝜀, 𝜀~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)     

The 𝛼 term is the intercept term, 𝑏 is the estimated parameter term, 𝑥 is the predictor variable, 𝜀 

is the error term, and 𝜎 is the standard deviation of the error distribution. This equation also 

applied to the Generalized Least Squares (GLS) model, with the addition of an autocorrelated 

residual correlation structure. 

2.A.2 Generalized Linear Model (GLM) 

𝑔(µ) = 𝑎 + 𝑏𝑥 + 𝜀 , µ = E(y)       

 𝑔() is the link function, which relates the linear predictor to the expected value (µ) of the 

exponential family distribution function.  

2.A.3 Generalized Linear Mixed Model (GLMM) 

𝑔(µ) = 𝑎 + 𝑋𝑖𝐵 + 𝑍𝑖𝑏𝑖 + 𝑎𝑖 + 𝑒𝑖𝑗 , µ = E(𝑦𝑖𝑗)   

𝑋𝑖𝐵 represents the main effects shown in the GLM equation. 𝑋𝑖 is the design matrix for the 

predictor variables, and 𝐵 is the matrix of predictor variables. 𝑍𝑖𝑏𝑖 represents the random effects 

component of a GLMM. 𝑍𝑖 is the design matrix for the random effects, and 𝑏𝑖 is the subject, 𝑖, 

specific effect (or random effect). 𝑎𝑖 is the random intercept.  

2.A.4 Generalized Additive (Mixed) Model GAM(M) 

𝑔(𝜇𝑖) = 𝑎 + 𝑏𝑥1𝑖 + 𝑠1(𝑥2𝑖) + 𝜀, 𝜇𝑖 = 𝐸(𝑌𝑖)  
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𝑠1() is a smoother function, or regression spline. The GAMM can be written similarly to the 

GLMM, although the 𝑋𝑖𝐵 component is a vector of 𝑠(𝑥)values (Wood 2006). 

2.A.5 Regression-Autoregressive-Moving-Average (Reg-ARMA) Model 

𝑦𝑡 = 𝑎 +  𝑏1𝑥1𝑡 + ⋯𝑏𝑝𝑥𝑝𝑡 + 𝑛𝑡                              
𝑛𝑡 =  𝑏1𝑛𝑡−1 + ⋯𝑏𝑝𝑛𝑡−𝑝 + 𝑒𝑡 + 𝜃1𝑒𝑡−1 + ⋯+ 𝜃𝑞𝑒𝑡−𝑞; 𝑒𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎)        

𝑛𝑡  is the error remaining from the linear regression model.  𝑏1-𝑏𝑝 represents the parameters 

multiplied to the autoregressive error terms. 𝜃1 − 𝜃𝑞 represents the parameters multiplied to the 

moving-average error term in the ARMA component of the model.  

2.A.6 Regression-Generalized-Autoregressive-Conditional-Heteroskedasticity-
Autoregressive-Moving-Average (Reg-ARMA-GARCH) Model 

𝜎𝑡2 = 𝑤 +  𝛼1𝜀𝑡−12 + ⋯+ 𝛼𝑞𝜀𝑡−𝑞2 + 𝛽1𝜎𝑡−12 + ⋯+ 𝛽𝑝𝜎𝑡−𝑝2         

𝜎𝑡2 denotes the conditional variance, 𝑤 is the intercept, 𝛼1-𝛼𝑞 and 𝛽1-𝛽𝑝 are the Arch and Garch 

lag parameters 

2.A.7 Multivariate-Autoregressive-State-Space (MARSS) Model 

Process equation: 𝑥𝑡 = 𝐵𝑡𝑥𝑡−1 + 𝑢𝑡 + 𝐶𝑡𝑐𝑡 + 𝑤𝑡, 𝑤𝑡~𝑀𝑉𝑁(0, 𝑄𝑡)         

Observation equation: 𝑦𝑡 = 𝑥𝑡 + 𝐷𝑡𝑑𝑡 + 𝑣𝑡, 𝑣𝑡~𝑀𝑉𝑁(0, 𝑅𝑡)         

The process model contains a density-dependent parameter (𝐵𝑡), a mean level parameter (𝑢𝑡), 

independent parameters (𝐶𝑡) multiplied to predictor variables (𝑐𝑡), and error (𝑤𝑡) that is normally 

distributed with variance 𝑄𝑡 . The observation model also includes independent covariates (𝐷𝑡), 

predictor variables (𝑑𝑡), and error (𝑣𝑡) that is normally distributed with variance 𝑅𝑡 (Holmes et 

al. 2014).  
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2.A.8 Random Forest (RF) Algorithm 

The Random Forest is a collection of 𝑛𝑡𝑟𝑒𝑒𝑠 that are random bootstrap subsamples of the training 

data. Samples not selected for model training are used as out-of-sample data to calculate error of 

the model. Within each tree, a randomly chosen subsample of the predictor variables (𝑚𝑡𝑟𝑦) are 

used to fit the data.  The predictor variable and split of the data based on the predictor variable 

that produce the best estimate of the dependent variable based on Mean-Squared-Error (MSE) 

are calculated. This process is repeated until 5 data points remain in each node of the tree.  The 

final predicted values are based on the average of the individual tree predictions.  

2.A.9 Support Vector Regression (SVR) 

If the linear regression function is denoted as 𝑦𝑖 = 𝑤𝑥𝑖 + 𝑏, in which 𝑏 is the intercept term, 𝑤 is 

the estimated parameter term, 𝑥𝑖 is the predictor variable, then the minimization attempted by an 

SVR is denoted as: 

𝑄 = 1
2
�|𝑤|�

2
+ 𝐶 ∑ (Ɛ𝑖𝑙

𝑖=1 + Ɛ𝑖∗)  

Subject to {𝑦𝑖 − 𝑤𝑥𝑖 − 𝑏 ≤ Ɛ +  𝐸𝑖; 𝑤𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ Ɛ +  𝐸𝑖∗;𝐸𝑖, 𝐸𝑖∗ ≥ 0} (Vapnik 1995)  

In this equation C is a constant that represents the value up to which deviations from Ɛ, a 

predefined value of residual error, are acceptable. E and E* are error values above (E) and below 

(E*) Ɛ that allow for the optimization problem to be feasible (Smola and Schölkopf 2004, Thissen 

et al. 2003).  

The linear kernel is calculated as 𝐾�𝑥𝑖, 𝑥𝑗� = (𝑥𝑖𝑇𝑥𝑗).  

The Radial Basis Function kernel is calculated as 𝐾�𝑥𝑖, 𝑥𝑗� = exp�−ɣ||𝑥𝑖−𝑥𝑗||2� , ɣ > 0  

xi and xj are two input vectors, and the gamma value (ɣ) controls the width of the kernel (Thissen 
et al. 2003). 
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Appendix 3.A: Ranked model results for the normal (Sv) metric data. 

Table 3.A.1. Ranked in-sample model fit results and associated average Root-Mean-Squared-Error (RMSE), and Kolmogorov-
Smirnov D-Statistic (D-stat) across 10%, 25%, and 95% amplitudes of change for all change scenarios. 

