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ABSTRACT 
	 Spatial	 resource	 gradients	 have	 been	
observed	 at	 a	 number	 of	 proposed	 tidal	 energy	
sites.	 However,	 these	 gradients	 are	 typically	
quantified	using	the	first	or	second	moments	(i.e.,	
mean	or	standard	deviation)	of	time	series	which	
obscures	 information	 about	 the	 co‐temporal	
amplitude	and	phase	variation.	These	co‐temporal	
variations	 have	 a	 number	 of	 interesting	
implications	for	power	production	from	arrays	of	
tidal	 turbines.	Here,	 co‐temporal	 time	series	data	
from	several	locations	in	northern	Admiralty	Inlet,	
Puget	 Sound,	 Washington	 (USA)	 are	 used	 to	
investigate	 phase	 variations	 in	 kinetic	 power	
density	 over	 length	 scales	 of	 less	 than	 5	 km.	
Results	demonstrate	that	large	phase	variations	in	
kinetic	 power	 density	 are	 routinely	 produced	 by	
phase	 variations	 in	 the	 harmonic	 and	 aharmonic	
currents.	 However,	 exploiting	 these	 phase	
variations	in	a	way	that	reduces	power	generation	
intermittency	 requires	 that	 locations	 which	 are	
out	 of	 phase	 have	 similar	 mean	 kinetic	 power	
density	and	intermittency.	Further	investigation	of	
local	 phasing	 at	 tidal	 energy	 sites	 of	 commercial	
interest	is	recommended.	
	
INTRODUCTION  
	 Resource	 characterization	 is	 an	 essential	
early‐stage	 activity	 in	 tidal	 energy	 project	
development.	The	information	obtained	feeds	into	
structural	 load	 calculations,	 as	 well	 as	 estimates	
for	power	generation	 from	 individual	 turbines	or	
small	arrays.	[1]	present	a	set	of	resource	metrics	
that	 describe	 characteristics	 of	 the	 mean	 (as	
opposed	 to	 turbulent)	 currents	 at	 potential	
turbine	 deployment	 locations	 within	 Admiralty	
Inlet,	Puget	Sound,	WA	(USA).	These	are	statistical	
quantities	 either	 averages	 (first	 moment)	 or	
variances	 (second	 moment),	 which	 obscure	
information	 about	 co‐temporal	 amplitude	 and	
phase	 variations	 between	 locations.	 These	

variations	 can	 have	 a	 number	 of	 interesting	
implications	 for	 power	 production	 from	 arrays.	
For	 example,	 if	 the	 amplitude	 of	 the	 currents	 is	
similar	 at	 two	 locations,	 but	 the	 currents	 are	out	
of	phase,	their	aggregate	power	generation	profile	
will	 be	 more	 continuous	 than	 for	 the	 individual	
locations.	 The	 potential	 to	 benefit	 from	 “tidal	
phasing”	has	been	investigated	at	a	national	scale	
by	Iyer	et	al.	[2],	but	has	not	been	investigated	at	
smaller	 scales.	Here,	we	 investigate	 tidal	 phasing	
within	a	 single	 site	over	 length	scales	 less	 than	5	
km.		
	
METHODOLOGY 
	
Site Description 
	 Admiralty	 Inlet	 is	 the	 primary	 entrance	 to	
Puget	 Sound,	 branching	 southeast	 from	 the	
junction	of	the	Strait	of	Juan	de	Fuca	and	Strait	of	
Georgia.	Excepting	a	small	tidal	exchange	through	
Deception	Pass	to	the	north,	the	entirety	of	Puget	
Sound’s	 tidal	 prism	 passes	 through	 Admiralty	
Inlet.	The	northern	 inlet	 is	 relatively	 shallow	 (80	
m	deep)	and	narrow	(5	km	wide)	in	comparison	to	
the	 adjacent	 waters	 and	 this	 geographic	
constriction	gives	rise	 to	 tidal	currents	exceeding	
3	m/s	[3].		
	 The	strength	of	 these	currents	has	motivated	
interest	 in	 developing	 a	 tidal	 current	 energy	
project	 in	northern	Admiralty	 Inlet.	 Public	Utility	
No.	1	of	Snohomish	County	has	proposed	a	multi‐
year	demonstration	project	(e.g.,	installed	capacity	
of	 less	 than	 1	 MW)	 at	 this	 location	 to	 develop	
environmental	 and	 engineering	 data	 needed	 to	
assess	the	feasibility	of	a	commercial‐scale	project	
(e.g.,	installed	capacity	greater	than	10	MW).			
	
