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I. INTRODUCTION 

In this work we develop a numerical methodology for 

the structural analysis and optimization of composite 

blades for wind and hydrokinetic turbines.  While the 

methodology presented here is equally applicable to the 

design of wind turbines, this paper focuses on its 

application to hydrokinetic turbines.   

First, we derive a structural mechanics model which 

is based upon a combination of classical lamination 

theory with an Euler-Bernoulli and shear flow theory 

applied to composite beams.  The development of this 

simplified structural model was motivated by the need 

for an accurate and computationally efficient method 

that is suitable for parametric design and optimization 

studies of composite blades.  An important 

characteristic of this structural model is its ability to 

handle complex geometric shapes and isotropic or 

anisotropic composite layups. 

After validating our simplified structural model, we 

formulate a structural optimization problem which 

determines an optimal layup of composite materials 

within the blade.  For a specified design load, the 

objective of the structural optimization is to minimize 

the blade’s mass while satisfying constraints on 

maximum allowable stress, blade tip deflection, 

buckling, and placement of blade natural frequencies.  

We demonstrate this optimization methodology to 

produce a hypothetical design for a composite blade of 

a utility-scale horizontal-axis hydrokinetic turbine 

operating in the Admiralty Inlet of Puget Sound, 

Washington, USA.  This particular blade design uses a 

combination of E-glass, carbon fiber, and foam 

composite materials.  In solving this structural 

optimization problem, we compare the efficiency of 

two deterministic optimization algorithms (gradient 

search and pattern search) and a stochastic particle 

swarm algorithm.   

Finally, we quantify the effects that uncertain 

material properties can have on the structural 

performance of composite blades and provide an 

estimate of the probability of structural failure for a 

given design.  Studying the relationships between 

material properties and structural performance provides 

further insights into creating higher-performance, more 

reliable, and cheaper turbine blades. 

II. STRUCTURAL MECHANICS MODEL 

Current state of the art approaches for the structural 

analysis of composite blades consist of finite element 

methods (FEM) which can accurately account for 

complex geometric shapes, 3D and non-linear behavior, 

and extensive use of composite materials.  However, 

FEM approaches become impractical for use in the 

preliminary design stages (where hundreds or 

potentially thousands of alternative designs may be 

evaluated) due to the labor intensive task of generating 

accurate meshes and higher computational cost.  In the 

preliminary design stages it becomes important to 

develop simplified and computationally efficient, yet 

accurate, numerical models in order to perform 

parametric design and optimization studies.  The 

following sections summarize the development and 

validation of such a simplified structural model tailored 

towards composite rotor blades. 

A. TECHNICAL APPROACH 

We have developed an open source structural analysis 

code, Co-Blade [1], which is utilized to perform 

structural design of composite blades.  The underlying 

theory for structural analysis in the Co-Blade code is 

based upon a combination of classical lamination theory 

(CLT) with an Euler-Bernoulli and shear flow theory 

applied to composite beams.  In this model, the turbine 

blade is represented as an Euler-Bernoulli cantilever 

beam which undergoes flapwise and edgewise bending, 

axial deflection, and elastic twist.  In addition to 

hydrodynamic loads, the body forces from self-weight, 

buoyancy, and centrifugal forces also contribute to 

deflection of the beam.   

Equations (2.1-6) are the linear differential equations 

of equilibrium for a cantilever beam, which give the 

shear forces (𝑉) and bending moments (𝑀) resultant 

from aerodynamic forces (𝑝𝑎) and aerodynamic 

moments (𝑞a), self-weight and buoyancy forces (𝑝𝑤), 

and centrifugal forces (𝑝𝑐).  In this analysis, we denote 

the aerodynamic center (𝑥𝑎𝑐, 𝑦𝑎𝑐) as the point where the 

aerodynamic loads are applied, and the body forces act 

at the center of mass (𝑥𝑐𝑚, 𝑦𝑐𝑚).  Additional coupling 

between bending, extension, and torsion arise by 

accounting for offsets of the elastic axis, centroidal axis, 

and inertial axis, as illustrated in Figure 1.  Axial loads 

acting at points offset from the tension center (𝑥𝑡𝑐, 𝑦𝑡𝑐) 

will introduce additional bending moments (𝑀𝑥, 𝑀𝑦), 
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and shear forces acting at points offset from the shear 

center (𝑥𝑠𝑐 , 𝑦𝑠𝑐) will introduce additional twisting of the 

blade (Φ𝑧).   