 10% Change Amplitude 
 

25% Change Amplitude 95% Change Amplitude 

Change 
Scenario 

Rank Model RMSE D-stat Rank Model RMSE D-stat Rank Model RMSE D-stat 

Abrupt 1 MARSS-P 0.047 0.909 1 MARSS-P 0.047 0.909 1 MARSS-P 0.048 0.909 
2 SVR-RBF 2.844 0.818 2 SVR-RBF 2.815 0.818 2 SVR-RBF 2.805 0.818 
3 MARSS-

M 
3.620 0.445 3 MARSS-M 3.578 0.458 3 MARSS-M 3.618 0.564 

4 Reg-
ARMA 

3.711 0.270 4 Reg-
ARMA 

3.671 0.355 4 Reg-ARMA 3.800 0.297 

4 Reg-
ARMA-
GARCH 

3.711 0.264 4 Reg-
ARMA-
GARCH 

3.671 0.352 4 Reg-ARMA-
GARCH 

3.801 0.294 

5 SVR-L 3.787 -0.282 5 SVR-L 3.762 -0.385 5 GAM 3.828 0.279 
6 GAM 3.862 -0.300 6 GAM 3.818 -0.361 6 GAMM 3.944 -0.352 
7 Linear reg 3.873 -0.330 6 Linear reg 3.832 -0.352 7 RF 3.998 -0.448 
7 GLS 3.873 -0.333 6 GLS 3.832 -0.355 8 SVR-L 4.037 -0.539 
8 RF 3.876 -0.415 7 RF 3.870 -0.576 9 Linear reg 4.047 -0.497 
9 GAMM 3.951 -0.467 8 GAMM 3.904 -0.482 9 GLS 4.048 -0.500 

Linear 1 MARSS-P 0.046 0.909 1 MARSS-P 0.047 0.909 1 MARSS-P 0.047 0.909 
2 SVR-RBF 2.868 0.818 2 SVR-RBF 2.825 0.818 2 SVR-RBF 2.840 0.818 
3 MARSS-

M 
3.641 0.436 3 MARSS-M 3.585 0.512 3 MARSS-M 3.674 0.421 

4 Reg-
ARMA 

3.737 0.282 4 Reg-
ARMA 

3.675 0.327 4 Reg-ARMA 3.729 0.321 
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4 Reg-
ARMA-
GARCH 

3.737 0.279 4 Reg-
ARMA-
GARCH 

3.675 0.324 4 Reg-ARMA-
GARCH 

3.729 0.318 

5 SVR-L 3.802 -0.224 5 SVR-L 3.747 -0.267 5 SVR-L 3.852 -0.273 
6 RF 3.880 -0.327 6 GAM 3.820 -0.348 6 GAM 3.885 -0.348 
7 GAM 3.890 -0.336 7 RF 3.828 -0.364 7 Linear reg 3.894 -0.355 
7 Linear reg 3.896 -0.342 7 Linear reg 3.836 -0.391 7 GLS 3.894 -0.358 
7 GLS 3.897 -0.345 7 GLS 3.837 -0.394 8 RF 3.925 -0.488 
8 GAMM 3.955 -0.461 8 GAMM 3.907 -0.582 9 GAMM 3.963 -0.497 

Nonlinear 
 

1 MARSS-P 0.047 0.909 1 MARSS-P 0.047 0.909 1 MARSS-P 0.049 0.909 
2 SVR-RBF 2.806 0.818 2 SVR-RBF 2.826 0.818 2 SVR-RBF 2.820 0.818 
3 MARSS-

M 
3.557 0.470 3 MARSS-M 3.573 0.476 3 MARSS-M 3.613 0.558 

4 Reg-
ARMA 

3.664 0.255 4 Reg-
ARMA 

3.681 0.252 4 Reg-ARMA 3.788 0.209 

4 Reg-
ARMA-
GARCH 

3.664 0.252 4 Reg-
ARMA-
GARCH 

3.681 0.248 4 Reg-ARMA-
GARCH 

3.788 -0.209 

5 SVR-L 3.742 -0.264 5 SVR-L 3.754 -0.252 5 GAM 3.829 -0.264 
6 GAM 3.799 -0.345 6 GAM 3.826 -0.364 6 SVR-L 3.858 -0.279 
6 Linear reg 3.809 -0.367 7 RF 3.839 -0.361 7 RF 3.904 -0.370 
6 GLS 3.809 -0.370 7 Linear reg 3.843 -0.400 8 GAMM 3.928 -0.327 
6 RF 3.814 -0.348 7 GLS 3.843 -0.406 9 Linear reg 4.034 -0.527 
7 GAMM 3.869 -0.433 8 GAMM 3.896 -0.530 9 GLS 4.035 -0.530 

Periodic 1 MARSS-P 0.044 0.909 1 MARSS-P 0.043 0.909 1 MARSS-P 0.035 0.909 
2 SVR-RBF 2.924 0.818 2 SVR-RBF 2.956 0.818 2 SVR-RBF 3.202 0.818 
3 MARSS-

M 
3.806 0.348 3 MARSS-M 3.869 0.424 3 RF 4.213 0.715 
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4 Reg-
ARMA 

3.911 0.200 4 Reg-
ARMA 

4.016 -0.212 4 MARSS-M 4.604 0.458 

4 Reg-
ARMA-
GARCH 

3.913 -0.200 4 Reg-
ARMA-
GARCH 

4.020 -0.215 5 SVR-L 4.764 -0.285 

5 SVR-L 3.979 -0.273 5 SVR-L 4.066 -0.236 6 Reg-ARMA 4.871 -0.348 
6 RF 4.012 -0.294 6 RF 4.096 -0.267 7 Reg-ARMA-

GARCH 
4.884 -0.358 

7 GAM 4.048 -0.318 7 GAM 4.150 -0.333 8 Linear reg 4.965 -0.421 
7 Linear reg 4.056 -0.312 7 Linear reg 4.155 -0.370 8 GLS 4.965 -0.424 
7 GLS 4.056 -0.315 7 GLS 4.155 -0.373 8 GAM 4.967 -0.415 
8 GAMM 4.112 -0.418 8 GAMM 4.210 -0.503 9 GAMM 5.030 -0.512 

Step 1 MARSS-P 0.047 0.909 1 MARSS-P 0.047 0.909 1 MARSS-P 0.047 0.909 
2 SVR-RBF 2.827 0.818 2 SVR-RBF 2.854 0.818 2 SVR-RBF 2.810 0.818 
3 MARSS-

M 
3.624 0.367 3 MARSS-M 3.600 0.485 3 MARSS-M 3.564 0.542 

4 Reg-
ARMA 

3.684 0.273 4 Reg-
ARMA 

3.701 0.364 4 Reg-ARMA 3.664 0.336 

4 Reg-
ARMA-
GARCH 

3.685 0.270 4 Reg-
ARMA-
GARCH 

3.701 0.361 4 Reg-ARMA-
GARCH 

3.664 0.333 

5 SVR-L 3.750 -0.248 5 SVR-L 3.769 -0.252 5 SVR-L 3.773 -0.318 
6 GAM 3.832 -0.330 6 GAM 3.861 -0.406 6 GAM 3.812 -0.333 
7 RF 3.844 -0.370 7 Linear reg 3.874 -0.418 7 Linear reg 3.827 -0.358 
7 Linear reg 3.850 -0.373 7 GLS 3.875 -0.424 7 GLS 3.828 -0.361 
7 GLS 3.851 -0.376 8 RF 3.878 -0.470 8 RF 3.878 -0.482 
8 GAMM 3.911 -0.476 9 GAMM 3.934 -0.518 8 GAMM 3.891 -0.470 
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Table 3.A.2. Ranked in-sample model fit results and associated average Root-Mean-Squared-Error (RMSE), and Kolmogorov-
Smirnov D-Statistic (D-stat) for the 95% Linear and Nonlinear change scenarios and corresponding lagged change scenarios. 

