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Marine hydrokinetic (MHK) operating licenses require biological monitoring to quantify effects of devices 

on aquatic organisms, but regulations for instrumentation, measurements, and sampling effort have not 

been standardized.  Assuming stationary acoustic surveys are more cost effective than repeated mobile 

surveys, the abilities of stationary echosounders, ADCPs, and acoustic cameras to characterize fish 

densities were compared at a MHK site in Admiralty Inlet, WA.  The calibrated echosounder was most 

sensitive to density changes from vertical migrations, and state-space models confirmed measurements 

were robust to other variance sources including tidal currents. Peak density variance occurred at a 24-

hour period, with cyclic fluctuations in phase with tidal currents and tidal ranges.  Six methods used 

mobile acoustic data to estimate representative spatial ranges of stationary acoustic measurements, 

resulting in values from 31 to 1,388 m.  Design objectives were used to develop a generic framework for 

the design of distributed monitoring networks at MHK sites. 
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1.1. Introduction 
Ecological communities vary over ranges of spatial and temporal scales (Stommel 1963, Haury et 

al. 1978, Levin 1992).  Historically, ecological variability was treated as a statistical nuisance that limited 

efforts to identify change in a quantity through space and/or time (Horne & Schneider 1995).  A series of 

papers disseminated the importance of variance as an ecologically significant quantity (Wiens 1989, 

Levin 1992, Horne & Schneider 1995).  Scale-dependent patterns of variance can be used to infer the 

underlying physical and biological processes influencing an ecosystem (Platt & Denman 1975, Steele 

1994, Horne & Schneider 1995), but the ability to identify these patterns is limited by the sampling 

resolution relative to the extent of a survey (i.e. measurement scope; Wiens 1989, Schneider 2009).  

Even though interpretation of biological variance has become more nuanced, constraints on data storage 

and processing have historically limited the spatial and temporal scope of ecological surveys (Dickey & 

Bidigare 2005).  Recent technological advancements have enabled fine-resolution (spatial resolution < 

1m, temporal resolution < 1 sec), spatiotemporal measurements over months or years (e.g. Dickey & 

Bidigare 2005, Urmy et al. 2012), which were not previously possible (Porter et al. 2005).  Surveys 

conducted at high spatial and temporal scope also enable the identification of transient temporal 

processes in space (e.g. Certain et al. 2007).  In reality, repeated high-scope, mobile surveys, such as 

line-transects, are cost prohibitive to repeat at the temporal resolution required to characterize temporal 

patterns operating at daily or monthly periods.  Sampling through space takes time, convolving spatial 

and temporal variability, further obscuring the detection of temporal patterns (Stewart-Oaten et al. 1995, 

Martin et al. 2005).  An operational sampling tradeoff between spatial and temporal scope must be made, 

which may compromise the identification of spatial or temporal patterns through time (e.g. Lie et al. 2013).    

In contrast to repeated mobile surveys, networks of static, autonomous sensors may be more 

cost effective to provide high-temporal scope measurements in space and time.  Stationary sensor 

networks are particularly effective for sampling marine environments over months or years due to the 

expense of repeating mobile surveys at sea.  The cost effectiveness of remote monitoring methods are 

particularly attractive for prolonged studies, such as environmental impact assessments (Brando & Phinn 

2007).  A recent application requiring long term environmental monitoring is marine hydrokinetic energy 

(MHK) installations.  MHK is a suite of technologies that generate electricity from the kinetic energy of 
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surface waves, offshore wind, and tidal currents.  As MHK technologies progress toward economic 

viability, dynamic, energy-rich sites are being developed for demonstration projects (i.e. one to ten 

devices) with the intent of scaling pilot project sites to large commercial arrays (i.e. tens to hundreds of 

devices). 

The ecological effects of generating electricity in the marine environment on mammals, fish, and 

macrozooplankton (i.e. pelagic nekton) are uncertain.  Hypothesized effects of MHK devices on local 

pelagic nekton communities include direct strikes or impingement (APBmer 2010), repulsion due to 

operational noise (Halvorsen et al. 2011) or electro-magnetic fields (Öhman et al. 2007, Normandeau 

2011), or aggregation as a shelter from predators and tidal currents (e.g. artificial reefs or fish aggregation 

devices; Inger et al. 2009, Polagye et al. 2011).  In the United States, MHK operating licenses require 

monitoring programs to quantify potential environmental effects (FERC 2008), but monitoring 

requirements and the sample designs have not been standardized, and there are no recommended 

analytic procedures to design monitoring programs. 

The high kinetic energy that makes sites attractive for MHK development also poses challenges 

to traditional marine sampling techniques. Sampling uncertainties arise at nearly every phase in the 

design of monitoring programs, including: 

1. Choice of instrumentation to measure nekton density through the water column that is 

robust to sampling in energetic environments 

2. Selection of metrics to describe change in the pelagic nekton community that are 

compatible with the instrumentation 

3. Design of platforms and instrumentation density that optimize monitoring sensitivity and 

cost effectiveness  

4. Determining minimum sampling effort that provides adequate sample coverage and 

statistical power 

5. Defining analytic tools to compare baseline measurements to post-installation 

measurements to quantify the presence and amplitude of biological effects 

This study addresses these five uncertainties when developing a biological monitoring plan for MHK 

installations, and provides a framework to construct monitoring plans.  To illustrate the approach and to 
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resolve these challenges, data from the Snohomish Public Utility District’s proposed tidal MHK pilot site in 

Admiralty Inlet, Puget Sound, WA was used as a case study. 
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2.1. Introduction 
Offshore energy resources, such as waves, tidal currents, and offshore wind, are emerging as an 

economically viable form of carbon-free renewable energy.  Marine hydrokinetic energy (MHK) 

installations convert kinetic energy in waves and tidal currents to electricity, but the biological impact of 

generating electricity in marine environments is uncertain (Boehlert & Gill 2010, Wilson et al. 2010, Frid et 

al. 2012).  Hypothesized effects of installing and operating MHK devices on the fish and macro-

zooplankton (i.e. nekton) community include reductions in density due to direct strike or impingement 

(Wilson et al. 2007, ABPmer 2010), changes in the vertical and horizontal distribution due to noise 

(Halvorsen et al. 2011), electro-magnetic fields (Öhman et al. 2007, Normandeau 2011), or sheltering 

from tidal currents (e.g. artificial reefs; Inger et al. 2009, Polagye et al. 2011).  The strong tides and waves 

that make sites attractive for MHK developments constrain traditional forms of biological sampling, such 

as nets, cameras, and optical surveys.  These challenges historically made these sites difficult or 

impossible to sample, creating a gap in knowledge of the local biological community and how it varies 

through time and space.  Uncertainty in the rate and severity of effects of a MHK device is compounded 

by uncertainty in the density and distribution of nekton.  The lack of historical sampling has led to a dearth 

of baseline knowledge on species composition, density, distribution, and variability of nekton communities 

at MHK sites needed to make informed decisions about monitoring instrumentation, metrics, and effort.  

Despite these sampling challenges and the lack of biological understanding, government regulations 

require MHK developers to monitor the effects of installing, operating, and decommissioning MHK 

devices (FERC 2008).   

In contrast to near-field monitoring, which observes direct interactions between organisms and a 

device, far-field or domain monitoring quantifies effects of a device or devices on the ecological 

community.  An effect is defined as a statistically significant deviation in a biologically pertinent quantity of 

the community, determined by comparing pre-installation to post-installation measurements (Smith 1991).  

When comparing pre- and post-installation measurements, the power to statistically identify biological 

effects is confounded by natural variability in quantities of interest (Underwood 1989, Morrisey 1993, 

Hewitt et al. 2001).  Baseline variability must be characterized to calculate the minimum detectable effect 

and properly allocate sampling effort through space and time (Rhodes & Jonzén, 2011).  Variability is not 
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merely a statistical impedance (Horne & Schneider 1995); variability is a biologically significant attribute of 

a quantity that can be used as a secondary indicator of change (Underwood 1991).   

Active acoustics are a suite of non-invasive aquatic sampling technologies that measure fish and 

macrozooplankton (i.e. nekton) density at fine spatial and temporal resolutions.  Since light is scattered 

and absorbed more quickly than sound in water, acoustic technologies have longer effective sampling 

ranges than optical devices and are more robust to turbid environments.  Traditionally, acoustic 

measurements have been collected from mobile surface vessels (e.g. Koslow 2009) to quantify spatial 

distributions of fish and macrozooplankton.  The constraint when measuring spatial heterogeneity in 

mobile surveys is that sampling space takes time, confounding temporal and spatial variability.  

Repeating mobile surveys enables the allocation of variance between time and space, but the rate at 

which mobile surveys can be repeated, which defines the temporal resolution of the data set, is resource 

limited.  Identification of temporal patterns from repeated mobile surveys is constrained by the temporal 

resolution relative to the temporal extent (i.e. temporal scope; Wiens 1989, Schneider 2009) of the data.  

Recent innovations in power and data storage facilitate the remote deployment of acoustic instruments 

from stationary ocean observatories, which can be used to quantify temporal variability in nekton density 

and vertical distribution at high temporal resolution (e.g. Urmy et al. 2012).  In contrast to mobile acoustic 

surveys, stationary acoustic surveys measure density and vertical distribution of nekton at a high 

temporal scope, but in a reduced volume.  Based on current MHK monitoring plans (e.g. NYSERDA 

2011), stationary acoustic surveys are assumed to be preferred for long-term, post-installation domain 

monitoring due to the added costs of maintenance, fuel, and labor associated with vessel operation in 

repeated mobile surveys.  

Ideally, acoustic technologies deployed for other objectives, such as tidal resource 

characterization or near-field monitoring, could be used for domain monitoring, reducing monitoring costs 

by decreasing the number of deployed instrument packages.  Several acoustic technologies may be 

opportunistically available for domain monitoring at MHK sites, but there is a need to vet these 

technologies against the community standard: calibrated scientific echosounders (Foote et al. 1987, 

Simmonds & MacLennan 2005).  In particular, Acoustic Doppler Current Profilers (ADCP) and acoustic 
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cameras have been deployed at MHK installations to characterize tidal resources and to track fish as they 

approach a turbine (Polagye & Thomson 2013, Viehman & Zydlewski 2014).  

The primary challenge when designing MHK domain monitoring programs is to identify 

instrumentation and metrics that can measure nekton densities in energetic environments, maintain cost 

effectiveness, and are capable of being deployed over extended periods.  This study, conducted at a 

proposed tidal current MHK pilot site in Admiralty Inlet, Puget Sound, WA provides a case study to 

evaluate acoustic technologies for monitoring densities and vertical distributions of nekton over time and 

space at MHK sites. To inform future efforts to monitor pelagic communities, including the pilot MHK site 

in Admiralty Inlet, specific objectives of this chapter are: 

1. To characterize species composition, biological diversity, and to identify species of 

special regulatory concern. 