 

Figure 1. Orientation of the different axes within each 

cross section of the blade. 
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) (2.1) 

d𝑉𝑦

𝑑𝑧
= −(𝑝𝑦𝑎

+ 𝑝𝑦𝑤
+ 𝑝𝑦𝑐

) (2.2) 

d𝑉𝑧

𝑑𝑧
= −(𝑝𝑧𝑤

+ 𝑝𝑧𝑐
) (2.3) 

d𝑀𝑥

𝑑𝑧
= 𝑉𝑦 − (𝑝𝑧𝑤

+ 𝑝𝑧𝑐
)(𝑦𝑐𝑚 − 𝑦𝑡𝑐) (2.4) 

d𝑀𝑦

𝑑𝑧
= −𝑉𝑥 + (𝑝𝑧𝑤

+ 𝑝𝑧𝑐
)(𝑥𝑐𝑚 − 𝑥𝑡𝑐) (2.5) 

d𝑀𝑧

𝑑𝑧
= −𝑞𝑧𝑎

− 𝑝𝑦𝑎
(𝑥𝑎𝑐 − 𝑥𝑠𝑐)

− (𝑝𝑦𝑤
+ 𝑝𝑦𝑐

)(𝑥𝑐𝑚 − 𝑥𝑠𝑐)

+ 𝑝𝑥𝑎
(𝑦𝑎𝑐 − 𝑦𝑠𝑐)

+ (𝑝𝑥𝑤
+ 𝑝𝑥𝑐

)(𝑦𝑐𝑚 − 𝑦𝑠𝑐) 

(2.6) 

 

The beam cross sections are assumed to be thin-

walled, closed, and single- or multi-cellular.  The 

periphery of each beam cross section is discretized as a 

connection of flat composite laminates.  The 

mechanical properties of the composite laminates 

which discretize each cross section are computed using 

CLT.  Although each laminate is actually an assembly 

of multiple fibrous composite materials (where each 

layer can have different constitutive properties), CLT is 

used to calculate a set of “effective” mechanical 

properties which allows a multi-layered composite plate 

to be treated as a single structural element [2].  

Therefore, the beam cross sections are composed of 

discrete sections of homogenous material (as illustrated 

in Figure 2), where each discrete portion of the 

composite beam is characterized by effective 

mechanical properties computed via CLT. 

 

Figure 2. The blade cross sections are discretized as a 

connection of composite laminated plates. 

 

 

Figure 3. Example of a cross section for a heterogeneous 

composite beam. 
 

For a heterogeneous composite beam, the modulus 

weighted section properties are defined as 
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(2.12) 

 

where 𝐸𝑖 is the Young’s modulus, 𝐸𝑟𝑒𝑓 is a reference 

modulus, (𝑥𝑐𝑖
, 𝑦𝑐𝑖

) denote the geometric centroid of 

each discrete segment of the cross sections, and (𝑢𝑜, 𝑣𝑜) 

denotes the principal axes of each discrete segment.  

The parallel axis theorem, as in Equations (2.13-15), 

can be applied to compute the moments of inertia about 

the other beam axes. 

𝐼𝑢
∗ = 𝐼𝑥

∗ − 𝐴∗(𝑦𝑐
∗)2 (2.13) 

𝐼𝑣
∗ = 𝐼𝑦

∗ − 𝐴∗(𝑥𝑐
∗)2 (2.14) 

𝐼𝑢𝑣
∗ = 𝐼𝑥𝑦

∗ − 𝐴∗𝑥𝑐
∗𝑦𝑐

∗ (2.15) 
 

Denoting the axial stiffness as 𝑆 = 𝐸𝑟𝑒𝑓𝐴∗ and 

bending stiffness as 𝐻 = 𝐸𝑟𝑒𝑓𝐼, an uncoupled set of 



ODEs to describe the transverse and axial 

displacements (𝑢𝑜, 𝑣𝑜, 𝑤𝑜) and twist (Φ𝑧) of the beam 

centroidal axis (𝑥𝑡𝑐, 𝑦𝑡𝑐) is derived as: 
 

𝑑2𝑢𝑜

𝑑𝑧2
=

𝑀𝑦𝐻𝑥 + 𝑀𝑥𝐻𝑥𝑦
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2

𝜉𝑐𝑓 (2.16) 
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𝑑𝑧2
=

−𝑀𝑥𝐻𝑦 − 𝑀𝑦𝐻𝑥𝑦

𝐻𝑥𝐻𝑦 − 𝐻𝑥𝑦
2

𝜉𝑐𝑓 (2.17) 

𝑑𝑤𝑜

𝑑𝑧
=

𝑉𝑧

𝑆
 (2.18) 

𝐻𝑧

𝑑2Φ𝑧

𝑑𝑧2
=

𝑑𝑀𝑧

𝑑𝑧
 (2.19) 

 

where 𝜉𝑐𝑓 [5,9] is a correction factor which depends 

on the ratio of moments of inertia between the blade 

root and tip—this correction factor extends the original 

beam theory to provide more accurate displacements for 

tapered cantilever beams.  The simplifying assumption 

of plane cross sections in the Euler-Bernoulli beam 

model implies that there are only 3 non-negligible stress 

components: the axial stress 𝜎𝑧𝑧 and shear stresses 𝜏𝑧𝑥 

and 𝜏𝑧𝑦.  Furthermore, the shear flow assumption for 

thin-walled sections implies that shear stress is uniform 

through the wall thickness, and the only non-vanishing 

shear stress component becomes 𝜏𝑧𝑠 which is the shear 

stress acting in the s-direction (where s is a curvilinear 

coordinate tangential to a curve which follows the mid-

wall thickness around the cross section periphery).  