 Non-Lagged 95% Change Amplitude Lagged 95% Change Amplitude 
Change 
Scenario 

Rank Model RMSE D-stat Rank Model RMSE D-stat 

Linear  1 MARSS-P 0.047 0.909 1 MARSS-P 0.047 1.000 
2 SVR-RBF 2.840 0.818 2 SVR-RBF 2.817 0.900 
3 MARSS-M 3.674 0.421 3 MARSS-M 3.589 0.560 
4 Reg-ARMA 3.729 0.321 4 Reg-ARMA 3.731 0.303 
4 Reg-ARMA-GARCH 3.729 0.318 4 Reg-ARMA-GARCH 3.731 0.293 
5 SVR-L 3.852 -0.273 5 SVR-L 3.789 -0.267 
6 GAM 3.885 -0.348 6 GAM 3.823 -0.307 
7 Linear reg 3.894 -0.355 7 RF 3.841 -0.353 
7 GLS 3.894 -0.358 8 GAMM 3.930 -0.513 
8 RF 3.925 -0.488 9 Linear reg 3.953 -0.533 
9 GAMM 3.963 -0.497 9 GLS 3.953 -0.537 

Nonlinear  1 MARSS-P 0.049 0.909 1 MARSS-P 0.047 1.000 
2 SVR-RBF 2.820 0.818 2 SVR-RBF 2.836 0.900 
3 MARSS-M 3.613 0.558 3 MARSS-M 3.612 0.553 
4 Reg-ARMA 3.788 0.209 4 Reg-ARMA 3.774 -0.237 
4 Reg-ARMA-GARCH 3.788 -0.209 4 Reg-ARMA-GARCH 3.775 -0.240 
5 GAM 3.829 -0.264 5 SVR-L 3.821 -0.237 
6 SVR-L 3.858 -0.279 6 GAM 3.831 -0.260 
7 RF 3.904 -0.370 7 RF 3.879 -0.333 
8 GAMM 3.928 -0.327 8 GAMM 3.983 -0.487 
9 Linear reg 4.034 -0.527 9 Linear reg 3.994 -0.530 
9 GLS 4.035 -0.530 9 GLS 3.995 -0.533 
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Table 3.A.3. Ranked model forecast results and associated average Mean-Absolute-Scale-Error (MASE), and Kolmogorov-Smirnov 
D-Statistic (D-stat) across 10%, 25%, and 95% amplitudes of change for all change scenarios. 

 10% Change Amplitude 
 

25% Change Amplitude 
 

95% Change Amplitude 
 

Change 
Scenario 

Rank Model MASE D-stat Rank Model MASE D-stat Rank Model MASE D-stat 

Abrupt 1 SVR-L 0.816 0.358 1 SVR-L 0.834 0.303 1 RF 0.825 0.700 
2 RF 0.828 0.312 1 RF 0.837 0.315 2 SVR-L 0.840 0.645 
3 MARSS-P 0.863 0.136 2 MARSS-M 0.886 0.152 3 SVR-RBF 0.976 0.355 
3 MARSS-M 0.863 0.182 2 Linear reg 0.887 0.091 4 MARSS-M 1.074 -0.170 
4 Reg-ARMA 0.881 -0.091 2 GLS 0.887 0.103 5 Reg-ARMA 1.109 -0.236 
4 Reg-

ARMA-
GARCH 

0.882 -0.097 2 Reg-
ARMA 

0.888 0.091 5 GLS 1.109 -0.239 

4 GLS 0.882 -0.109 2 Reg-
ARMA-
GARCH 

0.889 0.094 5 Linear reg 1.110 -0.236 

4 Linear reg 0.882 -0.124 3 MARSS-P 0.899 -0.121 5 Reg-ARMA-
GARCH 

1.117 -0.242 

5 GAM 0.893 -0.158 4 SVR-RBF 0.931 -0.200 6 GAM 1.168 -0.158 
6 SVR-RBF 0.916 -0.270 5 GAM 0.939 -0.167 6 GAMM 1.185 -0.185 
7 GAMM 0.954 -0.391 6 GAMM 0.977 -0.358 7 MARSS-P 1.697 -0.803 

Linear 1 SVR-L 0.820 0.324 1 SVR-L 0.820 0.273 1 Reg-ARMA 0.841 0.367 
2 RF 0.831 0.233 2 RF 0.841 0.212 1 Reg-ARMA-

GARCH 
0.841 0.376 

3 MARSS-P 0.851 0.182 3 Reg-
ARMA 

0.858 0.079 1 GLS 0.842 0.348 

4 Reg-
ARMA-
GARCH 

0.871 0.094 3 Reg-
ARMA-
GARCH 

0.859 0.085 1 Linear reg 0.843 0.345 

4 GLS 0.872 0.106 3 GLS 0.859 0.088 2 GAM 0.857 0.285 
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4 Reg-ARMA 0.872 0.097 3 Linear reg 0.860 0.088 3 SVR-L 0.865 0.297 
4 Linear reg 0.873 0.094 3 MARSS-P 0.861 0.097 4 GAMM 0.919 0.261 
5 MARSS-M 0.877 -0.236 4 MARSS-M 0.869 -0.061 5 RF 1.002 -0.394 
6 GAM 0.887 -0.097 5 GAM 0.881 -0.130 6 MARSS-M 1.156 -0.367 
7 SVR-RBF 0.926 -0.312 6 SVR-RBF 0.926 -0.324 7 MARSS-P 1.569 -0.752 
8 GAMM 0.929 -0.415 7 GAMM 0.939 -0.315 8 SVR-RBF 1.592 -0.770 

Nonlinear 1 SVR-L 0.796 0.267 1 SVR-L 0.815 0.300 1 SVR-L 0.829 0.724 
2 RF 0.813 0.176 2 RF 0.839 0.188 2 RF 0.853 0.679 
3 MARSS-P 0.825 0.164 3 MARSS-M 0.852 0.200 3 GAM 1.118 0.133 
4 GAM 0.837 0.088 3 Reg-

ARMA-
GARCH 

0.854 0.124 3 Reg-ARMA 1.120 -0.200 

4 Reg-ARMA 0.840 0.064 3 GLS 0.854 0.121 3 GLS 1.120 -0.203 
4 Reg-

ARMA-
GARCH 

0.840 0.067 3 Linear reg 0.855 0.124 3 Linear reg 1.122 -0.212 

4 GLS 0.840 0.070 3 Reg-
ARMA 

0.855 0.127 3 Reg-ARMA-
GARCH 

1.123 -0.194 

4 Linear reg 0.840 0.094 4 MARSS-P 0.861 0.067 3 GAMM 1.132 0.115 
4 MARSS-M 0.840 0.091 5 GAM 0.878 -0.100 4 MARSS-M 1.227 -0.352 
5 SVR-RBF 0.903 -0.312 6 GAMM 0.937 -0.270 5 SVR-RBF 1.351 -0.452 
5 GAMM 0.909 -0.318 7 SVR-RBF 0.940 -0.400 6 MARSS-P 1.702 -0.752 

Periodic 1 RF 0.797 0.270 1 RF 0.871 0.230 1 RF 0.765 0.758 
1 SVR-L 0.804 0.291 2 SVR-L 0.886 0.155 2 SVR-RBF 0.873 0.579 
2 Reg-

ARMA-
GARCH 

0.832 0.121 2 MARSS-M 0.893 0.167 3 SVR-L 0.957 0.270 

2 MARSS-P 0.840 -0.106 3 SVR-RBF 0.915 -0.130 4 MARSS-M 0.962 0.333 
2 Reg-ARMA 0.842 -0.115 3 GAM 0.918 -0.082 5 GAM 1.040 -0.221 
2 GAM 0.842 -0.127 3 Reg-

ARMA-
0.919 -0.082 6 GAMM 1.050 -0.252 
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GARCH 
2 GLS 0.842 -0.079 3 GLS 0.922 -0.073 6 Linear reg 1.052 -0.258 
2 Linear reg 0.842 -0.073 3 Linear reg 0.922 -0.076 6 GLS 1.052 -0.252 
2 MARSS-M 0.853 -0.155 3 MARSS-P 0.923 -0.085 6 MARSS-P 1.053 -0.255 
3 SVR-RBF 0.876 -0.233 3 Reg-