2. To describe spatial and temporal variability in the density and vertical distribution of fish 

and macrozooplankton in the water column.   

3. To identify potential physical processes influencing those patterns, and events of 

exaggerated biological variability that may pose a risk to either the device or biological 

community as a whole.   

4. To compare the efficacy of an ADCP, an acoustic camera, and a calibrated echosounder 

to measure nekton density and vertical distribution.    

Taken collectively, these objectives form a baseline characterization of pelagic nekton in Admiralty Inlet, 

WA as a standard to compare to post installation measurements as part of biological monitoring plan.    

2.2. Materials & Methods 
2.2.1 Overview 

Species composition, density, and distribution of the pelagic nekton community are characterized 

using stationary and mobile acoustic surveys, supplemented by midwater trawls, at the Snohomish Public 

Utilities District’s (SnoPUD) proposed tidal energy site in Admiralty Inlet, Puget Sound.  Admiralty Inlet is 

a shallow shelf connecting Puget Sound to the Strait of Juan de Fuca and the primary inlet into Puget 

Sound (Figure 2.1). The proposed site is 750m from Admiralty Head at a depth of 55m at mean tide level.  
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Figure 2.1. Admiralty Inlet, Puget Sound, USA.  (top left) Admiralty Inlet at the mouth of Puget Sound.  
(bottom left) the location of the stationary echosounder, at a proposed tidal energy pilot site, is denoted by 
the white square in relation to the two spatial grids north and south of the stationary package, each 
consisting of high and low resolution transects.  

N 

1000 m 
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Tidal flows in excess of 3.5 m/s have been observed through Admiralty Inlet (Gooch et al. 2009).  

Previous efforts to catalogue fish in Admiralty Inlet have observed 115 species (DeLacy et al. 1972), 

including 11 species of special conservation status as defined by state and federal agencies (WDFW 

2012).  Snohomish Public Utility District has proposed installing two six-meter OpenHydro 

(www.openhydro.com) tidal current turbines on three-meter foundations in Admiralty Inlet in the summer 

of 2015.   

2.2.2 Acoustic Technology Description 
Active acoustics are a diverse set of technologies capable of quantifying densities and vertical 

distributions of aquatic organisms, characterizing tidal flow regimes, and tracking individual targets 

through space in aquatic environments (Simmonds and MacLennan, 2005).  In general, acoustic 

technologies emit short (e.g. 0.2 - 1ms) pulses of energy (i.e. a ping) through the water column at high 

rates (e.g. > 1 sec-1).  The emitted sound is reflected by fish and macroinvertebrate targets in the water 

column back to the transceiver.  These reflections, called acoustic backscatter, are used to enumerate or 

track individual targets through space and time (Simmonds & MacLennan 2005), while the integral of 

backscatter is used to estimate nekton density (Foote 1983).  The fine temporal and vertical resolution (< 

1m) of samples from acoustic instruments enable high-resolution measurements of nekton densities 

distributed throughout the water column (i.e. density distributions).  

2.2.2.1 Echosounders 

Calibrated scientific echosounders are used to measure pelagic nekton density-distributions  from 

mobile (e.g. Koslow 2009) or stationary platforms (e.g. Doksaeter et al. 2009, Kaartvedt et al. 2009, Urmy 

et al. 2012).  Internationally accepted calibration protocols (Foote et al. 1987) ensure consistent operation 

and data equivalency among echosounders, surveys, and years.  Given the number of validation studies 

and use by the international community (e.g. Love 1971, Nakken & Olsen 1977, Foote 1983, Simmonds & 

MacLennan 2005), the scientific echosounder is the most vetted acoustic instrument and was used as a 

benchmark to compare the efficacy of other acoustic technologies in this study. 

2.2.2.2 Acoustic Cameras 

Acoustic cameras operate at high frequencies (e.g. 0.7 to 1.8 MHz) and provide near optical 

quality images that are used for imaging, counting, and inspection of objects or aquatic organisms 
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(Simmonds & MacLennan 2005).  The added resolution of acoustic cameras comes at the cost of 

operational range (e.g. 15 to 80m).  Yet even this range, short by acoustic standards, exceeds that of 

optical technologies when used in aquatic environments.  Stationary acoustic cameras have been used to 

count migrating salmon (e.g. Burwen et al. 2010) and to track individual targets as they approached a 

tidal turbine (e.g. Viehman & Zydlewski 2014).  The ability of acoustic cameras to track individual targets 

at high resolution and precision in turbid water makes them an attractive component of many near-field 

MHK monitoring programs, providing the ability to detect physical strikes or impingements of individual 

fish as they approach a MHK device.  The use of acoustic cameras in near-field monitoring makes them 

opportunistically available for domain monitoring at MHK sites, but the accuracy of integrated acoustic 

backscatter measures of nekton density by acoustic cameras has not been tested.   

2.2.2.3 Acoustic Doppler Current Profilers 

The ADCP uses the shift in returned frequency due to the movement of suspended passive 

particles (i.e. the Doppler effect) to derive water velocities.  Water velocities, collected through time from 

bottom deployed ADCPs, are used to determine the site feasibility for MHK tidal current installations 

(Polagye & Thomson 2013).  Even though ADCPs were designed to measure current velocities, the 

returned backscatter can be used as an index of nekton biomass (e.g. Flagg et al. 1994, Cochrane et al. 

1994, Brierley et al. 2006).  The difficulty of calibrating an ADCP for biological use (Brierley et al. 1998) 

limits the interpretation of backscatter to a relative index.  

2.2.3 Mobile Survey 

2.2.3.1 Mobile Acoustics 

Snohomish Public Utilities District’s (SnoPUD) proposed Admiralty Inlet tidal hydrokinetic energy 

site was split into north and south geographic areas, approximately 1km apart.  The north geographic 

area was located in the main tidal channel, while the south geographic area was shielded from flood tides 

by Admiralty Head (Figure 2.1).  Each geographic area was repeatedly sampled by a systematic acoustic 

survey, consisting of high (0.25 km) and low (0.5 km) resolution transects encompassing the proposed 

location of the tidal turbines.  Each sampling grid totaled 28 km of transects and covered approximately 8 

km2 (Figure 2.1).  Surveys were repeated from May 2nd to May 13th, 2011 and again from June 3rd to June 

14th, 2011.  
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Table 2.1. Acoustic sampling parameters used with each acoustic technology. 

Deployment Mobile Stationary 
Technology Echosounder Echosounder Acoustic Camera ADCP 
Manufacturer Simrad BioSonics Sound Metrics Nortek 
Model EK-60 DTX Didson AWAC 
Frequency 120kHz 120kHz 700kHz 1000kHz 
Beam Angle 7o 7o .08o x 14o 25o 
Beam Number 1 1 48 3 
Pulse length 512 µs 500 µs 92 µs unspecified 
Ping Rate 1 Hz 5 Hz 1 Hz 1 Hz 
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A 120 kHz, hull mounted Simrad EK-60 echosounder was used to quantify nekton density and 

vertical distributions during all mobile surveys.  The transducer, with a transmit power of 500 W, had a 

beam width of 7  ̊ (between half power points, Table 2.1).  Measurements were conducted at 1 Hz with 

pulse duration of 0.512 ms.  The echosounder was calibrated using a 38.1 mm tungsten-carbide sphere 

following protocols of Foote et al. (1987).   

2.2.3.2 Direct Samples 

A Marinovich midwater trawl, a 6 m x 6 m box trawl fished with 4.6 m x 6.5 m (5 ft x 7 ft) steel V-

doors, was used to identify constituents of observed backscatter during the mobile acoustic survey.  

Stretched mesh sizes ranged from 7.6 cm in the forward section of the net to 3.1 cm in the codend.  The 

final third of the cod end was lined with a 0.9 cm knotless liner.  Fish were identified to species and 

measured to create length frequency histograms for each species.  As a precaution to the integrity of the 

net, trawling was restricted to times when the current was 1 knot or less, inhibiting species identification 

and acoustic backscatter partitioning to species or functional groups. 

2.2.4. Stationary Survey 
An autonomous, upward looking echosounder, ADCP, and acoustic camera were mounted on 

separate Sea Spider tripods (http://www.oceanscience.com/Products/Seafloor-Platforms/Sea-

Spiders.aspx). The tripods were deployed 750 meters from Admiralty Head (Figure 2.1), parallel to the 

principal axis of tidal flow, separated by 200m.  Each tripod was ballasted by 275 kg of lead weights.  All 

acoustic technologies concurrently sampled for 12 minutes every two hours, sampling 10% of the total 

deployment time (12 minutes sampling / 120 minutes every two hours).  The echosounder, a 120 kHz 

BioSonics DTX, emitted a 0.5 ms pulse five times a second, transmitting 1000 W of power (Table 2.1).  

The echosounder had a 7 ̊ beam angle (between half power points), and was factory calibrated by the 

manufacturer prior to deployment.  The acoustic camera, a Sound Metrics DIDSON, sampled in long 

range “detection mode” (operating frequency 700 kHz) over a range from 2.5 m to 42.5 m.  A single ping 

from the acoustic camera had 24,576 discreet measurement cells, 512 vertical intervals within each of 

forty-eight 0.8° horizontal and 14° vertical beams spaced 0.6° apart.  The ADCP, a 1 MHz Nortek AWAC, 

sampled three 25 ̊ beams angled 20 ̊ off center at 1 Hz.  Sampling parameters for all instruments are 

listed in Table 2.1.  
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2.2.5. Acoustic Data Processing 
Acoustic data, except the ADCP, were processed using Echoview software (Myriax Software, 

v.5.4.91, http:\\www.echoview.com).  Mobile acoustic measurements within 3m of the echosounder 

transducer face and half-meter from the bottom were excluded to avoid measurements biased by 

transceiver saturation and backscatter from the bottom.  Mobile acoustic returns were dominated by 

surface turbulence introduced by tidal currents, sometimes extending to more than 80m depth.  Surface 

turbulence was identified and excluded from analysis using Echoview’s schools detection algorithm 

(minimum total school length = 5m, minimum total school height = 3m, minimum candidate length = 5m, 

minimum candidate height = 3m, maximum vertical linking distance = 10m, maximum horizontal linking 

distance = 10m).  Detected schools that intersected the three-meter surface exclusion were classified as 

surface turbulence and excluded from further analysis.  Echosounder data were exported at a -75 dB 

threshold, with a 16 dB signal to noise ratio, in order to enhance the surface turbulence exclusion 

algorithm.   