Once the global cross sectional properties of the beam 

are computed using CLT and the method of Young’s 

modulus weighted properties, we can compute the beam 

centroidal-axis deflections Eqns. (2.16-19), effective 

beam axial stress Eqn. (2.20), and effective beam shear 

stress Eqn. (2.21) under the assumptions for an Euler-

Bernoulli beam [3].   
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∗ 2

(𝑥 − 𝑥𝑐
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+
𝑀𝑥𝐼𝑣

∗ + 𝑀𝑦𝐼𝑢𝑣
∗

𝐼𝑢
∗𝐼𝑣

∗ − 𝐼𝑢𝑣
∗ 2

(𝑦 − 𝑦𝑐
∗)] 

(2.20) 

 

Shear stress is computed using a shear flow approach, 

where the shear stress is defined as  
 

𝜏𝑧𝑠(𝑠) =
𝑓

𝑡
 (2.21) 

 

and the shear flow in an open section is defined as 
 

𝑑𝑓𝑜

𝑑𝑠
(𝑠) = −𝑡

𝜕𝜎𝑧𝑧

𝜕𝑧
 (2.22) 

 

Substituting in the stress relation Eqn. (2.20) and the 

resultant shear forces and bending moments from Eqns. 

(2.1-6), the shear flow around an open section is 

described by Eqn. (2.26).  The first constant on the RHS 

of Eqn. (2.26) is solved from a continuity boundary 

condition, and we have also introduced the stiffness first 

moments Eqns. (2.24-25). 
 

𝐴𝑠(𝑠) = ∫ 𝐸𝑡𝑑𝑠
𝑠

0

 
(2.23) 

𝑄𝑥(𝑠) = ∫ 𝐸𝑡�̅�𝑑𝑠
𝑠

0

 
(2.24) 

𝑄𝑦(𝑠) = ∫ 𝐸𝑡�̅�𝑑𝑠
𝑠

0

 
(2.25) 

𝑓𝑜(𝑠) = 𝑓𝑜(s = 0) + {
𝑝𝑧𝑤

+ 𝑝𝑧𝑐

𝑆
} 𝐴𝑠(𝑠)

+ (𝐻𝑥𝑦𝑄𝑦(𝑠)

− 𝐻𝑦𝑄𝑥(𝑠)) {
𝑉𝑦 − (𝑝𝑧𝑤

+ 𝑝𝑧𝑐
)(𝑦𝑐𝑚 − 𝑦𝑡𝑐)

𝐻𝑥𝐻𝑦 − 𝐻𝑥𝑦
2

}

+ (𝐻𝑥𝑄𝑦(𝑠)

− 𝐻𝑥𝑦𝑄𝑥(𝑠)) {
−𝑉𝑥 + (𝑝𝑧𝑤

+ 𝑝𝑧𝑐
)(𝑥𝑐𝑚 − 𝑥𝑡𝑐)

𝐻𝑥𝐻𝑦 − 𝐻𝑥𝑦
2

} 

(2.26) 

 

 When analyzing closed thin-walled sections, it is 

often convenient to first analyze the corresponding 

“open” section which corresponds by making one cut 

per cell of the multi-cellular beam.  To enforce 

continuity, the corresponding relative axial 

displacement must vanish at a “cut” location in a closed 

cross section, which implies Eqn. (2.27).  The closing 

shear constant 𝑓𝑐 can be solved from the system of 

equations arising from Eqn. (2.27).  The corresponding 

shear stress in a closed section can then be solved by 

adding the closing shear constant to the open section 

shear flow, as in Eqn. (2.28). 
 

𝑤𝑖 = ∮
𝑓𝑜(𝑠) + 𝑓𝑐

𝐺𝑡
𝑑𝑠 = 0

𝐶𝑒𝑙𝑙𝑖

 (2.27) 

𝑓(𝑠) = 𝑓𝑜(𝑠) + 𝑓𝑐 (2.28) 
 

The calculation of shear stress 𝜏𝑧𝑠, prediction of shear 

center and torsional stiffness is based on a modified 

shear flow theory for thin-walled single/multi-cellular 

sections [1,3].  Finally, by converting the distribution of 

effective beam stresses 𝜎𝑧𝑧 and 𝜏𝑧𝑠  into equivalent in-

plane distributed loads on the flat laminates which 

discretize the cross section periphery (as shown in 

Figure 4), the lamina-level strains and stresses in the 

principal fiber directions (𝜀11, 𝜀22, γ12, 𝜎11, 𝜎22, and 

𝜏12) are recovered using CLT.   
 



 

Figure 4.  The effective beam stresses from Euler-

Bernoulli theory (𝜎𝑧𝑧 and 𝜏𝑧𝑠) are converted into 

equivalent extensional, shear, and bending loads on a 

composite laminated plate so that the lamina level 

stresses and strains (𝜀11, 𝜀22, γ12, 𝜎11, 𝜎22, and 𝜏12) can 

be recovered via CLT. 
 

A linear buckling analysis is implemented to predict 

the critical buckling stresses [4,5].  In this approach, the 

top and bottom surfaces of the blade are idealized as 

curved plates subjected to the combined conditions of 

compression and shear, while the shear webs are 

idealized as flat plates subjected to the combined 

conditions of bending and shear.  Figure 5 illustrates the 

loading conditions used to predict bucking stresses.  

The plates are idealized as having simply-supported 

(pinned) boundary conditions on all four sides.  