Data Collection 
	 Since	 2009,	 instrumentation	 has	 been	
deployed	 in	 northern	 Admiralty	 Inlet	 to	
characterize	 the	 biological	 and	 physical	
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each	 station	 in	 a	deployment	pair	was	 calculated	
as	
	

     tKtKtK 12  	 (2)
	
for	each	point	in	the	series	(where	1	and	2	denote	
the	first	and	second	sites	for	the	deployment	pairs	
listed	in	Table	1).	For	a	given	K1,	the	probability	of	
ΔK	taking	on	a	particular	value	was	calculated	(i.e.,	
given	 that	 K1	 was	 X	 kW/m2,	 what	 was	 the	
probability	 of	 K2	 being	 higher	 or	 lower	 by	 ΔK	
kW/m2?).	
	
Harmonic Current Phase 
	 The	 time‐variation	 in	 tidal	 elevation	 (h)	may	
be	compactly	represented	as	the	superposition	of	
multiple	 “constituents”	 with	 globally‐defined	
periods	 and	 locally	 varying	 amplitude	 and	 phase	
as	
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where	Ai,	gi,	 and	Ti	 are	 the	amplitude,	phase,	and	
period	 of	 the	 ith	 tidal	 constituent	 [5].	 Each	
constituent	represents	a	periodicity	in	the	relative	
position	 or	 orientation	 of	 the	 earth,	 moon,	 and	
sun.	 The	 harmonic	 component	 of	 the	 tidal	
currents	may	 be	 similarly	 approximated,	 but	 the	
aharmonic	 response	 (i.e.,	 changes	 to	 the	 flow	
induced	by	 local	 topography	or	bathymetry,	 such	
as	 large‐scale	eddies	 shed	by	headlands	 [e.g.,	6]),	
density‐driven	 circulation,	 storm	 surges,	 waves,	
and	 turbulence	 may	 also	 contribute	 to	 observed	
currents	 at	 tidal	 energy	 sites	 [1].	 The	 averaging	
period	used	here	(5	minutes)	removed	most	of	the	
turbulent	 energy	 from	 observations,	 and	 at	 this	
depth	 neither	 wave	 orbital	 velocity	 nor	 density‐
driven	 circulation	 was	 significant.	 Consequently,	
harmonic	analysis	was	be	employed	to	investigate	
the	extent	to	which	variations	in	the	phase	of	the	
tidal	 between	 locations	 was	 attributable	 to	 the	
harmonic	component	of	the	tide,	as	opposed	to	the	
aharmonic	 component.	 The	 amplitudes	 phases	 of	
the	 dominant	 semidiurnal	 (M2)	 and	 diurnal	 (K1)	
tidal	current	constituents	were	obtained	 for	each	
site	pair	using	the	package	U_TIDE	[7].	U_TIDE	is	a	
recent	 enhancement	 to	 T_TIDE	 [8].	 For	 this	
analysis,	 the	Ordinary	Least	Squares	(OLS)	solver	
was	 employed,	 the	 signal	 to	 noise	 ratio	 for	
constituent	 inclusion	 was	 set	 to	 3,	 and	 the	
Rayleigh	criteria	was	set	to	1.	As	discussed	in	the	
results,	 harmonic	 analysis	 for	 each	 pair	 of	 sites	
was	 performed	only	 on	 the	 co‐temporal	 portions	
of	the	measurement	time	series.	
	