 Stationary acoustic measurements were limited to a range of 3 to 26m from the transducer face, 

corresponding to the maximum range of the ADCP and twice the vertical footprint of the proposed 

OpenHydro turbine.  Stationary backscatter measurements were exported using a -75 dB threshold, 

identical to the mobile echosounder survey.  Cells which failed to meet the signal to noise ratio in the 

echosounder were filtered from all gears.  

Both the acoustic camera and the ADCP data were limited by a lack of a signal to noise range, 

calibration, and time varied gain (TVG) correction.  In the absence of an ambient noise estimate, neither a 

signal to noise threshold nor calibration could be applied to either technology.  A time varied gain (TVG) 

correction for beam spreading, was retroactively applied to the ADCP measurements following protocols 

by Nortek (2001).  Signal loss due to absorption was restored using an absorption coefficient of 358.4 

dB/km (c.f. Table 2.3 in Simmonds & MacLennan 2005).  A TVG assuming spherical spreading was 

manually applied to each acoustic camera beam (Simmonds and MacLennan 2005), with an estimated 

absorption coefficient of 258 dB/km calculated using the equation from Francois & Garrison (1982).  

Acoustic camera measurements between 15-19 m were excluded to remove a band of continuous noise, 

attributed to a second acoustic bottom.  Since continuous vertical data are required to calculate vertical 
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distribution metrics, the excluded measurements were filled with the mean measurements of the entire 

ping.   

2.2.6. Data Binning 
Observed variability in a quantity is dependent on the scale at which the quantity is measured 

(Wiens 1989, Schneider 2009).  One of the main objectives of this study was to characterize variability in 

nekton density-distributions.  Correlation coefficients, lagged in space or time, were used to determine the 

minimum spatial or temporal scale at which mobile or stationary measurements of nekton density were 

independent, and the analysis resolution of each survey was set to these scales (Schneider 1990).  The 

autocorrelation of vertically integrated measurements of mean Sv (units dB re 1 dB re 1 µPa; MacLennan 

et al. 2002) was used to determine the range at which measurements became statistically independent.  

This range was used as the horizontal resolution of the data.   

Once mobile and stationary horizontal resolutions were determined, mean Sv was exported in 1m 

vertical bins to match the vertical resolution of the ADCP.  Data from these one-meter vertical analysis 

cells were used to derive four metrics summarizing the vertical distribution of nekton density within each 

horizontal analysis cell, producing four summary metrics for each spatial or temporal analytic cell.   

2.2.7. Metrics to Characterize Nekton Density and Vertical Distribution 
Four metrics were used to measure density and vertical distributions of nekton in the water 

column; mean volume backscattering strength (mean Sv), center of mass, inertia, and an aggregation 

index.  Mean volume backscattering strength (MacLennan et al. 2002) is a depth-independent metric of 

nekton density integrated through the entire water column.  The remaining three metrics, selected from a 

suite of metrics developed by Burgos & Horne (2008) and further refined by Urmy et al. (2012), 

summarize the vertical distribution of nekton measured in one-meter increments through the water 

column.  The first of these metrics, center of mass (units: m), is a metric of the mean weighted location of 

backscatter in the water column relative to the bottom.  Inertia (units: m2) measures nekton dispersion 

and is analogous to the variance of nekton distribution surrounding the center of mass.  The aggregation 

index (units: m-1) measures the vertical patchiness of backscatter through the water column.  The 

aggregation index is calculated on a scale of 0 to 1, with 1 being aggregated.  Collectively these four 

metrics are referred to as “Echometrics”. 
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2.2.8. Covariates 
Julian day, time of day, tidal speed, daily tidal range (range between high tide and low tide within 

a day), and tide state (flood vs. ebb) were all hypothesized to affect nekton density and distribution.  Time 

of day was used as a proxy for light intensity, associated with diel vertical migration in nekton (Banse 

1964).  Both mobile and stationary measurements were categorized as day (06:00 – 18:00), night (22:00 

– 02:00), or crepuscular (04:00 and 20:00) based on naval sunrise/sunset times.  Mobile measurements 

were also categorized by month (May/June) and sampling grid (North/South). 

Both mobile and stationary acoustic data were linked to tidal velocities measured at ten meters off 

bottom and collected at ten-minute intervals by the ADCP.  Tidal velocities were used to categorize tidal 

speed and tidal state.  Tidal speed was measured as a continuous variable (0.1 m/s bins) and 

summarized into a categorical variable (slack, moderate, and extreme).  Slack (< 0.5 m/s), moderate 

(0.5m/s < moderate < 1.5m/s), and extreme (> 1.5m/s) tidal categories were identified from modes in the 

histogram of tidal current speed, allocating the first and fourth quartiles into slack and extreme tidal speed 

categories.  Ebb or flood tidal states were assigned using the dominant tidal heading relative to the 

principal tidal axis.  In addition to instantaneous tidal velocity, tidal range is a proxy for tidal speed 

integrated through a 24-hour day.  The cube of tidal speed, proportional to tidal power (Betz 1966), was 

used as the covariate of tidal speed. 

2.2.9. Characterizing Backscatter Variability 
Covariates influencing median nekton densities and vertical distributions in both the mobile and 

stationary data were categorically analyzed using an approximation of the 95% confidence interval of the 

median extending +/- 1.57 of the interquartile range divided by the square root of the sample size 

(Chambers et al. 1983).  These confidence intervals, based on asymptotic normality of the median, 

identify significant differences between covariate categories of approximately equal sample sizes.  The 

insensitivity of this method to the underlying distribution of the covariate makes it particularly useful for 

Echometric data, because it provides a single statistical tool to analyze each metric, regardless of the 

underlying distribution and is insensitive to statistical outliers (Chambers et al. 1983).  

2.2.10. Wavelet Analysis  
Wavelet transformations decompose a time series into frequency domain at every time step in a 

series, resulting in a two-dimensional heat-map illustrating the variance contributed by each temporal 
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period at each time step (Torrence & Compo 1998, Figure 2.2).  Wavelet power (i.e. variance) heat maps, 

called scalograms, identify the variance at each time step (x-axis) across a spectrum of temporal scales 

(y-axis).  Localized differences in the scales of peak variances identify transient or transitory patterns in 

the scales contributing to the variability observed in a time series.  Traditional frequency domain analysis 

techniques, such as spectral power, are constrained to a global analysis of the series and cannot identify 

localized transient or transitory patterns in variance (Saunders et al. 2005).  Localized decomposition of 

wavelet transforms eliminates assumptions of stationarity that bias or inhibit spectral analysis in many 

biological contexts (Torrence & Compo 1998, Saunders et al. 2005).  Horizontally integrating wavelet 

power at a single scale through time (i.e. the global wavelet spectrum) measures the variance contributed 

by each scale across the series, analogous to the power spectrum (Torrence & Compo 1998).  Vertically 

integrating all scales within a given time step (i.e. scale averaged wavelet power) decouples observed 

variability from scale, providing an instantaneous estimate of variance across scales. 

Assuming that underlying physical processes influencing a data series can be inferred from the 

periods at which a data series varies (Platt & Denman 1975, Steele et al. 1994), the relative influence of a 

cyclical physical process can be inferred from the variability measured in its corresponding temporal 

scale.  Leveraging this concept, the wavelet scalogram can be used to identify locally significant physical 

processes influencing each metric of nekton density or vertical distribution.  The global wavelet spectrum 

provides a statistically rigorous metric of the variability contributed by each scale across the entire time 

series (i.e. power spectrum; Percival 1995, Perrier et al. 1995, Torrence & Compo 1998).  Periods 

contributing statistically significant amounts of variance to the time series can then be included as Fourier 

series covariates in time series models as a proxy representing the underlying physical processes which 

could not be directly measured.  

A continuous, Morlet mother wavelet-transform was applied to the data to describe the structure 

of the variability in the stationary Echometric series.  Morlet mother wavelets offer precision in the 

frequency domain at only a slight cost to precision in the time domain (Mallat 1989).  A continuous 

wavelet transform, with twelve steps per octave, increased the scale resolution twelve-fold compared to 

discrete wavelet transforms.  The temporal scales analyzed ranged from 4 hours (twice the resolution of 

each time series) to 256 hours (35.5% of the total series length), with 84 analyzed scales increasing  
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Figure 2.2. Wavelet Analysis and its applications.  The data series (top) is decomposed into frequency 
domain at every time step to create the scalogram (center).  The sum of wavelet power across all times 
within a band of periods is the global wavelet spectrum (right), analogous to spectral power.   The scale 
averaged wavelet power (bottom) is the sum of wavelet power across all periods at each time step.  All 
three panels on the left share a common time series ordinate.  
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exponentially as 2(i+23)/12 where i is the scale step with 12 steps per octave.  The beginning and ending of 

each stationary Echometric series was padded with zeroes (Torrence and Compo 1998) to facilitate 

analysis near the start and end of the time series.  These zeroes create edge effects, which artificially 

dampen wavelet power near the edges of the time series.  The reduced power near an edge is 

exaggerated at large scales, decreasing the power to identity large scales as statistically significant.  

Statistical significance in localized wavelet power in the scalogram was tested against a white noise null 

hypothesis at a 95% confidence level (Torrence and Compo 1998).  A full review of the considerations 

and calculations when using wavelet analysis is beyond the scope of this paper, but can be found in 

Torrence and Compo (1998) and Cazelles et al. (2008).   

The significance of all 84 discreet scales was tested against white- and red-noise null 

hypotheses.  A white noise null hypothesis is a constant value across all scales, equal to the variance of 

the time series.  The red noise spectrum, a more realistic and conservative spectrum assuming 

autocorrelation (Torrence & Compo 1998), was modeled as a first order autoregressive process with the 

variance and autocorrelation empirically derived from the time series.  Each theoretical spectrum was 

multiplied by the 95% confidence χ2 statistic with two degrees of freedom to create a 95% confidence 

interval (Torrence & Compo 1998).  Statistically significant scales were included in time-series models as 

Fourier series.   

The mean wavelet power across all scales at a given time step (i.e. scale averaged wavelet 

power) is an instantaneous metric of variance across all scales (Torrence and Compo 1998).  Volatile 

periods of a time series (i.e. instances of high-localized variability) are characterized by sharp peaks in a 

quantity and high scale averaged wavelet power.  Peaks in quantities such as biological density or mean 

vertical distribution, are assumed to increase the risk (i.e. the probability of occurrence multiplied by the 

severity) of nekton interacting with a device.  Instantaneous variance in nekton density and vertical 

distribution is an easily measured proxy for the risk of biological interactions.  Given that variance is 

dependent on the scale at which it is measured, variance estimated risk may be exaggerated or 

dampened by an arbitrary analytical scale.  By taking the mean variance across all measurement scales 

at a given time, the scale averaged wavelet power decouples variance from the measurement scale, 

creating a time specific index of variance independent of scale (Torrence & Compo 1998).  Scale 
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averaged wavelet power can be used as a proxy for risk that is not biased by measurement scale, 

creating a time series of biological risk.   