ARMA 
0.924 -0.088 6 Reg-ARMA 1.055 -0.258 

4 GAMM 0.877 -0.167 4 GAMM 0.944 -0.209 7 Reg-ARMA-
GARCH 

1.063 -0.303 

Step 1 SVR-L 0.811 0.221 1 SVR-L 0.790 0.233 1 SVR-L 0.806 0.255 
1 RF 0.816 0.179 2 RF 0.801 0.215 2 RF 0.823 0.158 
2 MARSS-P 0.837 0.142 3 MARSS-P 0.811 0.103 2 MARSS-P 0.827 0.170 
2 Reg-

ARMA-
GARCH 

0.839 0.121 3 Reg-
ARMA-
GARCH 

0.811 0.109 2 Reg-ARMA 0.828 0.152 

2 Reg-ARMA 0.839 0.118 3 Reg-
ARMA 

0.812 0.091 2 Reg-ARMA-
GARCH 

0.828 0.164 

2 GLS 0.840 0.103 3 Linear reg 0.812 0.091 2 Linear reg 0.829 0.158 
2 Linear reg 0.840 0.106 3 GLS 0.812 0.073 2 GLS 0.829 0.167 
3 GAM 0.856 -0.121 4 GAM 0.827 -0.082 3 GAM 0.835 0.109 
4 MARSS-M 0.860 -0.185 5 MARSS-M 0.838 -0.121 4 MARSS-M 0.857 -0.191 
5 GAMM 0.879 -0.221 6 GAMM 0.862 -0.242 5 GAMM 0.879 -0.297 
6 SVR-RBF 0.897 -0.345 7 SVR-RBF 0.896 -0.312 6 SVR-RBF 0.983 -0.624 
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Table 3.A.4. Ranked model forecast results and associated average Root-Mean-Squared-Error (RMSE), and Kolmogorov-Smirnov D-
Statistic (D-stat) across 10%, 25%, and 95% amplitudes of change for all change scenarios. 

 10% Change Amplitude 
 

25% Change Amplitude 
 

95% Change Amplitude 
 

Change 
Scenario 

Rank Model RMSE D-stat Rank Model RMSE D-stat Rank Model RMSE D-stat 

Abrupt 1 SVR-L 3.810 0.361 1 SVR-L 3.963 0.239 1 RF 3.931 0.682 
2 RF 3.880 0.315 1 RF 3.980 0.279 2 SVR-L 4.005 0.642 
3 MARSS-P 4.028 0.155 2 Linear reg 4.154 0.091 3 SVR-RBF 4.635 0.279 
3 MARSS-M 4.046 0.161 2 GLS 4.155 0.112 4 MARSS-M 5.050 -0.218 
4 Reg-ARMA 4.108 -0.109 2 Reg-ARMA 4.156 0.124 5 Reg-ARMA 5.159 -0.242 
4 GLS 4.108 -0.094 2 Reg-ARMA-

GARCH 
4.160 0.121 5 GLS 5.162 -0.239 

4 Reg-ARMA-
GARCH 

4.111 -0.106 2 MARSS-M 4.177 0.112 5 Linear reg 5.166 -0.236 

4 Linear reg 4.111 -0.139 3 MARSS-P 4.236 -0.100 5 Reg-ARMA-
GARCH 

5.193 -0.270 

5 GAM 4.158 -0.148 4 GAM 4.361 -0.136 6 GAM 5.362 -0.167 
6 SVR-RBF 4.304 -0.267 5 SVR-RBF 4.419 -0.221 6 GAMM 5.436 -0.142 
7 GAMM 4.468 -0.436 6 GAMM 4.534 -0.348 7 MARSS-P 7.525 -0.806 

Linear 1 SVR-L 3.900 0.300 1 SVR-L 3.838 0.230 1 Reg-ARMA-
GARCH 

3.986 0.376 

2 RF 3.963 0.245 2 RF 3.941 0.173 1 Reg-ARMA 3.986 0.373 
3 MARSS-P 4.039 0.130 3 Reg-ARMA 3.996 0.091 1 GLS 3.991 0.367 
4 Reg-ARMA-

GARCH 
4.114 0.088 3 Reg-ARMA-

GARCH 
3.997 0.094 1 Linear reg 3.996 0.364 

4 Reg-ARMA 4.115 0.085 3 GLS 4.000 0.094 2 GAM 4.055 0.309 
4 GLS 4.116 0.082 3 Linear reg 4.007 0.076 3 SVR-L 4.081 0.294 
4 Linear reg 4.122 -0.061 3 MARSS-P 4.018 0.103 4 GAMM 4.350 0.248 
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5 MARSS-M 4.154 -0.161 4 MARSS-M 4.041 0.109 5 RF 4.743 -0.358 
6 GAM 4.165 -0.073 5 GAM 4.105 -0.106 6 MARSS-M 5.331 -0.352 
7 GAMM 4.355 -0.342 6 SVR-RBF 4.320 -0.342 7 MARSS-P 6.877 -0.748 
7 SVR-RBF 4.390 -0.355 7 GAMM 4.348 -0.258 8 SVR-RBF 7.311 -0.779 

Nonlinear 1 SVR-L 3.712 0.321 1 SVR-L 3.829 0.252 1 SVR-L 3.885 0.715 
2 RF 3.806 0.203 2 RF 3.916 0.167 2 RF 4.044 0.621 
3 MARSS-P 3.850 0.139 3 Reg-ARMA-

GARCH 
3.992 0.109 3 GAM 5.114 0.142 

4 GAM 3.911 0.103 3 MARSS-M 3.992 0.158 4 GAMM 5.193 0.118 
4 Linear reg 3.920 0.067 3 GLS 3.994 0.094 5 Reg-ARMA 5.199 -0.164 
4 GLS 3.922 0.064 3 Reg-ARMA 3.997 0.106 5 GLS 5.199 -0.170 
4 Reg-ARMA 3.923 0.061 3 Linear reg 3.998 0.100 5 Linear reg 5.210 -0.176 
4 Reg-ARMA-

GARCH 
3.923 0.082 4 MARSS-P 4.032 -0.073 5 Reg-ARMA-

GARCH 
5.212 -0.179 

4 MARSS-M 3.928 0.109 5 GAM 4.085 -0.091 6 MARSS-M 5.573 -0.315 
5 SVR-RBF 4.227 -0.421 6 GAMM 4.340 -0.285 7 SVR-RBF 6.281 -0.464 
5 GAMM 4.235 -0.300 7 SVR-RBF 4.362 -0.373 8 MARSS-P 7.387 -0.712 

Periodic 1 RF 3.991 0.288 1 RF 4.438 0.285 1 RF 4.722 0.845 
2 SVR-L 4.026 0.218 2 SVR-L 4.511 0.155 2 SVR-RBF 5.406 0.564 
3 Reg-ARMA-

GARCH 
4.158 0.103 2 MARSS-M 4.579 0.182 3 MARSS-M 5.782 0.306 

3 MARSS-P 4.192 0.094 3 SVR-RBF 4.669 0.115 4 SVR-L 5.822 0.261 
3 GLS 4.202 -0.103 3 Reg-ARMA-

GARCH 
4.680 -0.103 5 GAM 6.180 -0.224 

3 Reg-ARMA 4.203 -0.097 3 GAM 4.687 -0.079 6 Linear reg 6.231 -0.242 
3 Linear reg 4.203 -0.106 3 MARSS-P 4.701 -0.118 6 GLS 6.232 -0.245 
3 GAM 4.203 -0.115 3 GLS 4.701 -0.112 6 MARSS-P 6.236 -0.255 
3 MARSS-M 4.286 -0.173 3 Linear reg 4.703 -0.118 6 Reg-ARMA 6.245 -0.261 
4 GAMM 4.359 -0.170 3 Reg-ARMA 4.707 -0.130 7 Reg-ARMA-