Implications of Phasing for Power Intermittency 
	 The	 practical	 implications	 of	 co‐temporal	
amplitude	 and	 phase	 variations	 in	 kinetic	 power	
density	 were	 evaluated	 in	 a	 two‐step	 procedure.	
First,	 K(t)	 at	 a	 given	 site	 was	 converted	 to	 	 a	
turbine‐adjusted	value	 (P)	 that	 accounted	 for	 the	
non‐linear	effect	of	rated	and	cut‐in	speeds	as	
	
	 0 	 incut)( UtU 	 	

)(tP =	 )(tK ratedincut )( UtUU  (4)	

	 3
rated21 U 	 rated)( UtU  	 	

	
where	Ucut‐in	 is	 the	 turbine	cut‐in	speed	and	Urated	
is	 the	 turbine	 rated	 speed.	 Ucut‐in	 was	 set	 to	 0.7	
m/s,	 in	 line	 with	 expectations	 for	 utility‐scale	
turbines,	 and	 Urated	 was	 selected	 to	 achieve	 a	
capacity	 factor	 of	 approximately	 30%	 (for	 the	
specific	 case	 considered,	 2.0	 m/s).	 The	 capacity	
factor	 (CF)	 for	 an	 array	 of	 turbines	 at	 a	 specific	
location	was	defined	as	
	 	

ratedPPCF  .	 (5)

	
The	 standard	 deviation	 of	 the	 P	 was	 also	
calculated	 (i.e.,	 σP)	 as	 measure	 of	 the	
intermittency	 of	 power	 output	 from	 a	 turbine	
deployed	at	 a	 specific	 location.	This	 is	of	 interest	
because	 reduced	 intermittency	 should	 increase	
the	 value	 of	 the	 power	 provided	 by	 an	 array	 of	
tidal	 current	 turbines.	 To	 evaluate	 the	 potential	
for	 phasing	 to	 reduce	 intermittency,	 scenarios	
were	constructed	that	involved	arrays	at	a	pair	of	
locations	with	different	kinetic	power	amplitudes	
and	 phases,	 but	 identical	 combined	mean	 power	
(turbine‐adjusted).	The	standard	deviations	of	the	
turbine‐adjusted	 power	 density	 for	 the	 hybrid	
arrays	 were	 calculated	 and	 compared	 to	 a	
reference	 value	 for	 an	 array	 at	 a	 single	 location.	
Implicit	 in	 this	 calculation	 was	 assumption	 that	
the	co‐temporal	phase	variations	in	power	density	
would	not	be	changed	by	extracting	power.	This	is	
a	 site‐specific	 consideration	 that	 is	 likely	 best	
addressed	by	numerical	 simulation.	However,	 for	
arrays	which	extract	a	small	fraction	of	the	natural	
power	 dissipated	 in	 a	 region,	 the	 assumption	 is	
likely	valid.	
	