Similar to the global wavelet spectrum, peaks in the scale averaged wavelet power can be tested 

against a white- or red-noise null hypothesis.  The white-noise scale averaged wavelet is equal to the 

variance of the series, while the theoretical red-noise spectrum was modeled as a first-order 

autoregressive process with known variance and autocorrelation.  The 95% confidence interval for both 

the white- and red-noise spectrum was derived from the 95% confidence χ2 statistic with two degrees of 

freedom (Torrence and Compo 1998).  Periods of statistically significant peaks in variance were identified 

as events of greater risk of biological interactions.  

2.2.11. MARSS State-Space Time Series Models 
Multivariate Auto-Regressive State-Space (MARSS) models are linear, multivariate, first-order 

autoregressive, time-series models assuming Gaussian error in the modeling of populations (i.e. state) 

and the measurement of those populations (Holmes et al. 2012).  MARSS models assume that the true 

population in the modeled series are hidden by measurement error.  Using a maximum likelihood 

framework, MARSS models apply a Kalman smoother to estimate the state at each time step from 

measurements represented in the time series.  The state model includes four components to concurrently 

model each population or metric.  First, auto-regressive matrices relate population estimates from the 

previous time step to the current step, and allow for auto-regressive coefficients between different 

metrics.  Multivariate matrices relate each metric to each covariate with a unique coefficient.  A linear 

trend can be added, and the error structure of each population is capable of including the variance and 

covariance between several modeled populations (Holmes et al. 2012).  The observation process 

includes a linear scaler, multivariate matrices to change the sampling bias as a function of environmental 

covariates, and an error structure capable of including the covariance between separate concurrently 

modeled series.  The best-fit model, identified by the small sample size corrected Akaike information 

criteria (i.e. AICc; Holmes et al. 2012), estimates the true quantity at each step and provides a 95% 

confidence interval. 

 MARSS models have several unique attributes that make them attractive for time series 

modeling, particularly for modeling nekton density and vertical distribution at tidal current sites.  First, 
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MARSS models don’t require concurrently modeled series to be treated independently.  Although each 

metric measures a unique quantity, metrics of vertical distribution may be related due to predictable 

nekton behavior, such as diel vertical migration.  MARSS models enable these inter-dependencies to be 

expressed as auto-regressive terms in the state equation or covariance terms in the error matrix.  The 

ability to include covariates in the observation process is valuable when measurement precision may be 

compromised by environmental challenges, such as tidal currents.  The best-fit model provides insight to 

the variability of fish and macrozooplankton distribution in high flow areas, and statistically test if there are 

non-uniform sampling biases introduced by the environment.    

The stationary metric series derived from acoustic backscatter data were modeled through time 

using MARSS models.  To meet assumptions of normality, each metric series was demeaned and 

normalized using a z-score transformation.  An additional log10 transformation was applied to the 

positively skewed aggregation-index before applying the z-score transformation.  Daily tidal range, 

instantaneous tidal speed, Julian day, and a Fourier series defined by a 24-hour period were included as 

possible covariates in both the process and observation equations.  Twenty-one models increasing in 

complexity were iteratively tested using forward model selection.  Models varied from random walk 

models to multivariate processes with autoregressive relationships between metrics. The models, listed in 

ascending order of AICc values in Table (2.3), were forward selected.  Model goodness of fit was 

analyzed from AICc using the quasi-Newton “BFGS” algorithm (Holmes et al. 2012).  The distribution of 

model residuals was scrutinized for randomness using goodness of fit, residual QQ plots, and 

autocorrelation diagnostic plots.   

2.2.12. Acoustic Technology Comparisons  
Stationary echosounder measurements functioned as a standard to compare the ADCP and 

acoustic camera measurements.  First, the ability of both acoustic technologies to measure nekton 

distribution through time and tidal cycles was compared to measurements by the echosounder.  This 

pattern matching assessment assumes that acoustic technologies lacking the sensitivity to identify 

patterns in nekton density-distributions also lack the sensitivity to identify changes in nekton communities 

after a perturbation.  Second, measurements from both the ADCP and acoustic camera were regressed 

against concurrent echosounder measurements.  Significant, positive relationships at two-temporal and   
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Figure 2.3. Length frequency distribution of the six most abundant species collected in 36 midwater 
trawls.  Trawls targeted aggregations and are representative of species length frequency distributions and 
not relative abundances.    
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two-vertical measurement resolutions were tested using a repeated measures ANOVA (α = 0.05) with a 

Bonferroni correction.   

2.3. Results 
2.3.1. Trawl Catches 

A total of 41 fish species were collected by the 36 mid-water trawls that were evenly distributed 

between May and June, 2011.  Six fish species were represented by greater than 30 individuals collected: 

Pacific herring (Clupea pallasii), copper rockfish (Sebastes caurinus), Northern lampfish (Stenobrachius 

leucopsarus), Pacific sand lance (Ammodytes hexapterus), soft sculpin (Psychrolutes sigalutes), and 

spotted ratfish (Hydrolagus colliei) (Figure 2.3).  The longest of these dominant species was the spotted 

ratfish measuring an average of 417 mm.  Midwater trawls were not randomly conducted, but targeted at 

specific aggregations or to characterize the species composition of the fish community, thereby limiting 

the interpretation of these data to presence/absence and length frequency distributions (as opposed to an 

independent metric of species abundance).  Four species, copper rockfish, Pacific herring, and ratfish 

were caught in single trawl hauls exceeding 30 individuals.  A total of 328 Pacific herring, 275 Pacific 

sand lance, 353 copper rockfish, and 156 spotted ratfish were collected.  The largest specimen sampled 

was a 870 mm spiny dogfish (Squalus acanthias), one of three spiny dogfish collected in the survey.    

2.3.2. Patterns in Nekton Density and Vertical Distribution 

2.3.2.1. Mobile Acoustic Survey 

Mobile acoustic surveys were repeated daily and nightly from May 2nd, 2011 to May 13th, 2011 

and June 3rd, 2011 to June 14th, 2011 sampling 56.5 mobile survey grids.  Effort was evenly distributed 

between May (n=28.5) and June (n = 28) and the North and South grids (Table 2.2).  The median 

horizontal autocorrelation of the vertically integrated mobile density measurements reached 0 at 300m, so 

the horizontal analysis cell size was set at 300m.  A 300m analysis cell resulted in at least four cells within 

each transect, and up to ten in the south grid.  Mobile acoustic sampling effort was focused during 

daylight hours, with 76% of mobile grids conducted during day (13 at night & 43.5 daytime).  A total of 

5,054, 300m analytic cells were created from the acoustic backscatter data.  These cells were 

approximately equally distributed between the north (n = 2,468) and south (n = 2,568) sampling areas 

and between the May (n = 2,510) and June (n = 2,544) sampling periods.  Mobile acoustic data were   
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Table 2.2. Allocation of line transects and mid-water trawl effort in Admiralty Inlet, Puget Sound in May 
and June, 2011. 

Month Activity Diel Period North Grid South Grid 
May Acoustic Grids Day 12 10.5 

  
Night 3 3 

 
Trawling Day 5 8 

  
Night 3 2 

June Acoustic Grids Day 11 10 

  
Night 3 4 

 
Trawling Day 7 8 

  
Night 1 2 

Total Acoustic Grids Day 23 20.5 
  Night 6 7 
  Total 29 27.5 

 
 Trawling Day 12 16 
  Night 4 4 
  Total 16 20 
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Figure 2.4. Nekton density and vertical distributions measured from repeated mobile surveys illustrating 
(a) changes between diel periods (day, night), (b) geographic differences between north and south survey 
grids, and (c) distributional changes as a function of tidal states (slack, moderate, extreme).  
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collected across a spectrum of tidal current speeds, with a majority of observations in moderate (0.50 m/s 

< moderate < 1.50 m/s; n = 2751) tidal currents compared to slack (< 0.50 m/s; n = 969) or extreme (> 

1.50 m/s; n = 741) tidal current speed categories.  Over the mobile survey, the mean metric of nekton 

density (vertical mean of mean Sv) was -73.45 dB, ranging from -79.87 dB to -39.66 dB.  On average, 

nekton were centered 27.50 m off the bottom and dispersed with a variance of 181.3 m2.  The mean index 

of aggregation, on a scale of 0 to 1, was 0.159 m-1.   

Mean nekton density and vertical distributions differed between the north and south sampling 

grids.  Mean nekton density was 0.477 dB higher in the north than the south (north mean Sv = -73.22 dB; 

south mean Sv = -73.70 dB, p = < 0.001, Figure 2.4).  Nekton in the south sampling grid were, on 

average, located 8 m closer to the bottom (north center of mass = 31.59 m; south center of mass = 23.61 

m, p < 0.001), less dispersed (-144.54 m2, p < 0.001), and 19.5% more tightly aggregated (north 

aggregation index = 0.142 m-1; south aggregation index = 0.169 m-1, p < 0.001).  Backscatter distributions 

during repeated mobile measurements were consistent with nekton diel vertical migration behavior.  

Nekton density did not significantly change across diel periods (day mean Sv = -73.40 dB; night mean Sv 

= -73.63 dB, p = 0.086), but moved higher in the water column (day center of mass = 27.27 m; night 

center of mass = 28.27 m, p = 0.027).  As expected, nekton became more dispersed (day inertia = 171.57 

m2; night inertia = 213.54 m2, p < 0.001) and less aggregated at night (day aggregation index = 0.173 m-1; 

night aggregation index = 0.096 m-1, p < 0.001).   

Nekton density distributions measured during mobile surveys changed between May and June.  

Nekton density increased 43% from May to June (May mean Sv = -74.25 dB; June mean Sv = -72.67 dB, 

p < 0.001), moved lower in the water column (May center of mass = 28.00 m; June center of mass = 

27.00 m, p = 0.011), and became more aggregated (May aggregation = 0.185 m-1; June aggregation = 

0.127 m-1, p < 0.001).  Nekton dispersion did not change between May and June (p = 0.420).   