GARCH 
6.268 -0.273 

5 SVR-RBF 4.380 -0.258 4 GAMM 4.822 -0.258 7 GAMM 6.286 -0.279 
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Step 1 SVR-L 3.744 0.206 1 SVR-L 3.732 0.270 1 SVR-L 3.778 0.273 
2 RF 3.787 0.167 2 RF 3.771 0.161 2 RF 3.858 0.185 
3 MARSS-P 3.885 0.130 3 MARSS-P 3.837 0.094 3 MARSS-P 3.906 0.164 
3 Reg-ARMA-

GARCH 
3.891 0.088 3 Reg-ARMA 3.839 0.085 3 Reg-ARMA 3.909 0.152 

3 Reg-ARMA 3.892 0.091 3 Reg-ARMA-
GARCH 

3.839 0.091 3 Reg-ARMA-
GARCH 

3.909 0.155 

3 GLS 3.894 0.094 3 Linear reg 3.842 0.097 3 Linear reg 3.910 0.152 
3 Linear reg 3.896 0.082 3 GLS 3.843 0.088 3 GLS 3.911 0.142 
4 GAM 3.955 -0.130 4 GAM 3.906 -0.103 4 GAM 3.940 0.118 
5 MARSS-M 3.977 -0.142 5 MARSS-M 3.942 -0.142 5 MARSS-M 4.026 -0.173 
6 GAMM 4.068 -0.185 6 GAMM 4.065 -0.279 6 GAMM 4.127 -0.248 
7 SVR-RBF 4.131 -0.330 7 SVR-RBF 4.174 -0.282 7 SVR-RBF 4.559 -0.679 
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Appendix 3.B: Ranked model results for the non-normal (AI) metric data. 

Table 3.B.1. Ranked in-sample model fit results and associated average Root-Mean-Squared-Error (RMSE), and Kolmogorov-
Smirnov D-Statistic (D-stat) across 10%, 25%, and 95% amplitudes of change for all change scenarios. 

 10% Change Amplitude 
 

25% Change Amplitude 
 

95% Change Amplitude 
 

Change 
Scenario 

Rank Model RMSE D-stat Rank Model RMSE D-stat Rank Model RMSE D-stat 

Abrupt 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 
2 SVR-RBF 0.043 0.641 2 SVR-RBF 0.045 0.723 2 SVR-RBF 0.046 0.577 
3 MARSS-M 0.054 0.136 3 MARSS-M 0.056 0.164 3 MARSS-M 0.055 0.195 
4 GLMM 0.055 -0.126 4 GAM 0.058 -0.151 4 GAM 0.058 -0.144 
4 GAM 0.055 -0.144 4 GLMM 0.058 -0.146 4 GAMM 0.058 -0.146 
4 Reg-ARMA 0.056 -0.141 4 GAMM 0.058 -0.159 5 GLMM 0.059 -0.162 
4 GAMM 0.056 -0.151 4 Reg-ARMA 0.059 -0.149 5 Reg-ARMA 0.059 -0.159 
4 GLM 0.056 -0.144 4 Linear reg 0.059 -0.174 5 Linear reg 0.059 -0.172 
4 Linear reg 0.056 -0.156 4 GLS 0.059 -0.177 5 GLS 0.059 -0.172 
4 GLS 0.056 -0.159 4 GLM 0.059 -0.172 6 GLM 0.059 -0.187 
5 RF 0.057 -0.197 5 Reg-

ARMA-
GARCH 

0.060 -0.259 7 Reg-ARMA-
GARCH 

0.060 -0.231 

5 Reg-ARMA-
GARCH 

0.057 -0.233 6 RF 0.061 -0.354 8 RF 0.061 -0.274 

6 SVR-L 0.058 -0.269 7 SVR-L 0.061 -0.328 8 SVR-L 0.061 -0.300 
Linear 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 

2 SVR-RBF 0.046 0.605 2 SVR-RBF 0.047 0.626 2 SVR-RBF 0.045 0.600 
3 MARSS-M 0.057 0.128 3 MARSS-M 0.058 -0.126 3 MARSS-M 0.055 0.159 
4 GLMM 0.058 -0.131 4 GLMM 0.059 -0.138 4 GLMM 0.058 -0.144 
4 GAM 0.058 -0.138 4 GAM 0.059 -0.133 4 Reg-ARMA 0.058 -0.151 
5 Reg-ARMA 0.058 -0.138 5 Reg-ARMA 0.060 -0.149 4 GAM 0.058 -0.146 
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5 GLM 0.058 -0.133 5 GLM 0.060 -0.156 4 GLM 0.058 -0.162 
5 Linear reg 0.058 -0.151 5 GAMM 0.060 -0.162 4 Linear reg 0.058 -0.156 
5 GLS 0.058 -0.154 5 Linear reg 0.060 -0.167 4 GLS 0.058 -0.159 
5 GAMM 0.058 -0.146 5 GLS 0.060 -0.169 4 GAMM 0.058 -0.164 
6 RF 0.060 -0.246 6 RF 0.061 -0.228 5 Reg-ARMA-

GARCH 
0.059 -0.208 

6 Reg-ARMA-
GARCH 

0.060 -0.244 6 Reg-
ARMA-
GARCH 

0.061 -0.254 6 SVR-L 0.061 -0.259 

7 SVR-L 0.061 -0.300 7 SVR-L 0.062 -0.308 7 RF 0.061 -0.310 
Nonlinear 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 

2 SVR-RBF 0.045 0.621 2 SVR-RBF 0.046 0.613 2 SVR-RBF 0.043 0.738 
3 MARSS-M 0.056 0.144 3 MARSS-M 0.056 0.138 3 MARSS-M 0.054 0.331 
4 GLMM 0.057 -0.131 4 GAM 0.057 -0.131 4 GAM 0.057 0.213 
4 GAM 0.057 -0.133 4 GLMM 0.058 -0.128 5 GAMM 0.058 0.177 
5 Reg-ARMA 0.057 -0.144 5 GAMM 0.058 -0.138 6 Reg-ARMA 0.058 0.162 
5 GLM 0.057 -0.156 5 Reg-ARMA 0.058 -0.133 7 RF 0.060 -0.203 
5 GAMM 0.058 -0.159 5 GLM 0.058 -0.144 8 Linear reg 0.063 -0.279 
5 Linear reg 0.058 -0.149 5 Linear reg 0.058 -0.149 8 GLS 0.063 -0.282 
5 GLS 0.058 -0.151 5 GLS 0.058 -0.151 8 SVR-L 0.063 -0.310 
6 RF 0.059 -0.187 6 Reg-

ARMA-
GARCH 

0.060 -0.200 9 Reg-ARMA-
GARCH 

0.065 -0.336 

7 Reg-ARMA-
GARCH 

0.059 -0.231 6 RF 0.060 -0.210 10 GLMM 0.066 -0.359 

8 SVR-L 0.060 -0.279 7 SVR-L 0.061 -0.244 11 GLM 0.067 -0.456 
Periodic 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 