Effective mechanical properties of the plates are 

computed using CLT, and the plates’ Young modulus, 

thickness, curvature, and width all contribute to the 

prediction of critical buckling stresses.  The buckling 

criteria, R, is defined by Eqn. (2.29), where the 

exponents depend on boundary conditions [4,5]. 

 

Figure 5.  The top and bottom surfaces of the blade are 

modeled as curved plates subjected to combined 

compression and shear.  The blade shear webs are 

modeled as flat plates subjected to combined bending 

and shear. 
 

𝑅𝑏 = (
𝜎

𝜎𝑏𝑢𝑐𝑘𝑙𝑒

)
𝛼

+ (
𝜏

𝜏𝑏𝑢𝑐𝑘𝑙𝑒

)
𝛽

 
(2.29) 

 

The predictions of beam natural frequencies and 

modal shapes are computed by utilizing the BModes 

code [6] developed by the National Renewable Energy 

Laboratory (NREL).  In summary, BModes formulates 

an energy functional and uses Hamilton’s principle to 

derive a set of nonlinear coupled integro-partial 

differential equations (PDEs) that govern the dynamics 

of an Euler-Bernoulli beam.  BModes discretizes these 

PDEs using specialized 15 degree-of-freedom finite 

elements, and then performs an eigenanalysis to obtain 

the coupled mode shapes and frequencies. 

B. VALIDATION  

In previous validation studies [1], the structural 

model in Co-Blade showed excellent agreement for 

isotropic and prismatic beams with elliptical and 

rectangular cross sections for which analytical results 

could be obtained.  To test the capabilities of this 

method for more complex composite layups, we 

modeled a cylindrical beam using both Co-Blade and 

the higher-fidelity ABAQUS finite element code [10].  

For three different composite layups ([0]8, [0/±45/90]s, 

and [±30]4), we find very good agreement between the 

predicted values for stiffness and beam deflection, as 

shown in Figure 9. 
 

III.STRUCTURAL OPTIMIZATION 

In this study, we develop a structural optimization 

methodology to design a composite blade for a utility-

scale horizontal-axis hydrokinetic turbine operating in 

the Admiralty Inlet of Puget Sound, Washington, USA.  

The hydrodynamic design of the 2-bladed, 20-m 

diameter, 550-kW, variable-speed variable-pitch 

turbine was created in a previous study using the 

HARP_Opt turbine optimization code [8].  The 

structural design load represents a situation in which a 

large eddy passes through the rotor quicker than the 

blade pitch control can respond to shed the increased 

hydrodynamic load.  Eddies of this scale result in large 

stresses on the blades, but they are expected to occur 

only rarely over the turbine’s lifetime [11]. 

The structural design of the blade uses a combination 

of E-glass, carbon fiber, and foam composite materials.  

Mechanical properties of the composite materials are 

listed in Table 1 [7].  The NCT307-D1-E300 material is 

a tri-axial E-glass/epoxy composite which is utilized in 

the “blade-root” section of the blade, as indicated in 

Figure 7.  The “blade-shell” and “web-shell” sections of 

the blade (see Figure 7) are composed of the NB307-

D1-7781-497A bi-axial weave E-glass/epoxy, and the 

“spar-uni” section of the blade is composed of the 

NCT307-D1-34-600 unidirectional carbon/epoxy 

material.  The “spar-core”, “LEP-core”, “TEP-core”, 

and “web-core” sections of the blade are all composed 

of the Corecell M-Foam M200 material, which is a 

structural foam developed for marine applications. 

The blade is assumed to be a “box-beam” style blade, 

in which a thick root section transitions into a main spar 

with two shear webs that run the length of the blade, as 

illustrated in Figure 6.  The leading edge panels (LEP) 

and trailing edge panels (TEP) are sandwich composite 

laminates which form the hydrodynamic shape of the 

blade.  As Figures 7 and 8 illustrate, the blade consists 

of 9 unique laminate schedules with a total of 8 possible 

materials (where each material can have its own unique 

properties defined).  The thickness of each material 

along the length of the blade is defined by the linear 

variation between control points—Figure 8 shows how 

the material thicknesses in the LEP, TEP, spar cap, and 

shear webs vary along the length of the blade.  The 

example in Figure 8 shows 5 control points per material 



(only 2 control points for the shear webs); however, 

more or less control points could be used for greater 

degree-of-freedom or greater computational efficiency. 

All laminates are balanced and symmetric, 

eliminating the possibility for cross-coupled stiffnesses.  

The ends of the spar caps and shear webs remain fixed 

at user specified inboard and outboard stations, but the 

optimization algorithm can vary the chordwise 

locations of the spar caps and shear webs.  The 

chordwise locations of the spar cap and shear webs are 

positioned symmetrically about the blade pitch axis.   

In order to use continuous design variables, each 

lamina is modeled as a single ply with continuously 

variable thickness, as opposed to a stack of multiple 

plies with discrete thicknesses.  The structural design 

variables (totaling 32 in this case) are:  

 chordwise width of the spar cap at the inboard and 

outboard blade stations 

 control point ordinate value for the thickness of 

the “blade-root” material 

 control point ordinate values for the thicknesses 

of the materials within the LEP, TEP, spar cap, 

and shear webs along the length of the blade 
 

Table 1.  Mechanical properties of the composite 

materials utilized in the structural design of the blade [7]. 