RESULTS 
	
Kinetic Power Density 
	 Table	 2	 shows	 the	 mean	 (time‐averaged)	
kinetic	power	density	 for	each	 location,	averaged	
over	the	deployment	duration,	as	well	as	the	mean	
water	 depth.	 For	 deployment	 pairs	 I	 and	 II,	 the	
mean	power	densities	at	sites	B	and	C	are	~10%	
higher	than	at	site	A.	For	pair	III,	the	difference	in	
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mean	 power	 density	 is	 more	 pronounced,	 with	
site	 E	 ~20%	 more	 energetic	 than	 site	 D	 (even	
though	 the	 separation	 distance	 is	 similar	 to	 the	
separation	between	sites	A,	B,	and	C).	For	pair	IV,	
the	center	channel	(site	F)	is	~20%	less	energetic	
than	the	headland	(site	A).	While	the	mean	power	
density	 for	 site	A	 is	 calculated	over	 two	different	
~90	 day	 periods	 for	 pairs	 I/II	 and	 pair	 IV,	 there	
are	 only	 small	 variations	 in	 this	 quantity	 for	
reasons	described	in	[1].	
	 Figure	 2	 through	 Figure	 5	 show	
representative	 time	 series	 of	 power	 density	 and	
statistical	 information	 about	 power	 density	
phasing	 for	 deployment	 pairs	 I‐IV.	 In	 all	 four	
figures,	 the	 conditional	 probability	 of	 power	
density	 (bottom	 panels)	 saturate	 at	 15%.	 Visual	
examination	 of	 the	 co‐temporal	 time	 series	
(Figure	 2,	 top	 panel)	 demonstrates	 that	 sites	 A	
and	B	are	in	phase,	with	site	B,	on	average,	~10%	
more	 energetic	 than	 site	 A.	 Pair	 II	 (Figure	 3)	 is	
quite	similar,	with	the	two	sites	in	phase,	but	with	
moderate	 differences	 in	mean	 power	 density.	 As	
shown	 in	 Figure	 4,	 currents	 at	 sites	 D	 and	 E	 are	
sometimes	 in	 phase	 (top	 panel)	with	 currents	 at	
site	 E	 generally	 more	 intense	 (left	 branch	 of	
probability	density	 in	bottom	panel).	However,	at	
some	 stages	 of	 the	 tide	 there	 is	 a	 non‐zero	
probability	 of	 site	 D	 being	 more	 energetic	 than	
site	 E	 (right	 branch	 of	 probability	 density	 in	
bottom	panel).		
	 For	pair	IV,	the	phase	differences	between	the	
headland	 (site	A)	 and	 center	 channel	 (site	 F)	 are	
more	 complex.	 During	 the	 greater	 tides	 of	 the	
diurnal	 inequality	 (Admiralty	 Inlet	 is	 a	 mixed,	
mainly	 semi‐diurnal	 tidal	 regime	 with	 four	 tidal	
exchanges	each	day,	but	of	unequal	strength),	the	
two	 sites	 are	 in	 phase	 over	 the	 majority	 of	 the	
tidal	 cycle	 (first	 twelve	 hours	 of	 Figure	 5,	 top	
panel).	During	 the	 second	exchange,	 even	 though	
site	 A	 is	~20%	more	 energetic,	 on	 average,	 than	
site	 F,	 the	 power	 density	 at	 site	 F	 can	 be	
temporarily	greater	 than	at	 site	A.	 Specifically,	 at	
the	end	of	second	greater	tide,	 the	power	density	
at	 site	 F	 is	 twice	 that	 of	 site	 A.	 On	 the	 third	
exchange,	 the	two	sites	are	almost	entirely	out	of	
phase	 and	 have	 unequal	 resource	 intensities,	 but	
on	the	fourth,	weakest	exchange,	they	are	back	in	
phase	with	nearly	equal	 intensities.	This	suggests	
a	 complicated	 underlying	 physical	 mechanism,	
possibly	 related	 to	 the	 dynamics	 of	 eddy	
formation	around	the	headland.	This	complexity	is	
reflected	 in	 the	 kinetic	 power	 phase	 statistics	
shown	 in	 the	 bottom	 panel	 of	 Figure	 5.	 It	 is	
possible	 for	 currents	 to	 be	 nearly	 quiescent	 near	
the	headland	(i.e.,	0	kW/m2	at	site	A)	while	power	
density	is	operationally	significant	(i.e.,	capable	of	
generating	electricity)	in	the	center	of	the	channel.	
Similarly,	even	though	site	F	is,	on	average,	less	

TABLE	 2.	 MEAN	 KINETIC	 POWER	 DENSITY	 (20	m	
ABOVE	SEABED).	
Pair Site <K>	

(kW/m2)	
Mean	
depth	(m)	

I	
A 1.7 60	
B 1.9 61	

II	
A 1.7 60	
C 1.9 61	

III	
D 1.9 54	
E 2.3 58	

IV	
A 1.6 59	
F 1.3 49	

	
energetic	than	site	A,	there	are	times	when	power	
density	at	site	F	is	almost	triple	that	of	site	A	(e.g.,	
~10	 kW/m2	 difference	 between	 sites	 when	 the	
power	 density	 at	 the	 near‐headland	 site	 is	 ~5	
kW/m2	 as	 demonstrated	 by	 extreme	 of	 the	 left	
branch	of	the	probability	density).		
	