2 SVR-RBF 0.042 0.831 2 SVR-RBF 0.040 0.841 2 SVR-RBF 0.041 0.846 
3 RF 0.059 -0.151 3 RF 0.058 0.344 3 RF 0.062 0.769 
3 MARSS-M 0.059 -0.149 4 MARSS-M 0.062 -0.172 4 MARSS-M 0.091 -0.231 
4 GAM 0.060 -0.177 5 GAM 0.063 -0.179 5 Reg-ARMA 0.093 -0.238 
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5 GLMM 0.060 -0.197 6 GLMM 0.064 -0.192 6 GLM 0.093 -0.254 
6 GLM 0.061 -0.215 6 GLM 0.064 -0.192 7 GLMM 0.094 -0.264 
6 Reg-ARMA 0.061 -0.213 6 Reg-ARMA 0.064 -0.203 8 Linear reg 0.094 -0.269 
6 GAMM 0.061 -0.233 6 SVR-L 0.064 -0.190 8 GLS 0.094 -0.272 
6 Linear reg 0.061 -0.236 7 Linear reg 0.064 -0.228 8 GAMM 0.094 -0.285 
6 GLS 0.061 -0.238 7 GLS 0.064 -0.228 9 Reg-ARMA-

GARCH 
0.094 -0.292 

7 SVR-L 0.062 -0.249 7 GAMM 0.064 -0.223 10 GAM 0.097 -0.400 
Step 8 Reg-ARMA-

GARCH 
0.062 -0.295 8 Reg-

ARMA-
GARCH 

0.065 -0.249 10 SVR-L 0.097 -0.485 

1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 
2 SVR-RBF 0.044 0.613 2 SVR-RBF 0.044 0.644 2 SVR-RBF 0.046 0.597 
3 MARSS-M 0.055 0.149 3 MARSS-M 0.055 -0.126 3 MARSS-M 0.056 0.174 
4 GLMM 0.056 -0.133 4 GLMM 0.056 -0.138 4 GLMM 0.057 -0.133 
5 GAM 0.056 -0.151 5 Reg-ARMA 0.057 -0.136 5 Reg-ARMA 0.058 -0.131 
5 Reg-ARMA 0.056 -0.154 5 GAM 0.057 -0.144 5 GAM 0.058 -0.144 
5 GLM 0.057 -0.146 5 GLM 0.057 -0.149 5 GLM 0.058 -0.149 
5 GAMM 0.057 -0.169 5 GAMM 0.057 -0.149 5 GAMM 0.058 -0.151 
5 Linear reg 0.057 -0.159 5 Linear reg 0.057 -0.154 5 Linear reg 0.058 -0.154 
5 GLS 0.057 -0.162 5 GLS 0.057 -0.156 5 GLS 0.058 -0.156 
6 RF 0.057 -0.182 6 Reg-

ARMA-
GARCH 

0.058 -0.223 6 Reg-ARMA-
GARCH 

0.059 -0.244 

7 Reg-ARMA-
GARCH 

0.058 -0.246 6 RF 0.058 -0.223 7 SVR-L 0.060 -0.336 

8 SVR-L 0.059 -0.356 7 SVR-L 0.059 -0.269 8 RF 0.061 -0.326 
  

 



139 
 

Table 3.B.2. Ranked in-sample model fit results and associated average Root-Mean-Squared-Error (RMSE), and Kolmogorov-
Smirnov D-Statistic (D-stat) for the 95% Linear and Nonlinear change scenarios and corresponding lagged change scenarios. 
 Non-Lagged 95% Change Amplitude Lagged 95% Change Amplitude 
Change 
Scenario 

Rank Model RMSE D-stat Rank Model RMSE D-stat 

Linear 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 
2 SVR-RBF 0.045 0.600 2 SVR-RBF 0.045 0.718 
3 MARSS-M 0.055 0.159 3 MARSS-M 0.057 0.262 
4 GLMM 0.058 -0.144 4 GAM 0.059 0.149 
4 Reg-ARMA 0.058 -0.151 5 GAMM 0.060 -0.146 
4 GAM 0.058 -0.146 6 Reg-ARMA 0.061 -0.159 
4 GLM 0.058 -0.162 7 RF 0.062 -0.203 
4 Linear reg 0.058 -0.156 8 GLMM 0.063 -0.233 
4 GLS 0.058 -0.159 8 Linear reg 0.063 -0.223 
4 GAMM 0.058 -0.164 8 GLS 0.063 -0.226 
5 Reg-ARMA-GARCH 0.059 -0.208 9 GLM 0.063 -0.262 
6 SVR-L 0.061 -0.259 10 SVR-L 0.065 -0.318 
7 RF 0.061 -0.310 11 Reg-ARMA-GARCH 0.066 -0.338 

Nonlinear 1 MARSS-P 0.001 0.923 1 MARSS-P 0.001 0.923 
2 SVR-RBF 0.043 0.738 2 SVR-RBF 0.045 0.682 
3 MARSS-M 0.054 0.331 3 MARSS-M 0.056 0.223 
4 GAM 0.057 0.213 4 GAM 0.059 -0.159 
5 GAMM 0.058 0.177 5 GAMM 0.060 -0.167 
6 Reg-ARMA 0.058 0.162 5 Reg-ARMA 0.060 -0.174 
7 RF 0.060 -0.203 5 RF 0.061 -0.154 
8 Linear reg 0.063 -0.279 6 GLMM 0.063 -0.244 
8 GLS 0.063 -0.282 6 Linear reg 0.063 -0.254 
8 SVR-L 0.063 -0.310 6 GLS 0.063 -0.256 
9 Reg-ARMA-GARCH 0.065 -0.336 6 GLM 0.063 -0.277 
10 GLMM 0.066 -0.359 7 Reg-ARMA-GARCH 0.066 -0.372 
11 GLM 0.067 -0.456 8 SVR-L 0.066 -0.382 
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Table 3.B.3. Ranked model forecast results and associated average Mean-Absolute-Scaled-Error (MASE), and Kolmogorov-Smirnov 
D-Statistic (D-stat) across 10%, 25%, and 95% amplitudes of change for all change scenarios. 

 10% Change Amplitude 
 

  25% Change Amplitude 
 

95% Change Amplitude 
 

Change 
Scenario 

Rank Model MASE D-stat Rank Model MASE D-stat Rank Model MASE D-stat 

Abrupt 1 SVR-L 0.965 0.536 1 SVR-L 0.957 0.587 1 SVR-L 1.118 0.474 
2 Reg-ARMA-

GARCH 
1.022 0.451 2 Reg-ARMA-

GARCH 
1.026 0.462 2 GLM 1.142 0.474 

3 MARSS-P 1.054 0.390 3 MARSS-P 1.046 0.415 2 SVR-RBF 1.147 0.423 
4 SVR-RBF 1.157 0.228 4 GLMM 1.097 0.362 3 MARSS-M 1.183 0.433 
4 GLMM 1.165 0.182 4 SVR-RBF 1.101 0.351 3 GLMM 1.186 0.446 
5 GLM 1.196 0.154 4 MARSS-M 1.106 0.364 4 Reg-ARMA-

GARCH 
1.227 0.341 

6 MARSS-M 1.228 0.138 4 GLM 1.114 0.326 5 RF 1.510 -0.321 
7 GAMM 1.288 -0.197 5 Linear reg 1.333 -0.390 6 Linear reg 1.552 -0.364 
7 Linear reg 1.315 -0.277 5 Reg-ARMA 1.333 -0.385 6 GLS 1.552 -0.362 
7 GLS 1.316 -0.279 5 GLS 1.333 -0.387 6 MARSS-P 1.553 -0.310 
7 Reg-ARMA 1.319 -0.274 6 RF 1.420 -0.390 6 Reg-ARMA 1.553 -0.367 
8 GAM 1.488 -0.490 7 GAMM 1.538 -0.615 7 GAM 1.837 -0.556 
8 RF 1.524 -0.510 8 GAM 1.564 -0.608 8 GAMM 1.963 -0.685 