  
“NCT307-

D1-E300” 
E-Glass 

“NB307-
D1-7781-

497A”     

E-Glass 

“NCT307-
D1-34-

600” 

Carbon 

“Corecell M-
Foam M200” 

Structural 

Foam 

𝑉𝑓 (%) 47 39 53 n/a 

𝐸11 (GPa) 35.5 19.2 123 0.21 

𝐸22 (GPa) 8.33 19.2 8.2 0.21 

𝐺12 (GPa) 4.12 3.95 4.71 0.098 

𝜈12 (-) 0.33 0.13 0.31 0.33 

𝜌 (kg/m3) 1780 1670 1470 200 

𝜎11,𝑓𝑇 (MPa) 1005 337 1979 4.29 

𝜎11,𝑓𝐶 (MPa) -788 -497 -1000 -4.29 

𝜎22,𝑦𝑇 (MPa) 51.2 337 59.9 4.29 

𝜎22,𝑦𝐶 (MPa) -51.2 -337 -59.9 -4.29 

𝜏12,𝑦 (MPa) 112 115 103 2.95 

𝑉𝑓: fiber volume fraction, 𝐸11: principal Young’s modulus, 𝐸22: lateral 

Young’s modulus; 𝐺12: shear modulus; 𝜈12: Poisson ratio; 𝜌: density; 

𝜎11,𝑓𝑇: principal tensile failure stress; 𝜎11,𝑓𝐶 : principal compressive 

failure stress; 𝜎22,𝑦𝑇: lateral tensile yielding stress; 𝜎22,𝑦𝐶 : lateral 

compressive yielding stress; 𝜏12,𝑦: shear yielding stress 

 

 

 

 

 

Figure 6.  An example of the composite blade model, the 

colors indicate different laminate stacking orders which 

corresponds to the illustration of material delineations in 

Figure 7. 
 

 

Figure 7.  Planform view of the turbine blade 

configuration used in the optimization study, showing 

the laminate material schedules in the root build-up, 

leading edge panel (LEP), spar cap, trailing edge panel 

(TEP), shear webs, and blade tip.   
 

 

Figure 8.  The material thicknesses are defined along the 

blade length by linear variations between the control 

points.  The laminate material schedule is identical to 

that illustrated in Figure 7. 

The structural objective function Eqn. (3.1) is 

formulated as an additive penalty function in which the 

constraints are accounted for by penalty factors 𝑝𝑖.  For 

a specified design load, the objective of the structural 

optimization is to minimize the blade’s mass while 

satisfying constraints on maximum allowable stress, 

blade tip deflection, buckling stress, and placement of 

blade natural frequencies.  The structural objective 

function 𝑓(�⃑�𝑠𝑡𝑟𝑢𝑐𝑡) is minimized when the blade mass 

𝑚𝑏𝑙𝑎𝑑𝑒 is minimal and all of the penalty factors, 𝑝1 −
𝑝8, are less than unity.  Penalty factors 𝑝1 − 𝑝5 are 

greater than 1 if the lamina-level stresses exceed the 

materials’ maximum allowable stresses.  Penalty factor 



𝑝6 is greater than 1 if the effective stresses in a panel 

(i.e. laminate) have exceeded the critical buckling 

stresses 𝜎𝑏𝑢𝑐𝑘𝑙𝑒 and 𝜏𝑏𝑢𝑐𝑘𝑙𝑒 (the exponents 𝛼 and 𝛽 are 

determined from the boundary conditions of the panel 

[4,5]).  Penalty factor 𝑝7 is greater than 1 if the 

maximum allowable blade tip deflection (δ𝑡𝑖𝑝,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒) 

has been exceeded.  Penalty factor 𝑝8 is greater than 1 

if the difference between the blade natural frequency 

𝜔𝑚 (for 𝑚 = 1 … 𝑀𝑚𝑜𝑑𝑒𝑠) and the rotor rotation 

frequency 𝜔𝑚 is less than the minimum allowable 

separation Δ𝜔,𝑚𝑖𝑛.  The weighting value in Equation 3.1 

is set as 𝑤 = 2 "𝑚𝑏𝑙𝑎𝑑𝑒,𝑖𝑛𝑖𝑡𝑖𝑎𝑙"⁄ .  This choice of 𝑤 gives 

greater incentive to minimize the penalty factors (i.e. 

minimizing stresses) rather than strictly minimizing the 

blade mass. 
 

(a) 

 

(b) 

 

(c) 

 

Figure 9. Geometry of a circular composite beam and 

loading condition (a), computed torsional and bending 

stiffness (b), and beam deflection (c) [11]. 

To solve this structural optimization problem, we 

compared several optimization algorithms.  An example 

of the convergence history for the fitness value is shown 

in Figure 10, comparing the efficiency of different 

deterministic (gradient search and pattern search) and 

stochastic (particle swarm) optimization methods.  Each 

optimization algorithm starts with the same initial point; 

however, the particle swarm algorithm is a population 

based method so it also includes many alternative initial 

points sampled randomly from within the feasible 

domain.  On a standard laptop computer, a single 

function evaluation (i.e. a complete static analysis) by 

the Co-Blade code can be completed in approximately 

1 second. 
 