Using a Tukey’s honestly significant difference post hoc test, mobile backscatter measurements 

of nekton decreased by 0.69 dB at extreme tidal current speeds (slack-moderate: p = 0.703, moderate-

extreme: p < 0.001), while nekton dispersion increased during slack tides (slack-moderate: p = 0.004, 

moderate-extreme: p = 0.830).  Nekton mean weighted location (slack-moderate: p = 0.141, moderate-  
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(a) 

 

(b) 

 

(c) 

 

(e) 

 

Figure 2.5. Mobile acoustic measurements measuring nekton (a) mean density, (b) mean weighted 
location, (c) dispersion, and (d) aggregation within each geographic sampling grid (blue; N = North, S = 
South), month (red; M = May, J = June), tidal speed (green; S = slack (< 0.5 m/s), M = moderate (0.5 < 
moderate < 1.5 m/s), E = extreme (> 1.5 m/s)), and diel period (yellow, D = day, N = night).  Whiskers 
extend to 1.5 times the interquartile range.  Box widths are proportional to the square root of the sample 
size, with a grand sample size of 5,054 samples. Overlapping notches are used to test significant 
differences between the medians of categories where notches extend to 1.58 times the interquartile range 
divided by the square root of the number of samples (c.f. Chambers et al. 1983 for technique details).  
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extreme: p = 0.113) and aggregation (slack-moderate: p = 0.573, moderate-extreme: p = 0.959) remained 

consistent across tidal currents.   

Significant patterns emerged in the median measures of nekton density distributions as the mean, 

with two exceptions.  Median nekton density was nearly identical between the north and south sampling 

areas (north median mean Sv = -74.22 dB, south median mean Sv = -74.21 dB, Figure 2.5), but increased 

from day to night (day median mean Sv = -74.34 dB; night median mean Sv = -73.87 dB).  All other 

patterns observed in median nekton density-distributions were consistent with those observed in mean 

distributions.   

2.3.2.2. Stationary Survey 

Stationary echosounder measurements were collected for twelve-minutes every two hours from 

May 9th, 2011 to June 8th, 2011 resulting in 360 sampling periods.  Stationary measurements of integrated 

backscattering strength became statistically independent at a 24-second temporal lag within each 

sampling period, as determined by autocorrelation.  Each sampling period was divided into 30, 24-second 

horizontal bins, resulting in 10,800 independent sampling periods, 10,130 of which had concurrently 

collected tidal velocities.  Stationary data was also analyzed at the coarser 12-minute temporal scale, 

creating 360 equally spaced analysis cells for time series analysis. Stationary data were collected across 

tidal current categories (slack: n = 1894, moderate: n = 5065, extreme: n = 3171), tidal states (flood tides: 

n = 5216, ebb tides: n = 4914), diel periods (day: n = 6277, night: n = 2719, crepuscular: n = 1815).  

Nekton density ranged from -90.02 dB to -51.57 dB. 

The 360 12-minute sampling bins were used to create a time series for each metric (Figure 2.6).   

A saw-tooth, diel pattern dominated values in all four series, but a larger periodic wave also appeared to 

be present in nekton density, center of mass, and dispersion.  Nekton density increased 2 dB through the 

time series (p = 0.007), equating to a 58% increase in nekton density within the month deployment.  The 

center of mass moved 3 m higher in the water column through the deployment (p = 0.007), and nekton 

became more highly dispersed (p = 0.008).  The aggregation index remained close to zero throughout 

most of the time series, punctuated by an episodic presence of high aggregation values.  Statistical tests 

were not applied to the aggregation index because the data were not normally distributed.   
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Figure 2.6. Patterns in nekton density and vertical distribution measured from stationary, upward facing 
echosounder.  Density and vertical distributions were indexed as a function of (a) time, (b) time of day 
(mean + 2 standard deviations), and (c) tidal speed (mean + 2 standard deviations).  From top to bottom, 
the ordinate quantities are density (metric: mean Sv; units: dB, re 1 µPa), mean weighted location from 
bottom (metric: center of mass, units: m), dispersion (metric: inertia; units: m2), and aggregation (metric: 
aggregation index; units: m-1).  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.7. Stationary acoustic measurements measuring nekton (a) mean density, (b) mean weighted 
location, (c) dispersion, and (d) aggregation within each tidal state (purple; F = flood, E = Ebb), tidal 
speed (green; S = slack (< 0.5 m/s), M = moderate (0.5 < moderate < 1.5 m/s), E = extreme (> 1.5 m/s)), 
and diel period (yellow; D = day, N = night, C = crepuscular).  Whiskers extend to 1.5 times the 
interquartile range.  Box widths are proportional to the square root of the sample size, with a grand 
sample size of 10,800 samples, and 10,130 in across the tidal categories.  Overlapping notches are used 
to test significant differences between the medians of categories where notches extend to 1.58 times the 
interquartile range divided by the square root of the number of samples.    
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Patterns in the density and distribution of backscatter versus time of day were consistent with 

nekton diel vertical migration behavior (Figure 2.6).  Acoustic backscatter more than doubled at night 

(+3.5 dB at night, p < 0.001, n = 10,800), moved higher in the water column (+5.6 m at night, p < 0.001), 

and became more dispersed (+20.5 m2 at night, p < 0.001).  Qualitatively, aggregation index values 

increased during daylight hours.  Variability in all metric values remained relatively consistent through the 

time of day (Figure 2.6).  Nekton density decreased as tidal speed increased (-0.70 dB (m/s)-1, p < 0.001, 

n = 10,130), and moved closer to the bottom (-1.90 m (m/s)-1, p < 0.001) while becoming less dispersed (-

8.13 m2 (m/s)-1, p < 0.001).  Nekton aggregation was independent of tidal speed (p value=0.701).  In 

general, variability observed in metric values decreased with tidal speed.   

Patterns in the median nekton density and distribution metric values were consistent with mean 

patterns, varying through time and tidal cycles. Small differences between flood and ebb tides were 

observed in median nekton densities (-77.8 dB to -77.2 dB, Figure 2.7), center of mass (16.9 m to 16.7 m, 

Figure 2.7), and dispersion (74.8 m2 to 73.7 m2, Figure 2.7). 

2.3.3. Wavelet Analysis  
The time series (n = 360) was decomposed into time-frequency space using wavelet analysis 

(Figure 2.2).  The cone of influence, denoted by the dotted white line, identifies the extent to which 

padded zeroes dampen power (i.e. edge effects).  Statistically significant (α = 0.05) areas of the 

scalogram, tested using a Chi-square distribution assuming white noise, are traced with a black line.  

Mean Sv, center of mass, and inertia significantly varied at the 24-hour diel period (Figures 2.8, 2.9, 2.10).  

Nekton density, center of mass, dispersion, and aggregation locally varied over a period of ~256 hours 

(~2 weeks) within the cone of influence, but the padded zeroes at larger periods weakens the signal near 

the beginning and end of the time series.  Troughs in the daily tidal ranges on May 11th and May 26th, 

2011 coincided with an event that caused nekton center of mass to vary at the 12 hour period instead of 

the 24 hour period.  The event on May 26th corresponded to a sharp spike in the variance of nekton 

density at the 24-hour period, while variance in nekton mean weighted location and dispersion was 

dampened at the same 24-hour period.   

Peaks in the global wavelet spectrum at the 24-hour period suggested that variance in nekton 

density, center of mass, and dispersion were principally influenced by the diel tidal cycle (Figures 2.8, 2.9,   
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Figure 2.8. Wavelet decomposition of the temporal variability in nekton density. The time series (top 
panel) is decomposed into the scalogram (center).  Summing horizontally across the scalogram yields the 
global wavelet spectrum (right), analogous to the power spectra.  Summing vertically yields the scale 
averaged wavelet power (bottom), an estimate of variance across scales.  
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Figure 2.9. Wavelet decomposition of the temporal variability in nekton mean weighted location relative to 
the bottom. The time series (top panel) is decomposed into the scalogram (center).  Summing horizontally 
across the scalogram yields the global wavelet spectrum (right), analogous to the power spectra.  
Summing vertically yields the scale averaged wavelet power (bottom), an estimate of variance across 
scales.  
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Figure 2.10. Wavelet decomposition of the temporal variability in nekton dispersion. The time series (top 
panel) is decomposed into the scalogram (center).  Summing horizontally across the scalogram yields the 
global wavelet spectrum (right), analogous to the power spectra.  Summing vertically yields the scale 
averaged wavelet power (bottom), an estimate of variance across scales.  
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Figure 2.11. Wavelet decomposition of the temporal variability in nekton aggregation. The time series 
(top panel) is decomposed into the scalogram (center).  Summing horizontally across the scalogram 
yields the global wavelet spectrum (right), analogous to the power spectra.  Summing vertically yields the 
scale averaged wavelet power (bottom), an estimate of variance across scales.  
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2.10).  Tested against both red and white noise null hypotheses, the aggregation index also varied with 

diel period, but the peak was not statistically significant (Figure 2.11).  A peak corresponding to the 256 

hour period appeared in each metric’s global wavelet spectrum, but was only significant in the spectra of 

nekton density (Figure 2.8).  Peaks in scale-averaged wavelet power exceeding the red noise 95% 

confidence interval only occurred twice in the density, mean weighted location, and dispersion spectra 

(Figures 2.8, 2.9, 2.10).  Both peaks were related to the trough in tidal range on May 26th, 2011.  The 

scale averaged variance of nekton density exceeded the red noise 95% confidence interval during the 

tidal trough, while scale averaged variance of nekton dispersion peaked on May 28th.  Scale averaged 

variance of nekton mean weighted location peaked on May 14th, 2011, but did not exceed the red-noise 

threshold (Figure 2.9).   

2.3.4 MARSS Model: 
Two time series models were chosen based on AICc values.  The best model included nekton 

density and vertical distribution as a function of the cube of tidal speed, the cube of tidal range, Jullian 

day, and a 24-hour time period.  This model included first order autoregression between the density and 

three vertical distribution metrics and succeeded in capturing the diel periodicity (large coefficients 

relating the 24 hour period to nekton distributions).  Model residuals of all four metrics were not random.  

The biased, non-random structure of the model residuals in all four metrics removed this model from 

consideration.   

The second model was built from prior knowledge of nekton behavior in high energy 

environments.  This model included all environmental covariates ([tidal speed]3, [tidal range]3, Julian day, 

and Fourier 24-hour series), auto-regressive density-dependent vertical distributions, and unique 

observation errors for each metric. This model consistently underestimated observed metric values by a 

factor of approximately two.  This constant bias was corrected by multiplying expected values by the 

inverse of the slope of the best-fit line relating observed values to expected values.  A correction value of 

two was applied to predicted mean Sv, center of mass, and inertia.  A correction factor of 2.5 was applied 

to predicted aggregation index values.  Even though this bias correction was not accounted for in the 

AICc calculation, this model was still the second best fit (Table 2.3, Figure 2.12) of all models.  After 

applying the model correction, predicted values were highly correlated to observed values in all metrics   
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Table 2.3. AICc selection criteria for iterations of MARSS model selection.  D&U denotes diagonal and 
unequal matrices, while id denotes identity matrices.  The B matrix is the autoregressive coefficients, with 
off diagonals in the B matrix measuring autoreggressive density dependence.  TS3 is the cube of tidal 
speed, TR3 is the cube of tidal range, DN is Julian day, and 24H is a Fourier series with a period of 24-
hours to model diel periods.  See Holmes et al. (2012) for description of the structure of MARSS models 
and how matrices relate mathematically. 