Linear 1 SVR-L 0.951 0.546 1 SVR-L 0.970 0.551 1 SVR-L 0.953 0.541 
2 Reg-ARMA-

GARCH 
1.008 0.459 2 Reg-ARMA-

GARCH 
1.013 0.490 2 Reg-ARMA-

GARCH 
0.995 0.477 

3 MARSS-P 1.069 0.344 3 SVR-RBF 1.035 0.464 3 GAMM 1.100 0.377 
3 SVR-RBF 1.069 0.336 4 MARSS-P 1.060 0.400 4 GLMM 1.119 0.331 
4 GAMM 1.138 0.210 5 GAMM 1.166 0.197 4 GLM 1.122 0.336 
5 GLMM 1.182 0.133 6 MARSS-M 1.170 0.203 5 GAM 1.247 0.192 
6 GLM 1.212 -0.172 6 GLMM 1.179 0.164 6 RF 1.312 -0.167 
7 MARSS-M 1.249 -0.213 7 GLM 1.207 -0.185 7 Reg-ARMA 1.315 -0.215 
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8 Linear reg 1.318 -0.290 8 Linear reg 1.318 -0.336 7 Linear reg 1.316 -0.218 
8 GLS 1.318 -0.285 8 GLS 1.318 -0.341 7 GLS 1.317 -0.215 
8 Reg-ARMA 1.320 -0.292 8 Reg-ARMA 1.319 -0.372 8 MARSS-M 1.347 -0.149 
9 GAM 1.400 -0.354 8 GAM 1.329 -0.382 9 SVR-RBF 2.370 -0.774 
10 RF 1.642 -0.556 9 RF 1.507 -0.590 10 MARSS-P 3.196 -0.890 

Nonlinear 1 SVR-L 1.005 0.567 1 SVR-L 0.976 0.462 1 GLM 1.338 0.631 
2 Reg-ARMA-

GARCH 
1.064 0.451 2 SVR-RBF 1.038 0.413 2 RF 1.468 0.579 

3 MARSS-P 1.098 0.446 2 Reg-ARMA-
GARCH 

1.050 0.397 3 GLMM 1.468 0.567 

4 SVR-RBF 1.128 0.364 2 MARSS-P 1.053 0.392 4 SVR-L 1.521 0.559 
5 GLMM 1.229 0.154 3 MARSS-M 1.165 0.274 5 MARSS-M 1.873 0.218 
6 GAMM 1.229 0.169 3 GLMM 1.186 0.256 6 Reg-ARMA-

GARCH 
1.989 -0.223 

7 MARSS-M 1.262 -0.154 4 GLM 1.218 0.221 7 Reg-ARMA 2.036 -0.282 
7 GLM 1.263 -0.190 5 Linear reg 1.402 -0.338 8 Linear reg 2.106 -0.354 
8 Reg-ARMA 1.360 -0.344 5 Reg-ARMA 1.403 -0.331 8 GLS 2.106 -0.356 
8 GLS 1.361 -0.367 5 GLS 1.403 -0.341 9 SVR-RBF 2.148 -0.254 
8 Linear reg 1.361 -0.369 6 GAMM 1.485 -0.333 10 GAM 2.851 -0.595 
9 GAM 1.519 -0.510 7 RF 1.590 -0.482 11 GAMM 3.443 -0.767 
9 RF 1.551 -0.562 8 GAM 1.707 -0.664 12 MARSS-P 4.326 -0.833 

Periodic 1 RF 0.934 0.692 1 RF 0.855 0.890 1 RF 0.660 0.923 
2 GAM 1.030 0.467 2 GAM 1.039 0.721 2 GAM 1.012 0.846 
3 SVR-L 1.044 0.474 3 SVR-L 1.162 0.472 3 SVR-RBF 1.358 0.654 
4 SVR-RBF 1.066 0.451 4 SVR-RBF 1.173 0.454 4 SVR-L 1.441 0.526 
5 GLMM 1.187 -0.200 5 GLMM 1.307 -0.187 5 GLMM 1.597 -0.254 
6 Reg-ARMA-

GARCH 
1.198 -0.205 6 GLM 1.349 -0.249 6 GAMM 1.647 -0.282 

7 GAMM 1.211 -0.213 6 MARSS-M 1.352 -0.246 6 MARSS-M 1.653 -0.326 
8 GLM 1.224 -0.282 6 GAMM 1.362 -0.269 6 GLM 1.654 -0.331 
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8 MARSS-P 1.229 -0.244 6 Reg-ARMA-
GARCH 

1.365 -0.285 7 MARSS-P 1.663 -0.313 

8 Linear reg 1.236 -0.269 7 MARSS-P 1.377 -0.282 7 Reg-ARMA-
GARCH 

1.664 -0.318 

8 GLS 1.236 -0.267 8 Linear reg 1.385 -0.305 7 Reg-ARMA 1.673 -0.344 
8 Reg-ARMA 1.238 -0.277 8 GLS 1.385 -0.305 7 GLS 1.673 -0.338 
8 MARSS-M 1.241 -0.308 8 Reg-ARMA 1.385 -0.303 7 Linear reg 1.673 -0.341 

Step 1 SVR-L 0.957 0.497 1 SVR-L 0.932 0.482 1 SVR-L 0.930 0.572 
2 Reg-ARMA-

GARCH 
1.012 0.410 2 Reg-ARMA-

GARCH 
0.968 0.397 2 Reg-ARMA-

GARCH 
0.979 0.462 

3 RF 1.112 0.128 3 GAMM 1.092 0.103 3 GAMM 1.098 0.144 
3 SVR-RBF 1.116 0.113 3 GLS 1.096 0.087 3 GAM 1.105 0.131 
3 GAMM 1.120 0.126 3 Linear reg 1.096 0.085 3 Linear reg 1.105 0.133 
3 GLS 1.128 -0.103 3 Reg-ARMA 1.098 -0.090 3 GLS 1.105 0.131 
3 Linear reg 1.128 -0.105 3 GAM 1.102 0.090 3 Reg-ARMA 1.107 0.128 
3 GAM 1.128 0.090 3 MARSS-P 1.108 -0.085 4 MARSS-P 1.117 -0.115 
3 Reg-ARMA 1.128 -0.100 4 RF 1.123 -0.144 5 GLMM 1.145 -0.136 
3 MARSS-P 1.136 -0.133 5 SVR-RBF 1.142 -0.177 6 RF 1.171 -0.231 
4 GLMM 1.194 -0.221 6 GLMM 1.155 -0.208 6 GLM 1.175 -0.231 
5 GLM 1.225 -0.300 7 GLM 1.187 -0.313 7 MARSS-M 1.264 -0.428 
6 MARSS-M 1.303 -0.500 8 MARSS-M 1.270 -0.477 8 SVR-RBF 1.272 -0.446 
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Table 3.B.4. Ranked model forecast results and associated average Root-Mean-Squared-Error (RMSE), and Kolmogorov-Smirnov D-
Statistic (D-stat) across 10%, 25%, and 95% amplitudes of change for all change scenarios. 