𝑓(�⃑�𝑠𝑡𝑟𝑢𝑐𝑡) = 𝑤 ∗ 𝑚𝑏𝑙𝑎𝑑𝑒 + ∑ max{1, 𝑝𝑖}2

8

𝑖=1

 (3.1) 

𝑝1 =
𝜎11,𝑚𝑎𝑥

𝜎11,𝑓𝑇
 

𝑝2 =
𝜎11,𝑚𝑖𝑛

𝜎11,𝑓𝐶
 

𝑝3 =
𝜎22,𝑚𝑎𝑥

𝜎22,𝑦𝑇
 

𝑝4 =
𝜎22,𝑚𝑖𝑛

𝜎22,𝑦𝐶
 

𝑝5 =
|𝜏12|,𝑚𝑎𝑥

𝜏12,𝑦
 

𝑝6 = (
𝜎𝑧𝑧

𝜎𝑏𝑢𝑐𝑘𝑙𝑒
)

𝛼

+ (
𝜏𝑧𝑠

𝜏𝑏𝑢𝑐𝑘𝑙𝑒
)

𝛽

 

𝑝7 =
δ𝑡𝑖𝑝

δ𝑡𝑖𝑝,𝑎𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒
 

𝑝8 = max { 
Δ𝜔,𝑚𝑖𝑛

|𝜔𝑚 − 𝜔𝑟𝑜𝑡𝑜𝑟|
 } 

 

 

 

 

 

Figure 10.  Comparison of convergence histories during 

the structural optimization for gradient search, pattern 

search, and particle swarm optimization algorithms.  The 

dotted lines show 3 realizations of the stochastic particle 

swarm algorithm. 

Initially the blade mass started at 731 kg (in air) and 

was reduced to 428 kg, 556 kg, and 489 kg by the 

gradient search, pattern search, and particle swarm 

algorithms respectively.  The gradient search algorithm 

converged most quickly and found the best overall 

solution; however, it is very sensitive to the initial guess 

since it is not a global optimization algorithm.  

Furthermore, it is not guaranteed to satisfy the bounds 

and linear inequality constraints on the design variables 

which can occasionally produce impracticable blade 

designs (making this algorithm more difficult to use).  

The particle swarm and pattern search algorithms are 
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global optimization algorithms and are less sensitive to 

the initial points and numerous constraints on the design 

variables.  The particle swarm algorithm performs 

similarly to the gradient search algorithm, and multiple 

realizations of the stochastic particle swarm algorithm 

show that it performs consistently well.  The converged 

blade designs obtained by the gradient search and 

particle swarm algorithms satisfy all of the design 

criteria—all the constraints on maximum allowable 

stresses, blade tip deflection, buckling stresses, and 

placement of blade natural frequencies are satisfied 

(penalty factors 𝑝1 − 𝑝8 are less than unity). 

The pattern search algorithm performs worse than the 

other two algorithms and one of the design criteria is 

not satisfied upon convergence (𝑝2).  However, it is 

more instructive to continue our discussion in relation 

to this “failed” blade design.  Figure 11 visualizes 

stresses within different composite layers of the blade 

obtained by the pattern search algorithm.  Despite 

having the greatest strength, the NCT307-D1-34-600 

carbon fiber exceeded its failure stress, which was 

predicted to fail in compression on the outboard region 

of the top surface of the blade—see Figure 11.  As 

mentioned in the preceding paragraph, a superior 

optimization algorithm can create a blade which meets 

all the design criteria.  However, the failure of the 

carbon fiber spar cap could also be aggravated by 

constraints imposed by the hydrodynamic design of the 

blade—which is very thin in the outboard regions of the 

blade due to a small chord and thin hydrofoil profile.  In 

this thin region of the blade there is little space in the 

blade interior to further increase the thickness of the 

carbon fiber layers.  Failure of the spar-cap could have 

possibly been avoided by selecting a thicker family of 

hydrofoils for the hydrodynamic design of the blade—

a decision made prior to the structural optimization 

phase.  This emphasizes the importance of coupling the 

hydrodynamic and structural design of the blade in 

order to satisfy all design criteria. 
 

 

Figure 12.  The composite material properties 𝐸11, 𝐸22, 

𝐺12, 𝜈12, and 𝜌 were given a similar random variation 

corresponding to a normal distribution with 𝐶𝑂𝑉 = 0.10.  
 

 

 

Figure 11. The “optimized” blade found by the pattern 

search algorithm.  We visualize stresses in multiple layers of 

the composite blade, showing max stress failure criteria in: 

(a) the E-glass "blade-shell" material covering the exterior 

top surface of the blade, (b) the E-glass “root build-up” 

material, which lies directly under the "blade-shell" material, 

(c) the carbon fiber “spar cap” material, which lies directly 

under the "blade-root" material, and (d) the E-glass material 

on the exterior surfaces of the shear webs.  A value greater 

than 1 indicates that the material exceeded its failure stress. 
 