Model  # AICc Structure Process Covariates Observation 
Covariates 

16 3339.5* B off diagonals All D: 24H 
Theoretical 3352.9 B=off diagonols,  

Z = D&U  
All None 

18 3358.1 B off diagonals All D: All 
15 3360.2 B off diagonals All  D: TR3 
14 3370.1 B off diagonals All D: TS3 
11 3371.5 B=D&U,  

Z=id 
TS3, TR3, 24H None 

10 3372.9 B=D&U,  
Z=id 

DN, TS3, 24H None 

7 3374.2 B=D&U,  
Z=id 

DN & 24H None 

8 3374.7 B=D&U,  
Z=id 

TS3 & 24H None 

12 3398.9 B=D&U,  
Z=id 

All None 

9 3401.6 B=D&U,  
Z=id 

TR3 & 24H None 

17 3408.0 B off diagonals All D: TS3, TD3, 24H 
6 3413.8 B=D&U,  

Z=id 
24H None 

4 3600.3 B=D&U,  
Z=id 

TS3 None 

AR-1 3627.5 None None None 
3 3632.3 B=D&U,  

Z=id 
DN None 

1 3635.1 B=D&U,  
Z=id 

None None 

2 3635.1 B=D&U,  
Z=id 

None None 

5 3643.5 B=D&U,  
Z=id 

TR3 None 

Random Walk 3818.1 None None None 
13 Degenerate B off diagonals All None 
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Table 2.4. Model parameters of the best MARSS model. 

Metric Model Component Covariate Model Estimate 

Mean Sv B (Auto-Regressive) Mean Sv (t – 1)  0.492 
Mean Sv C (Covariate) 24 Hour (cosine) -0.439 
Mean Sv C (Covariate) 24 Hour (sine)  0.066 
Mean Sv C (Covariate) 24 Hour (total)  0.444 
Mean Sv C (Covariate) Day Number  0.107 
Mean Sv C (Covariate) Tidal Range3  0.077 
Mean Sv C (Covariate) Tidal Speed3  0.017 
Mean Sv Q (Process Error) Mean Sv  0.060 
Mean Sv Z (Scaler)   1.059 
Inertia B (Auto-Regressive) Inertia (t – 1)  0.459 
Inertia B (Auto-Regressive) Density Dependence -0.640 
Inertia C (Covariate) 24 Hour (cosine) -0.357 
Inertia C (Covariate) 24 Hour (sine) -0.102 
Inertia C (Covariate) 24 Hour (total)  0.371 
Inertia C (Covariate) Day Number  0.049 
Inertia C (Covariate) Tidal Range3  0.089 
Inertia C (Covariate) Tidal Speed3 -0.205 
Inertia Q (Process Error)   0.114 
Inertia Z (Scaler)   1.046 
Center of Mass B (Auto-Regressive) Center of Mass (t – 1)  0.264 
Center of Mass B (Auto-Regressive) Density Dependence  0.231 
Center of Mass C (Covariate) 24 Hour (cosine) -0.515 
Center of Mass C (Covariate) 24 Hour (sine) -0.156 
Center of Mass C (Covariate) 24 Hour (total)  0.538 
Center of Mass C (Covariate) Day Number  0.106 
Center of Mass C (Covariate) Tidal Range3 -0.017 
Center of Mass C (Covariate) Tidal Speed3  0.076 
Center of Mass Q (Process Error)   0.116 
Center of Mass Z (Scaler)   1.139 
Aggregation B (Auto-Regressive) Aggregation (t – 1) -0.079 
Aggregation B (Auto-Regressive) Density Dependence -0.502 
Aggregation C (Covariate) 24 Hour (cosine)  0.446 
Aggregation C (Covariate) 24 Hour (sine) -0.109 
Aggregation C (Covariate) 24 Hour (total)  0.459 
Aggregation C (Covariate) Day Number  0.025 
Aggregation C (Covariate) Tidal Range3 -0.060 
Aggregation C (Covariate) Tidal Speed3  0.037 
Aggregation Q (Process Error)   0.203 
All R (Observation Error)   0.462 
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Figure 2.12. Observed (red lines) and MARSS time series models (black lines) of nekton density (top), 
aggregation (2nd from top), mean weighted location (2nd from bottom), and dispersion (bottom).  
Modeled values are encompassed by 95% confidence interval (grey dashed line) and generated from 
best fit Multivariate AutoRegressive State-Space model (MARSS models) as chosen by AICc (Holmes et 
al. 2012).  
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Figure 2.13. (Left) Observed vs. modeled quantities of nekton density and vertical distribution.  (Right) 
Time series of model residuals, demonstrating independence and identical distribution through time.  
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(R2
mean.Sv = 0.70; R2

center.of.mass = 0.69; R2
inertia = 0.62; R2

aggregation = 0.83, Figure 2.13).  Caution should be 

used in interpreting R2 values due to the presence of the observation error term, artificially inflating the R2 

value.   

The relative influence of each environmental covariate on each Echometric series was related by 

a coefficient (C).  The 24-hour Fourier series was the dominant process influencing all four Echometrics 

(C24.hour(total)->mean.Sv = 0.444; C24.hour(total)->center.of.mass = 0.538; C24.hour(total)->inertia =0.371; C24.hour(total)->aggregation= 

0.459, Table 2.4).  Nekton density increased through time (Cday->mean.Sv = 0.107) and to a lesser extent 

with tidal range (Ctidal.range->mean.Sv =  0.077).  Nekton mean vertical location was dominated by the 24-hour 

period, but also increased through time (Cday->center.of.mass = 0.106), while decreasing with tidal speed 

(Ctidal.speed->center.of.mass = 0.076).  Nekton inertia was inversely related to tidal speed (Ctidal.speed->inertia =           

-0.205), and positively related to Julian day (Cday->inertia = 0.049) and tidal range (C tidal.range->inertia = 0.089).  

Nekton aggregation was dominated by diel period, but was also negatively related to tidal range 

(Ctidal.range->aggregation = -0.060).  The autoregressive coefficient (B) between nekton density at sequential 

time steps was 0.490.  Nekton mean-location and inertia were positively autocorrelated (Bcenter.of.mass(t-1)-

>center.of.mass = 0.264; Binertia(t-1)->inertia = 0.459), while aggregation was slightly negatively autocorrelated 

(Baggregation(t-1)->aggregation = -0.079).  Inertia and aggregation were inversely density-dependent, decreasing 

proportionally more with nekton density than as an autoregressive function (B mean.Sv(t-1)->inertia = -0.640; 

Bmean.Sv(t-1)->aggregation = -0.502).  Nekton center of mass was density-dependent (Bmean.Sv(t-1)->center.of.mass= 

0.231).  The error in the process model (Q) was unique for each metric (diagonal and unequal), and 

relatively small compared to the effects of model parameters (Qmean.Sv = 0.060; Qcenter.of.mass = 0.116; Qinertia 

= 0.114; Qaggregation = 0.203).  Observation errors (R) were found to be equal across all metrics (Rall = 

0.462).  A complete list of the best fit parameters are summarized in Table (2.4).   

2.3.5. Acoustic Technology Comparisons 
Echometric series for the acoustic camera (Figure 2.14) and ADCP (Figure 2.15) did not contain 

the same magnitude of variability as observed in the echosounder series.  At night, both the acoustic 

camera and ADCP characterized significant increases in nekton density (acoustic camera: + 0.57 dB at 

night, p < 0.001, R2 = 0.010, n = 10,811, Figure 2.14b; ADCP: + 0.45 dB at night, p < 0.001, R2 = 0.009, n 

= 10,811, Figure 2.15b) and center of mass (acoustic camera: + 0.56 m, p < 0.001, R2 = 0.052, 
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Figure 2.14. Patterns in nekton density and vertical distribution measured from stationary, upward facing 
acoustic camera.  Density and vertical distributions were indexed as a function of (a) time, (b) time of day 
(mean + 2 standard deviations), and (c) tidal speed (mean + 2 standard deviations).  From top to bottom, 
the ordinate quantities are density (metric: mean Sv; units: dB, re 1 µPa), mean weighted location from 
bottom (metric: center of mass, units: m), dispersion (metric: inertia; units: m2), and aggregation (metric: 
aggregation index; units: m-1).  
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Figure 2.15. Patterns in nekton density and vertical distribution measured from stationary, upward facing 
ADCP.  Density and vertical distributions were indexed as a function of (a) time, (b) time of day (mean + 2 
standard deviations), and (c) tidal speed (mean + 2 standard deviations).  From top to bottom, the 
ordinate quantities are density (metric: mean Sv; units: dB, re 1 µPa), mean weighted location from 
bottom (metric: center of mass, units: m), dispersion (metric: inertia; units: m2), and aggregation (metric: 
aggregation index; units: m-1).  
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n = 10,811 Figure 2.14b; ADCP: + 0.36, p < 0.001, R2 = 0.019, n = 10,811, Figure 2.15b), but not the 

same magnitude as the echosounder (+ 3.51 dB, + 5.61 m).  Both the acoustic camera and ADCP 

observed lower dispersions of nekton at night, which contrasts with the pattern in the echosounder 

echometric series.   

In contrast to the echosounder, nekton density (i.e. mean Sv) increased with tidal speed in the 

acoustic camera (slope = 0.87 dB(m/s)-1, p < 0.001, R2 = 0.053, n = 10,130) and ADCP data (slope = 0.70 

dB(m/s)-1, p < 0.001, R2 = 0.041, n = 10,130).  Yet, both technologies observed significant decreases in 

nekton center of mass (acoustic camera: slope = -0.55 m(m/s)-1, p < 0.001, R2 = 0.114, n = 10,130; 

ADCP: slope = -0.30 m(m/s)-1, p < 0.001, R2 = 0.033, n = 10,130) and dispersion (acoustic camera: slope 

-0.20 m2(m/s)-1, p < 0.001, R2 = 0.002, n = 10,130; ADCP: slope = -0.50 m2(m/s)-1, p < 0.001, R2 = 0.005), 

consistent with the echosounder.   

At the finest resolution (24 s by 1 m analysis cell), mean Sv measured by the echosounder was 

positively related to the relative mean Sv measured by the acoustic camera (p < 0.001, R2 = 0.016, Figure 

2.16a) and the ADCP (p < 0.001, R2 = 0.008, Figure 2.16b).  Variance in nekton density increased in both 

the acoustic camera and ADCP measurements as the echosounder mean Sv measurements increased.  