 10% Change Amplitude 
 

25% Change Amplitude 
 

95% Change Amplitude 
 

Change 
Scenario 

Rank Model RMSE D-
stat 

Rank Model RMSE D-
stat 

Rank Model RMSE D-
stat 

Abrupt 1 MARSS-M 0.082 0.095 1 MARSS-M 0.079 0.118 1 MARSS-M 0.087 0.164 
1 GLM 0.082 0.100 1 SVR-RBF 0.079 0.087 1 Reg-ARMA-

GARCH 
0.088 0.144 

1 SVR-RBF 0.082 0.095 1 Linear reg 0.079 0.121 1 SVR-RBF 0.088 0.141 
1 Linear reg 0.082 0.072 1 GLS 0.079 0.123 1 Linear reg 0.088 0.136 
1 GLS 0.082 0.069 1 Reg-ARMA 0.079 0.118 1 GLS 0.088 0.133 
1 Reg-ARMA 0.082 0.067 1 GLM 0.080 0.090 1 Reg-ARMA 0.089 0.131 
1 GLMM 0.082 -0.056 1 GLMM 0.080 0.064 1 GLM 0.089 0.123 
1 GAMM 0.083 -0.069 1 Reg-ARMA-

GARCH 
0.080 0.062 1 SVR-L 0.089 0.095 

1 MARSS-P 0.083 -0.082 2 RF 0.081 -0.090 1 RF 0.089 0.118 
1 Reg-ARMA-

GARCH 
0.084 -0.087 2 SVR-L 0.082 -0.072 1 GLMM 0.090 0.087 

1 GAM 0.084 -0.087 2 GAMM 0.082 -0.097 2 GAM 0.095 -0.231 
1 RF 0.084 -0.108 2 GAM 0.083 -0.123 3 GAMM 0.096 -0.321 
1 SVR-L 0.085 -0.108 3 MARSS-P 0.085 -0.187 4 MARSS-P 0.104 -0.413 

Linear 1 GLM 0.081 0.103 1 GLM 0.082 0.105 1 GAM 0.081 0.182 
1 MARSS-M 0.081 0.100 1 Linear reg 0.082 0.105 1 GLM 0.081 0.167 
1 SVR-RBF 0.081 0.121 1 GLS 0.082 0.103 1 GLMM 0.081 0.164 
1 GLMM 0.081 0.067 1 Reg-ARMA 0.082 0.108 1 Reg-ARMA 0.082 0.185 
1 Linear reg 0.081 0.100 1 GLMM 0.082 0.085 1 Linear reg 0.082 0.190 
1 GLS 0.081 0.097 1 MARSS-M 0.083 0.108 1 GLS 0.082 0.187 
1 Reg-ARMA 0.081 0.103 1 GAMM 0.083 0.082 1 GAMM 0.082 0.154 
1 GAMM 0.082 -0.074 1 GAM 0.083 0.097 2 Reg-ARMA- 0.083 0.144 
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GARCH 
1 MARSS-P 0.082 0.062 2 Reg-ARMA-

GARCH 
0.085 -0.090 3 SVR-L 0.085 0.131 

1 Reg-ARMA-
GARCH 

0.083 -0.077 2 SVR-RBF 0.085 -0.092 4 RF 0.089 -0.138 

2 GAM 0.083 -0.092 2 MARSS-P 0.086 -0.133 5 MARSS-M 0.092 -0.164 
3 SVR-L 0.085 -0.146 2 SVR-L 0.087 -0.179 6 SVR-RBF 0.125 -0.523 
4 RF 0.087 -0.200 3 RF 0.087 -0.185 7 MARSS-P 0.147 -0.823 

Nonlinear 1 GLS 0.085 0.103 1 GLM 0.075 0.110 1 RF 0.086 0.433 
1 Linear reg 0.085 0.100 1 MARSS-M 0.075 0.113 2 SVR-L 0.088 0.395 
1 Reg-ARMA 0.085 0.095 1 GLMM 0.075 0.103 3 MARSS-M 0.092 0.249 
1 GLM 0.085 0.087 1 Reg-ARMA-

GARCH 
0.076 0.103 4 Reg-ARMA 0.095 0.290 

1 MARSS-M 0.085 0.077 1 Linear reg 0.077 0.105 4 GLM 0.096 0.233 
1 GLMM 0.086 0.069 1 GLS 0.077 0.103 4 Reg-ARMA-

GARCH 
0.096 0.279 

1 RF 0.087 0.087 1 Reg-ARMA 0.077 0.100 5 Linear reg 0.098 0.249 
1 SVR-RBF 0.087 -0.067 2 SVR-RBF 0.077 0.105 5 GLS 0.098 0.246 
1 GAMM 0.087 -0.077 2 SVR-L 0.078 -0.105 6 GLMM 0.100 0.185 
1 MARSS-P 0.087 -0.105 3 GAMM 0.079 -0.151 7 SVR-RBF 0.119 -0.364 
1 GAM 0.087 -0.105 4 MARSS-P 0.080 -0.149 8 GAM 0.122 -0.367 
1 Reg-ARMA-

GARCH 
0.088 -0.115 5 GAM 0.082 -0.208 9 GAMM 0.145 -0.646 

2 SVR-L 0.090 -0.146 5 RF 0.083 -0.195 10 MARSS-P 0.187 -0.838 
Periodic 1 RF 0.080 0.221 1 RF 0.081 0.513 1 RF 0.087 0.854 

2 SVR-RBF 0.085 0.126 2 GAM 0.089 0.259 2 GAM 0.111 0.628 
2 SVR-L 0.086 0.097 3 SVR-RBF 0.091 0.228 3 SVR-RBF 0.128 0.369 
2 GAM 0.086 0.097 3 SVR-L 0.091 0.269 4 SVR-L 0.141 -0.195 
3 GLMM 0.089 -0.067 4 GLMM 0.096 -0.108 5 GLMM 0.142 -0.156 
3 GLM 0.090 -0.072 5 GAMM 0.097 -0.123 6 GAMM 0.145 -0.169 
3 GAMM 0.090 -0.072 5 GLM 0.097 -0.131 7 MARSS-P 0.145 -0.179 
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3 MARSS-P 0.090 -0.059 5 MARSS-P 0.097 -0.136 7 Reg-ARMA-
GARCH 

0.146 -0.182 

3 Reg-ARMA-
GARCH 

0.090 -0.082 5 MARSS-M 0.097 -0.149 7 Reg-ARMA 0.146 -0.205 

3 Linear reg 0.090 -0.072 5 Reg-ARMA-
GARCH 

0.097 -0.149 7 GLS 0.146 -0.203 

3 GLS 0.090 -0.072 5 Linear reg 0.097 -0.144 7 Linear reg 0.146 -0.208 
3 Reg-ARMA 0.090 -0.069 5 GLS 0.097 -0.141 7 GLM 0.146 -0.269 
3 MARSS-M 0.090 -0.126 5 Reg-ARMA 0.097 -0.144 7 MARSS-M 0.147 -0.290 

Step 1 RF 0.073 0.162 1 RF 0.076 0.177 1 SVR-RBF 0.076 0.105 
2 SVR-RBF 0.076 0.087 1 SVR-RBF 0.077 0.105 1 GLM 0.076 0.079 
3 GLM 0.078 0.072 2 GLM 0.078 0.067 1 MARSS-M 0.076 0.072 
3 MARSS-M 0.078 -0.062 2 MARSS-M 0.078 0.062 1 MARSS-P 0.076 0.064 
3 GLMM 0.078 0.062 2 MARSS-P 0.078 0.062 1 Reg-ARMA 0.077 0.062 
3 MARSS-P 0.078 -0.033 2 GLS 0.078 0.046 1 Linear reg 0.077 0.059 
3 Linear reg 0.078 -0.041 2 Linear reg 0.078 0.051 1 GLS 0.077 0.056 
3 GLS 0.078 -0.044 2 Reg-ARMA 0.078 0.051 1 GLMM 0.077 -0.059 
3 Reg-ARMA 0.078 -0.044 2 GLMM 0.079 -0.067 1 GAMM 0.077 -0.044 
3 GAMM 0.078 -0.069 2 GAMM 0.079 -0.064 1 GAM 0.077 -0.064 
3 GAM 0.078 -0.067 2 GAM 0.079 -0.105 1 RF 0.078 -0.118 
4 Reg-ARMA-

GARCH 
0.080 -0.092 3 Reg-ARMA-

GARCH 
0.080 -0.118 2 Reg-ARMA-

GARCH 
0.079 -0.100 

5 SVR-L 0.081 -0.149 4 SVR-L 0.081 -0.149 3 SVR-L 0.079 -0.128 
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