Harmonic Current Phase 
	 Table	 3	 shows	 the	 amplitude	 (A)	 and	 phase	
(g)	of	 the	principal	semidiurnal	 (M2)	and	diurnal	
(K1)	 tidal	 current	 constituents	 for	 each	 pair	 of	
comparison	 sites,	 along	 with	 the	 confidence	
intervals	 in	 these	 estimates,	 as	 predicted	 by	
U_TIDE.	 For	 Site	 A,	 these	 amplitudes	 and	 phases	
are	 estimated	 over	 different	 date	 ranges	 for	
different	 comparison	 pairs	 (Table	 1).	 While	 the	
different	 estimates	 for	 the	 phase	 of	 the	 M2	
constituent	 fall	 within	 the	 range	 of	 uncertainty	
given	by	its	confidence	interval,	the	M2	amplitude	
estimates,	 as	 well	 as	 K1	 phase	 and	 amplitude	
estimates	 fall	 outside	 of	 these	 bounds.	 The	
uncertainties	 in	these	constituent	amplitudes	and	
phases	 estimated	 in	 Kutney	 et	 al.	 [9]	 from	 an	
annual	 time	 series	 are	 significantly	 greater	 than	
those	 estimated	 by	 U_TIDE.	 As	 discussed	 in	 [9],	
this	 has	 implications	 for	 calculating	 Annual	
Energy	 Production	 (AEP)	 using	 harmonic	
predictions.	However,	for	the	present	purposes	of	
evaluating	 kinetic	 power	 phase	 differences	
between	 locations,	 the	 relative	 bias	 is	 likely	
negligible	 for	 constituents	 that	 have	 been	
estimated	from	co‐temporal	time	series.	
	 Pairs	I	and	II	(sites	A/B	and	B/C)	have	nearly	
identical	phases	for	the	M2	and	K1	constituents,	as	
would	be	expected	from	the	descriptions	of	power	
density	phasing	 in	Figure	2	 and	Figure	3.	 Pair	 III	
(sites	D	and	E)	also	has	nearly	identical	K1	and	M2	
phases,	 though,	as	demonstrated	by	Figure	4,	 the	
power	 density	 is	 not	 always	 in	 phase	 between	
these	 locations.	 Pair	 IV	 (sites	 A	 and	 F)	 has	 a	
substantial	 phase	 difference	 for	 the	 M2	
constituent,	but	nearly	 identical	phase	 for	 the	K1	
constituent.	 While	 this	 difference	 in	 constituent	
phase	 suggests	 that	 the	 power	 density	 between	
the	 sites	 should	 be	 out	 of	 phase,	 it	 does	 not	
intuitively	explain	the	trends	shown	in	Figure	5.		
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CONCLUSIONS 
	 Examination	 of	 temporal	 trends	 in	 kinetic	
power	 density	 between	 locations	 in	 a	 tidal	
channel	 reveals	 significant	 amplitude	 and	 phase	
variations.	These	local	phase	variations,	observed	
over	 distances	 less	 than	 5	 km,	 suggest	
opportunities	 for	 smoothing	 array	 power	 output	
and	 reducing	 tidal	 resource	 intermittency.	
However,	 these	 benefits	 are	 only	 likely	 to	 be	
realized	 if	 locations	 that	 are	 out	 of	 phase	 have	
similar	mean	power	densities.	This	study	indicates	
that	 when	 evaluating	 the	 power	 performance	 of	
large	arrays,	it	may	not	be	appropriate	to	assume	
that	power	generation	from	all	turbines	will	be	in	
phase.	 These	 results	 highlight	 the	 benefit	 of	
collecting	 co‐temporal	 current	 measurements	
during	resource	characterization	activities	at	tidal	
energy	 sites,	 both	 to	 directly	 evaluate	 power	
phasing	and	to	calibrate	numerical	models.	
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