The relative ability of the stationary acoustic technologies to characterize vertical distributions of 

nekton through the water column at a given time was examined by comparing pairs of echometric values 

between the echosounder and the acoustic camera (Figure 2.17) or the ADCP (Figure 2.18) at a 

resolution of 24 s temporal and 1 m vertical bins.  A significant and positive relationship between 

coincident measures of density (p < 0.001, R2 = 0.018) and center of mass (p < 0.001, R2 = 0.023) 

occurred between the echosounder and the acoustic camera.  There were no significant relationships in 

the inertial and aggregation index values between the echosounder and the acoustic camera (Figure 

2.17, Table 2.5).  Relationships in echometric values between the echosounder and the ADCP differed 

depending on the metric (Figure 2.18, Table 2.6).  Mean Sv was positively related between the two 

technologies (p < 0.001, R2 = 0.009) with the variance increasing with the amplitude of the echosounder.  

There were no positive relationships in the center of mass, or aggregation index comparisons (Table 2.5).  
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Table 2.5. Correlation between stationary acoustic camera or ADCP with stationary echosounder in 
quantities of nekton density and vertical distribution at a 24 second temporal resolution.  CoM represents 
center of mass and AI represents aggregation.   

 Acoustic Camera ADCP 
Metric Density CoM Inertia AI Density CoM Inertia AI 
P-value < 0.001 < 0.001    0.374    0.301 < 0.001    0.087 < 0.001    0.052 
R2    0.018    0.023 < 0.001 < 0.001    0.009 < 0.001    0.013 < 0.001 
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Table 2.6. Correlation between stationary acoustic camera or ADCP with stationary echosounder in 
quantities of nekton density and vertical distribution at a 12-minute temporal resolution.  CoM represents 
center of mass and AI represents aggregation.   

 ADCP Acoustic Camera 
Metric Density CoM Inertia AI Density CoM Inertia AI 
P-value    0.033  0.523 0.175    0.292 < 0.001    0.005    0.097    0.938 
R2    0.010 < 0.001 0.002 < 0.001    0.029    0.019    0.005   -0.003 
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Figure 2.16. Concurrent measurements of nekton density from the stationary echosounder and acoustic 
camera (left) or ADCP (right) collected at a temporal resolution of 24 seconds and vertical resolution of 
one meter.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.17. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 µPa), (b) 
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m-1) between a 
stationary, upward facing acoustic camera and echosounder collected at a 24-second temporal 
resolution.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.18. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 µPa), (b) 
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m-1) between a 
stationary, upward facing ADCP and echosounder collected at a 24-second temporal resolution.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.19. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 µPa), (b) 
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m-1) between a 
stationary, upward facing acoustic camera and echosounder collected at a 12-minute temporal resolution.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 2.20. Concurrent water column summary statistics of nekton (a) density (units: dB re 1 µPa), (b) 
mean weighted location (units: m), (c) dispersion (units: m2), and (d) aggregation (units: m-1) between a 
stationary, upward facing ADCP and echosounder collected at a 12-minute temporal resolution.  
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Comparisons between the echosounder and the acoustic camera (Figure 2.19) and ADCP 

(Figure 2.20) were also conducted using 12-minute temporal bins to investigate the presence of a scale-

dependent pattern.  The decrease in resolution decreased variability in measurements of nekton density 

and distribution that may have confounded relationships at the finer (i.e. 24 second) temporal resolution.  

Decreasing the temporal grain size reduced the sample to 358 concurrent samples.  When comparing the 

acoustic camera to the echosounder, there were significant relationships in the mean Sv (Figure 2.19a, 

Table 2.5; p < 0.001, R2 = 0.029) and center of mass (Figure 2.19b, Table 2.5; p = 0.005, R2 = 0.019), but 

no relationships in inertia (Figure 2.19c, Table 2.5) or aggregation index (Figure 2.19d, Table 2.5).  

Probability and significance values are summarized in Table (2.5).   

Comparison of ADCP to echosounder data binned at 12 minute intervals resulted in significant 

relationships with the mean Sv (Figure 2.20a, Table 2.6; p = 0.033, R2 = 0.010).  Variance in the ADCP 

measurement of nekton density increased as nekton density increased.  No trends were significant in the 

center of mass (Figure 2.20b, Table 2.6), inertia (Figure 2.20c, Table 2.6), or aggregation (Figure 2.20d, 

Table 2.6) comparisons. 

2.4. Discussion 
Tidal currents at MHK sites add a layer of complexity to temporal patterns of nekton density and 

vertical distribution.  Nekton densities and vertical distributions at the Admiralty Inlet site varied through 

time, but were in phase with periodic physical processes at the site.  If coincident cycles in physical and 

biological processes are assumed to be evidence of bio-physical coupling, then the relative influence of 

physical processes can be inferred from the amplitude of variance at corresponding temporal periods 

(Platt & Denman 1975, Steele et al. 1994).  The global wavelet spectrum measures the variance 

contributed by each period, and thus can be used as one measure of the relative influence of physical 

processes on nekton density distributions.  MARSS models with z-score standardized metrics and 

environmental covariates allowed for the direct comparison of influence of each covariate on each metric, 

providing two independent measures of the influence of each period or covariate.  Both the global wavelet 

spectrum and the MARSS models identified the 24-hour period as the dominant source of nekton 

variability, consistent with diel vertical migrations (Neilson & Perry 1990, Axenrot et al. 2004, Benoit-Bird 

& Au 2004). This result contrasts to the observation that nekton density and vertical distributions were 
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predominantly influenced by tidal velocities at a tidal current MHK site in New York’s East River 

(NYSERDA 2011).   

Even though tidal speeds were hypothesized to dominate nekton density distributions based on 

previous measurements (NYSERDA 2011), both the global wavelet spectrum and MARSS models 

identified tidal speed and tidal range as secondary influences.  The global wavelet spectrum identified 

similar magnitudes of variance in nekton vertical distributions at the fortnightly lunar period (i.e. tidal-

range) as at the 12.5 hour, semi-diurnal period of tidal cycles, or 6.25 hour period of tidal velocities, 

suggesting that tidal range may also influence nekton density distributions. However, the ability to identify 

fortnightly periods in the global wavelet spectrum was constrained by the short sampling extent relative to 

fortnightly tidal cycles.  The time series was padded with zeroes to analyze the wavelet power near the 

beginning and end of the series, dampening the global wavelet spectrum at large periods.  For this 

reason, the MARSS model may be a better indicator of the true influence of tidal range compared to tidal 

speed.  The MARSS models included tidal range in the best-fit model, with higher influence over nekton 

density and aggregation than tidal speed.  Fish behavior and availability to sampling is known to change 

as a function of lunar period (e.g. Bos & Gumanao 2012), but was not thought to strongly influence 

nekton density distribution at MHK tidal sites (NYSERDA 2011).  But the influence of tidal cycles extends 

beyond the observed fortnightly periodicities, as changes in the period of variance in mean Sv, center of 

mass, and inertia were observed during the neap tide on May 26th.  With only one neap tide in the series it 

is impossible to know if the corresponding deviation in variability was a coincidence or a pattern.  A longer 

sample series is required to identify whether patterns of nekton density and vertical distribution change as 

a result of neap tides. 

 Although the MARSS models and global wavelet spectrum identified similar processes, the 

MARSS models had a analytical advantages when compared to global wavelet spectrum.  The most 

pronounced advantage was the MARSS model’s increased sensitivity to identify tidal speed, tidal range, 

and Julian day, which were not identified by the global wavelet spectrum.  Unlike the global wavelet 

spectrum, which only measures the amplitude of variance, MARSS models identify whether there is a 

positive or negative relationship between covariates and metrics, and quantifies the error in both the 

process model and observation.  The observation component of MARSS models did not identify any 



 

 

54 

environmental covariates as significantly influencing the measurements of nekton density or vertical 

distribution, reinforcing that the echosounder is a viable tool for domain monitoring at tidal MHK sites and 

that there was no bias in the results due to the method.   

This baseline characterization of nekton density distribution through time can be used to identify 

instances of high risk of biological interactions with a MHK device.  Risk is the product of the probability of 

an event occurring and the severity of that event.  Using this definition, the probability of a fish-device 

interaction is related to the vertical distribution of nekton and the severity to nekton density.  Assuming 

that nekton densities and vertical distributions are not changed by the presence of a device, then the 

probability and severity of biological interactions are related to the both the mean and variance of nekton 

density.  Increases in the mean nekton density or a decrease (i.e lowering) in the mean weighted, vertical 

location increase the severity and the probability of occurrence of an event (i.e. the mean risk of 

interaction).  Increases in the variance of a metric increases the likelihood of an extreme interaction such 

as a dense aggregation of fish close to the bottom.  Using this logic, the risk given a set of environmental 

conditions can be inferred from the MARSS models of nekton density and vertical distribution.  MARSS 

models indicated that nekton are more dense and concentrated lower in the water column at high tidal 

speeds and at maximum tidal ranges occurring during daylight hours.  These conditions coincide with 

peak energy production periods, indicating that the mean risk of biological interactions is related to 

potential energy production.  In contrast, the statistically significant peak in scale-averaged variance of 

nekton density was associated with troughs in the tidal range, a day in which potential energy production 

would be minimized. If troughs in tidal range are associated with peaks in the variance of nekton density 

(i.e. the variance of risk), then we’d expect a heightened risk of extreme biological interactions occurring 

fortnightly during neap tides.  Taken together, I conclude that the mean risk of biological interactions is 

increased in environmental conditions associated with peak potential energy production, while the risk of 

an extreme event is maximized during low energy production, neap tides.  

Using estimates of risk to predict biological interactions with MHK devices makes several 

assumptions.  First, that nekton densities and vertical distributions will not be altered by the presence of a 

MHK device.  Second, that risk scales with nekton density, vertical distribution, and variance in density.  

Notably, risk estimates do not make assumptions about any mechanisms through which nekton and a 
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device interact, only that nekton within the vertical footprint of a device have a greater probability of 

interacting with a device.  The small error in both the process and observation models of MARSS time 

series models of nekton density distributions relative to the influence of covariates suggest that the time 

series model could be used in a limited predictive capacity.  The predictive capacity of the best-fit time 

series model was not tested, and would likely break down quickly due to the auto-regressive framework 

that compounds modeling errors through time.  Given continuous near-real-time monitoring, predictions of 

risk, even a few hours in advance, could be used to modify operation of MHK devices to minimize or 

mitigate potential biological interactions.  Even if MARSS models are not used to predict, knowledge of 

how environmental covariates influence nekton density and vertical distributions can be used to identify 

environmental conditions associated with potential increases in nekton density or vertical overlap with a 

device.  Scale-averaged wavelet power, a proxy for risk of extreme events, cannot be calculated in real-

time due to the limitations of edge effects in wavelet analysis.  Still, future research could model scale-

averaged wavelet power to identify the environmental conditions that increase the probability of extreme 

events.  