IV.EFFECTS OF UNCERTAIN MATERIAL PROPERTIES 

The analysis and optimization methodology 

described in the previous sections assumed 

deterministic values of the material properties.  In order 

to quantify the effect that uncertain material properties 

can have on blade response and predict overall 

reliability in a probabilistic design space, we consider 

that the material properties 𝐸11, 𝐸22, 𝐺12, 𝜈12, and 𝜌 

listed in Table 1 actually represent the mean values of a 

normal distribution with a 𝐶𝑂𝑉 = 0.10 (for example, 

as shown in Figure 12).  We generated 2,000 random 

combinations of the stochastic material properties, and 

then analyzed the stochastic response of the blade to 

predict the probability that various failure modes would 

occur.  Only the material properties varied, and all 

geometric properties of the blade (e.g. twist, chord, ply 

thickness, ply angle, etc.) and applied 

hydrodynamic loads remained constant.   In addition, 

body forces also vary since they are dependent on 

material density.   



We continue this discussion with respect to the 

“optimized” blade found by the pattern search 

algorithm.  As mentioned previously, this particular 

blade design exceeded its allowable stress in the carbon 

fiber spar cap (Figure 11).  Furthermore, a number of 

additional failure modes are predicted to occur when the 

material properties have a random variation, as shown 

in Figure 13.  Figure 13 shows the resulting variation of 

the penalty factors 𝑝1 − 𝑝6 which indicate the 

probability of exceeding allowable stresses and 

buckling—the solid lines in the figure represent a best 

fit normal distribution to each data series.  As shown in 

Figure 13, the probability of each failure mode 

occurring is equal to the area under these curves, for the 

domain 𝑝𝑖 ≥ 1.  From Figure 13, we can conclude that 

the probability of each failure mode occurring is: 

 100% for exceeding allowable compressive 

stress in the carbon fiber spar cap 

 18% for exceeding allowable tensile stress in the 

E-glass blade shell 

 46% for buckling to occur in the LEP 

 73% for buckling to occur in the TEP 

 14% for buckling to occur in the blade tip 

 0% for all other failure modes 
 

By utilizing the Pearson product-moment coefficient 

(Eqn. 4.1), we can determine which composite material 

properties have the most important effects on blade 

response.  The Pearson product-moment coefficient, 

defined as 
 

𝜌𝑋,𝑌 = 𝑐𝑜𝑟𝑟(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

 
(4.1) 

 

indicates the degree of linear dependence between the 

variables. As the Pearson coefficient approaches zero 

there is less of a relationship (closer to uncorrelated), 

and the closer the coefficient is to either −1 or 1, the 

stronger the correlation between the variables.  As 

Figure 14 shows, 𝐸11and 𝐺12have the largest effect on 

material stresses within the different components of the 

composite blade, and loading/unloading of the spar cap, 

blade shell, and shear webs are most sensitive to these 

variables.  This type of information can provide further 

insight on how to optimize the composite blade.  

Further analysis of Figure 14 reveals that the core 

materials in the spar, LEP, TEP, and webs have an 

insignificant effect on the buckling strength of the 

blade, and perhaps costs can be reduced by completely 

removing these materials for this blade type and size. 

Factors such as material corrosion, biofouling, and 

manufacturing process can lead to unexpected 

performance or premature failure of the turbine.  

Quantifying the effect that material uncertainties have 

on blade performance can inform the design of more 

cost effective turbines.  Although the blade cost 

represents only a fraction of the total cost of a 

wind/hydrokinetic turbine system, the blades also play 

the primary role in transferring loads into other sub-

components of the turbine—meaning that the sizing and 

cost of many sub-systems are tightly coupled to the 

performance of the rotor blades.  Inappropriate factors 

of safety can lead to either over-design or under-design 

of the device, resulting in higher cost, unexpected 

performance, or failure of the turbine.  The analysis 

presented in this section can help optimize such factors 

of safety in order to achieve more reliable and cost 

effective designs. 
 

 

 

 

Figure 13. Normalized probability density functions1 

(PDFs) of blade response due to random variation of 

material properties.  Figures (a) and (b) show the 

probability of exceeding the maximum allowable 

stresses in the carbon spar cap and E-glass blade shell.  

Figure (c) shows the probability of buckling occurring in 

the different components of the blade. 

__________ 

1Given a probability distribution function 𝑓(𝑥), the probability that 

𝑎 < 𝑥 ≤ 𝑏 is 𝑃(𝑎 < 𝑥 ≤ 𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
, and the normalized 

PDF is defined as 𝑓(𝑧) = 𝜎𝑓(𝑥) where 𝑧 = (𝑥 − 𝜇) 𝜎⁄ .  𝜇 and 𝜎 

are the mean and standard deviation. 

 



 

 

 

Figure 14. The Pearson product-moment coefficient 

showing the correlation between blade response and 

material properties within each component of the blade.  

Correlation between stress in the carbon spar caps (top), 

stress in the E-glass blade shell (middle), and buckling 

of the trailing edge panel (bottom). 
 

