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ABSTRACT 
	 Helical,	cross‐flow	turbines	have	a	number	of	
attractive	 properties	 for	 use	 in	 generating	
electricity	from	fast	moving	tidal,	ocean,	and	river	
currents.	 These	 include	 low	 torque	 oscillations,	
inherent	 flow	 alignment	 in	 a	 vertical	 orientation,	
and	 a	 convenient	 form	 factor.	 However,	 the	
hydrodynamics	 of	 these	 turbines	 are	 not	 as	well	
understood	 as	 for	 axial	 flow	 or	 straight‐bladed,	
cross‐flow	 variants.	 This	 paper	 presents	 results	
from	 simulations,	 laboratory	 experiments,	 and	
field	 studies	 of	 helical,	 cross‐flow	 turbines	 with	
emphasis	 on	 performance,	 wake	 characteristics,	
and	 responsiveness	 to	 inflow	 turbulence.	 These	
results	 demonstrate	 the	 utility	 of	 combining	
numerical	 modeling	 with	 laboratory	 and	 field	
experiments	and	suggest	a	number	of	avenues	for	
future	study.			
	
INTRODUCTION  
	 Cross‐flow	 turbines	 are	 a	 technology	 capable	
of	 generating	 power	 from	 swiftly	 moving	 tidal,	
ocean,	 and	 river	 currents.	 Close	 analogues	 to	
vertical	 axis	 wind	 turbines,	 cross‐flow	 turbines	
have	several	desirable	attributes	relative	to	axial‐
flow	 (horizontal	 axis)	 turbines.	 Among	 these	 is	 a	
rectangular	 form	 factor	 that	 enables	 cross‐flow	
turbines	to	achieve	a	high	blockage	ratio	(i.e.,	ratio	
of	 turbine	 swept	 area	 to	 channel	 cross‐sectional	
area)	 in	 natural	 and	 man‐made	 channels	 [1].	
Turbines	 arranged	 to	 achieve	 a	 high	 blockage	
ratio	 are	 able	 to	 exceed	 the	Betz	 limit	 associated	
with	unconfined	flows	[2],	since	this	arrangement	
allows	an	array	to	draw	on	the	potential	energy	in	
the	flow.		
	 Among	 the	 cross‐flow	 turbine	 variants	 are	
straight‐	and	helical‐bladed	designs.	In	both	cases,	

the	blades	have	a	hydrofoil	profile,	but	for	helical	
blades,	the	profile	traces	out	a	helical	sweep	along	
the	 blade	 span	 [3,4,5].	 If	 a	 helical	 turbine	 is	
designed	 to	 achieve	 a	 “full	 wrap”	 (i.e.,	 no	
circumferential	void	space	between	the	end	of	one	
blade	 and	 the	 beginning	 of	 another),	 then	 at	 any	
angular	 position,	 a	 point	 along	 the	 span	 of	 one	
blade	will	always	be	at	the	optimal	angle	of	attack	
and	 the	 torque	produced	will	 be	nearly	 constant.	
This	overcomes	the	potentially	damaging	“stutter‐
start”	 behavior	 for	 straight‐bladed	 cross‐flow	
turbines.	Specifically,	because	the	entire	blade	of	a	
straight‐bladed	rotor	achieves	maximum	torque	at	
one	 angular	 position,	 a	 turbine	 operating	 in	 a	
turbulent	 flow	near	 its	 cut‐in	 velocity	 can	 stutter	
between	 high	 and	 low	 torque	 positions,	 starting	
and	stopping	multiple	 times	 in	a	single	“start‐up”	
period	[3].	In	addition,	a	vertically‐oriented	cross‐
flow	 turbine	 allows	 for	 inherent	 yaw	 alignment	
without	a	yaw	drive	mechanism.	
	 Set	 against	 these	 benefits	 are	 the	 complex	
hydrodynamics	 associated	 with	 a	 cross‐flow	
geometry.	 In	 operation,	 the	 vortices	 shed	 from	
blades	 on	 the	 upstream	 portion	 of	 their	 rotation	
may	 interact	 with	 the	 downstream	 blades,	 as	
shown	in	Figure	1,	giving	rise	to	more	complicated	
hydrodynamics	 than	 those	 of	 horizontal	 axis	
turbines.	
	 To	date,	our	research	has	combined	numerical	
simulations,	 laboratory	 experiments,	 and	 field	
studies	 to	 better	 understand	 the	 hydrodynamics,	
power	 performance,	 and	 wake	 characteristics	 of	
helical,	 cross‐flow	 turbines.	 These	 have	 included	
tests	 with	 four‐bladed	 turbines	 at	 blade	 chord	
Reynolds	numbers	up	to	105.	This	paper	presents	
two	aspects	of	 that	research:	 (1)	a	comparison	of	
hydrodynamic	performance	obtained	through		
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