TURBULENCE MEASUREMENTS IN THE OCEAN

Jim Thomson

Applied Physics Lab & Civil/Environmental Engineering University of Washington

Photo: Adam Brown

The cartoon is wrong

The reality

What do we want to know?

- Turbulence intensity, $I_u = \frac{\sigma_u}{\langle u \rangle}$
- Turbulence spectra, TKE(f)
- Coherence and instantaneous shear
- Extreme values
- Anisotropy

What can we measure?

- Acoustic Doppler Current Profilers (ADCP)
 - Poor precision: temporal noise & spatial aliasing
 - Deployment conveniences (profile from bottom)
- Acoustic Doppler Velocimeters (ADVs)
 - Excellent precision (coherent pulses)
 - Deployment challenges (must position at hub height)

ab, hington Pacific Nort

Admiralty Inlet tripod measurements

Thomson et al, JOE, 2012

Applied Physics Lab, University of Washington

Pacific Northwest

Tripod time series

Nodule Point, z_{hub} = 4.7 m

Pacific Northwest

Tradeoffs in configuring Doppler profilers

(Smaller bins have more noise)

<u>Recipe</u>: sample as fast as possible at f_s and set the bins size to be no smaller than the advective length scale $L = U/f_s$, then check if noise variance will be greater than true variance. Make no three-dimensional inferences at scales smaller than the beam spread.

Applied Physics Lab, University of Washington

Extreme values and anisotropy

Tidal Turbulence Mooring

MK9 Pressure logger?

Steel Float ~700lbs Buoyance

AS, Pear Link, 5/8' Ton Esmet Swive with 5/8"SAS " Amsteel Line w/

Fairwrap, 1.5m

SS Shackle, SS Link, 3/4"

5/8" SS Shackle SS Link 3/4" SS

Shackle 1/2" Amsteel I ine w/

Fairwrap, 4m

/8" SAS. Pear Link. 5/8" SAS

ORF 8242 Acoustic Releas

8" SAS Pearlink 5/8" SAS

RR Wheel Anchor Stack

ORE Dron Link 5/8" SAS

Galy Chain 2n

3 Ton Esmet Swivel

with 5/8"SAS

38m

3m

9 m

Line Tube w/100m 5/

16 Amsteel, Float,

875TD Acoustic Releas

1⁄2"SAS

5/8" SAS

Seabed

Problem: ADCPs measurements

are poor (b/c noise and beam spread)

Solution: moor ADVs far above seabed

Challenges:

- Potential for mooring 'blow down' •
- Potential for anchor drag •

Iniversity of

Potential for motion contamination •

fomsonsetal, METS 20

Washington

cher et a National Renewable **Energy Laboratory**

Surface

Applied Physics Lab, University of Washington

Pacific Northwest

Motion correction and TKE spect

$$\vec{u} = \vec{u}_{ADV} - \vec{u}_m$$

Components:

Normalized spectra

- Chacao is more turbulent, even scaled by energy.
- Difference is greatest at large scales (low frequencies),
- Turbulent cascade is similar, if scaled by total TKE (which is set a low frequencies)

Applied Physics Lab, University of Washington

Coherence measurements

Coherence results and length scales

Coherence is an exponential function of separation distance, and effectively zero for scales larger than the water depth

TurbSim: Extrapolating coherent turbulence for input to *device simulation tools*

Device Simulation: Goals

What is a 'realistic flow field'?

What do we need to measure/simulate?

u(x, y, z, t)

Mean Velocity

- Mean velocity profile
- Turbulent Kinetic Energy (TKE) turbulence intensity
- Turbulence Spectrum timescales of turbulence
- Reynold's Stresses
- Spatial coherence length-scales of turbulence

Applied Physics Lab, University of Washington

Mean Flow Profile

Instantaneous Flow Field

u'n

Northwest National Marine Renewable Energy Center

Turbulence

11/11

u'v'

Pacific Northwest

Spatial Coherence

The next [big] thing: "stablemoor"

Waves make turbulence too!

SWIFT: Surface Wave Instrument Float with Tracking

Thomson, J. Journal of Atmospheric and Oceanic Technology, 29, 2012.

www.apl.uw.edu/swift

Hull	Anodized aluminum
Power	14 VDC, Alkaline or Lithium D cell packs
Weight	30 kg in air
Dimensions	1.25 m draft, 1.0 m mast, 0.35 m diameter
Shipping crate	1.65 m length, 0.5 m width, 0.5 m depth
Endurance	30 days (Alkaline), 90 days (Lithium)
Tracking (RF)	Garmin Astro DC40 collars (10 km range)
Tracking (Iridium)	Geoforce GT1 (global)
Telemetry	Iridium SBD
Processor	Sutron Xpert
Profiler	2 MHz Nortek Aquadopp HR
Met	Airmar PB200
IMU	Microstrain 3DM-GX3-35
CT	Aanderraa 4319
Camera	serial uCAM
Light	Yellow 1s flasher

Applied Physics Lab, University of Washington

Wave breaking at the Newport test site (winter 2016)

Beyond ambient turbulence: Wakes

More wake measurements

Applied Physics Lab, University of Washington Pacific Northwest

National Renewable Energy Laboratory

- Engineers:
 - Joe Talbert
 - Alex deKlerk
 - Students:

٠

- Mariacarmen Guerra
- Michael Schwendeman
- Seth Zippel
- Maddie Smith
- Curtis Rusch
- Chris Bassett (now at WHOI)
- Collaborators:
 - Johannes Gemmrich (U Victoria)
 - Levi Kilcher (NREL)
 - Brian Polagye (UW)
- Ships & crew:
 - R/V Jack Robertson, R/V Oceanus, R/V New Horizon, R/V Norseman II, R/V Ukpik, R/V T. G.
 Thompson, F/V Westwind,

Thanks

Applied Physics Lab, University of Washington