V.CONCLUSION & FUTURE WORK 

The present work describes the development and 

validation of a methodology used to design composite 

blades for wind and hydrokinetic turbines.  An open 

source code, Co-Blade [1], was developed which is 

based upon classical lamination theory combined with 

an Euler-Bernoulli and shear flow theory applied to 

composite beams.  For a limited number of composite 

beam models, we have verified the efficiency and 

accuracy of the Co-Blade methodology compared to 

both analytical and finite-element analysis results.  We 

also demonstrated an efficient structural optimization 

algorithm capable of minimizing blade mass while 

satisfying a comprehensive list of design constraints.  A 

Monte-Carlo analysis was performed to quantify the 

effect of uncertain material properties on blade response 

which helped identify strategies to improve the 

performance and reduce costs of the blades.   

In the future, we will also continue our validation 

efforts for Co-Blade by comparing to results obtained 

from higher resolution finite-element analysis of 

turbine blades with more complex composite layups.  

Longer term goals for this project also include coupling 

this structural mechanics model to an unsteady 

incompressible fluid solver to study the fluid-structure 

interactions of wind and hydrokinetic turbines.   

Composite blades are susceptible to geometric, 

material, and loading uncertainties because of their 

complex configuration, manufacturing process, and 

dependence on fluid–structure interaction [12].  The 

uncertainty analysis can be extended to quantify the 

effects of uncertainty in material strength, blade shape, 

and hydrodynamic loading on blade response, safe 

operating envelopes, and overall reliability of 

composite rotors.  While structural mass was used in the 

objective function for the structural optimization 

problem, more complex objective functions may 

provide an improved design.   The idea of coupling the 

geometric and structural optimization of the blade was 

noted in Section III, with one component working as the 

objective and the other as a constraint.  This can be 

helpful for optimizing the blade over the full range of 

expected operating conditions by optimizing the 

geometry of the blade for the mean expected load while 

simultaneously providing constraints against structural 

failure under off-design conditions.  For only structural 

optimization, it may be more useful to use blade 

reliability as the objective function.  While this is more 

computationally demanding, by modeling the material 

uncertainties and running sufficient simulations to 

provide an estimate of the probability of structural 

failure for a given design, the probability of failure can 

be minimized as an objective to provide optimal 

reliability.   

ACKNOWLEDGMENTS 

We thank the National Science Foundation (NSF) for 

providing the NSF Graduate Research Fellowship to the 

first author under Grant No. DGE-0718124.  The first 

author also thanks Mark Tuttle and Brian Polagye of the 

University of Washington for many helpful discussions 

and guidance, and Hongli Jia of Hanyang University for 

providing the ABAQUS results for comparison. 



REFERENCES 

[1] D.C. Sale. “Co-Blade: Software for Analysis and 

Design of Composite Blades.” 

https://code.google.com/p/co-blade/.  

[2] M. Tuttle, Structural Analysis of Polymetric 

Composite Materials, CRC Press, 2004.  

[3] O. Bauchau and J. Craig, Structural Analysis: With 

Applications to Aerospace Structures, Springer, 

2009.  

[4] D. Peery and J. Azar, Aircraft Structures, McGraw-

Hill, 2nd edition., 1982.  

[5] W. Young and R. Budynas, Roark's Formulas for 

Stress and Strain, McGraw-Hill, 7th edition, 2001. 

[6] G. Bir. NWTC Computer-Aided Engineering Tools 

(BModes: Software for Computing Rotating Blade 

Coupled Modes).  

http://wind.nrel.gov/designcodes/preprocessors/bmo

des/ 

[7] J.F. Mandell, D.D. Samborsky, P. Agastra, A.T. 

Sears, and T.J. Wilson. "Analysis of 

SNL/MSU/DOE Fatigue Database Trends for Wind 

Turbine Blade Materials." Contractor Report 

SAND2010-7052, Sandia National Laboratories, 

Albuquerque, NM, 2010.  

[8] D.C. Sale. NWTC Computer-Aided Engineering 

Tools (HARP_Opt: An Optimization Code for the 

Design of Wind and Hydrokinetic Turbines). 

http://wind.nrel.gov/designcodes/simulators/HARP

_Opt/ 

[9] M. G. Trudeau, "Structural and Hydrodynamic 

Design Optimization Enhancements with 

Application to Marine Hydrokinetic Turbine 

Blades," Master's Thesis, The Pennsylvania State 

University, 2011. 

[10] H. Jia, personal communication, Structures and 

Composites Laboratory, Hanyang University, 

Korea, 2012. 

[11] J. Thomson, B. Polagye, V. Durgesh and M. 

Richmond. “Measurements of Turbulence at Two 

Tidal Energy Sites in Puget Sound, WA.” IEEE 

Journal of Oceanic Engineering, Vol. 37, No. 3, 

2012. 

[12] M.R. Motley and Y.L. Young, “Influence of 

uncertainties on the response and reliability of self-

adaptive composite rotors,” Composite Structures, 

Vol. 94, No. 1, pp. 114-120, 2011. 

 

 

https://code.google.com/p/co-blade/
http://wind.nrel.gov/designcodes/preprocessors/bmodes/
http://wind.nrel.gov/designcodes/preprocessors/bmodes/
http://wind.nrel.gov/designcodes/simulators/HARP_Opt/
http://wind.nrel.gov/designcodes/simulators/HARP_Opt/