Similar patterns in nekton density distributions were observed between mobile and stationary 

surveys.  The stationary survey, consistent with its higher temporal scope, was able to identify temporal 

patterns in nekton behavior due to diel vertical migrations and tidal currents that could not be resolved in 

the mobile survey.  The observed biodiversity in trawl catches are difficult to compare to other sites due to 

the lack of historical direct sampling at tidal MHK sites.  The trawls collected 41 different species of fish, 

compared to 115 that have historically been observed at the site (DeLacy et al. 1972), and there is no 

record of where those species were sampled relative to the pilot MHK site.  Trawl catches were included 

in this thesis to help identify species observed within acoustic backscatter and to inform future Admiralty 

Inlet monitoring programs of the dominant fish species, and their length distributions. 

The omission of environmental covariates describing observation error in the final MARSS model 

provides evidence that echosounder measurements were not significantly biased by tidal currents, 

reaffirming that the echosounder is the standard by which to compare other acoustic technology’s ability 

to monitor MHK sites. Nekton density and vertical distribution measured by the stationary echosounder 

varied as a function of time of day and tidal currents. These patterns were not observed in the backscatter 
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data from the acoustic camera or the ADCP.  Coincident measurements of nekton density and vertical 

distribution measured by the ADCP and acoustic camera were loosely correlated to measurements from 

the calibrated echosounder, suggesting either fine scale (< 200 m) spatial heterogeneity in nekton 

between devices or imprecise measurements by the ADCP and acoustic camera.  Patterns in the 

observed variability of nekton density and vertical distribution measured by the acoustic camera and 

ADCP were either inconsistent with or smaller in magnitude than those measured by the echosounder.  

Based on the ability of the calibrated scientific echosounder to identify patterns not present in the ADCP 

or acoustic camera data, the echosounder is recommended as the technology to monitor pelagic nekton 

density and distribution at MHK sites.  Acoustic cameras and ADCPs will be deployed at MHK sites to 

characterize tidal flow properties and to monitor near-field nekton interactions with devices, regardless of 

pelagic monitoring requirements, but they cannot be relied on to characterize nekton distribution patterns. 

 This study provides a case study for baseline domain monitoring at a proposed MHK tidal site.  

Results from this study also provide a framework to analyze baseline data, and to compare post-

perturbation measurements during energy production or decommissioning MHK sites.  Changes in the 

mean or median of metrics can be tested using an ANOVA or notched box-plot, respectively.  

Unfortunately, ANOVA models comparing pre- and post-installation measurements are confounded by 

variability in nekton as a function of covariates.  MARSS time-series models can decouple the added 

variance in nekton density distributions from environmental covariates, and can identify perturbations in 

nekton communities once devices are installed.  Wavelet analysis can be used to quantify cyclical 

variability, including measuring differences in the amplitude of the variance or the scales at which 

communities change after MHK device installation.  Finally, baseline data can be used to infer conditions 

of heightened risk.  During periods of heightened risk, monitoring efforts can be increased or pre-emptive 

operational changes can be initiated to mitigate interactions.  When data collection rates potentially 

overwhelm analysis rates, one alternative to taking random subsamples of data for monitoring analyses 

would use results from MARSS models to identify high-risk conditions for important variables and 

increase monitoring efforts or alter operations during these times. 

 These methods provide a framework to characterize baseline nekton density and vertical 

distributions at MHK sites, but the general approach is applicable to other marine monitoring programs.  
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Advances in remote sensing are shifting the approach to environmental monitoring in coastal areas from 

direct surveys to remote sensing technologies (Brando & Phinn 2007), enhancing both the cost 

effectiveness and resolution of monitoring programs.  Remotely deployed stationary echosounders 

measured nekton density and vertical distribution at fine spatial and temporal resolution, enabling the 

quantitative description of patterns through time.  Quantitative descriptions of patterns and periodicities in 

baseline measurements of pertinent quantities can be used to make inferences about potential biological 

effects of any marine development, broadening the application of this approach.
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3.1.	
  Introduction	
  
Regional questions of aquatic community distribution patterns and influencing processes 

are large and complex, with species varying and interacting through space and time over a range 

of scales (Steele et al. 1994, Wu 1999).  Regional ecological complexity precludes the ability to 

measure all interacting variables, so inferences must be drawn from samples.  Sampling effort, 

instrumentation, and deployments are limited by logistics (i.e. time and resources).  Samples are 

indexed by time, space, or a combination of the two depending on the variable of interest and the 

sampling technology. Traditionally aquatic species distributions have been sampled using mobile 

surveys (e.g. ship-based, abundance estimates), collecting discreet or continuous spatially-

indexed measurements of density, abundance, or biomass.  However, it takes time for a vessel to 

survey space, potentially convolving spatial and temporal variability when the geographic 

sampling domain is large.  Depending on the magnitude of spatial and temporal variability within 

the domain, the convolution of time and space can bias observed patterns (Martin et al. 2005).  

Technological advancements in remote sensing technologies, computer processing, data 

storage, and data management have broadened the array of available sampling techniques for 

large spatial domains, which increases the range of possible ecological analyses (e.g. Barau & 

Ludin 2012).  As an example, biological samples can be obtained from spatially distributed, point-

source sensors within integrated networks to provide high temporal resolution, spatially 

distributed samples over time (e.g. Porter et al. 2005).  

 The enhanced temporal scope (i.e. the resolution of measurements relative to the range) 

of stationary sensor networks increases the statistical power to identify ecological patterns across 

temporal scales.  Since ecosystem management depends on the ability to understand ecosystem 

patterns and processes (e.g. Thiel et al. 2007), increased statistical power increases the ability to 

detect change in the mean (Fairweather 1991, Mapstone 1995, Osenberg et al. 1994) and 

variance (Underwood 1991, Morgan et al. 1994, Landres et al. 1999) of ecologically pertinent 

variables.  In a monitoring context, pre-perturbation measurements are used as a baseline to 

provide a post-perturbation comparison to quantify the magnitude and assess the impact of 

change (Underwood 1991).  Each stationary sensor, collecting data before and after a 
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perturbation, functions as paired pre- and post-installation measurements controlled for spatial 

variability.  Increasing the number of paired pre- and post-perturbation measurements for 

comparison increases the statistical power to identify effects of change in monitored variables 

(Underwood & Chapman 2003).  

Organism distributions are patchy (Levin 1992) and autocorrelated in space (Legendre 

1993), adding complexity when interpreting point source density or abundance data.  Since 

biological similarity decays with geographical distance (Legendre 1993, Soininen et al. 2007), 

uncertainty is introduced when interpolating point source measurements across space.  The 

decay in similarity with distance has been attributed to heterogeneity in physical habitats (Nekola 

& White 1999), biological aggregation (Roughgarden 1977), predation (Wiens 1976), and 

patchiness produced by environmental constraints on organismal dispersal (Garcillán & Ezcurra 

2003) or physiological limitations (e.g. neutral theory, Hubbel 2001).  Distance decay in similarity 

within biological communities and their environment leads to the observed scale-dependence of 

biological variability (Wiens 1989), compared to random processes, which demonstrate uniform 

variation across all spatial and temporal scales (i.e. scale-independence; Gilman et al. 1962).  

The consequence of distance decay is that the degree to which sample A resembles sample B 

decreases with increasing distance until point measurements can no longer be considered 

homogenous.  Interpolation of point measurements beyond this range increases uncertainty and 

interpretation errors (Milewska & Hogg 2001, Martin et al. 2005, Anttila et al. 2008).  If the 

objective is to represent an area or volume, efforts to collect additional measurements within this 

range (i.e. at finer spatial resolutions) are sub-optimally allocated and could be used to increase 

the extent of the survey.  Rooted in Tversky and Kahneman’s (1974) psychological concept of 

“representativeness heuristics”, the maximum range to which point-measurements can be used to 

resolve spatial variability in the surrounding domain has been termed the “spatial 

representativeness” of point-source samples (Janis & Robeson 2004).  When solving complex 

problems in uncertain circumstances, “people typically rely on the representativeness heuristic, in 

which probabilities are evaluated by the degree to which A is representative of B, that is, by the 

degree to which A resembles B” which creates predictable and systematic errors (Tversky & 



 

 

61 

Kahneman 1974).  Rather than using the term “spatial representativeness”, we will use 

“representative range” to avoid the wrath of our secondary education English teachers who 

forbade the use of derivational suffixes in a non-discriminatory manner (e.g. “ness monsters”).  

The concept of representative range evolved in meteorology to optimize networks of rain 

gauges and thermometers (Brooks 1947, Huff & Neill 1957).  At the onset, it was realized that 

optimum sensor density was dependent on the focal quantity (e.g. temperature, rainfall.) and 

objective, forecasting or hindcasting of a monitoring network (Brooks 1947).  Early studies of 

meteorological network design focused on the required number of sensors or gauges randomly 

placed to achieve a predetermined accuracy of the mean of a quantity through a spatial field (e.g. 

Rycroft 1949).  It was soon realized that spatial structure influenced the representative range of 

sensors within networks, and the focus shifted from the number of sensors to the spacing 

between sensors (Hershfield 1965, Hutchinson 1969). Representative range estimates calculated 

using spatial autocorrelation assumes homogenous or smooth decay between sensors 

(Hutchinson 1969).  In the late 1960s, the focus of network optimization changed from spatial 

autocorrelation between sensors to the relative error introduced by spatially interpolating points 

(Gandin 1970) or areas (Kagan 1966).  Meteorological networks are often composed of sensors 

that must be stationary (e.g. rain gauges), inhibiting a priori measurements of spatial variability to 

estimate network representative range.  This limitation prompted Rodda (1971) to identify a priori 

optimization of sensor density as the principal objective of network design.  Despite this 

shortcoming, methods proposed in 1960s and 1970s have recently been used for sensor network 

optimization (e.g. Milewska & Hogg 2001, Ciach & Krajewski 2006).  Since the 1970s, 

representative range studies diversified to focus on the effects of spatial and temporal analytic 

cell size (i.e. binning; Ciach & Krajewski 2006), and post-hoc network optimization such as cluster 

analysis (e.g. Sulkava et al. 2011) and variogram nugget time series (e.g. Janis & Robeson 

2004).  Approaches developed within other disciplines’ specific applications were derived in 

isolation, producing a spectrum of sampling and analytical approaches, and collectively lacking a 

standardized threshold or definition of “representative” (Janis & Robeson 2004, Ciach & 

Krajewski 2006).  A consensus has yet to be reached on the best technique to calculate 
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representative range of static sensor networks (c.f. Milewska & Hogg 2001, Janis & Robeson 

2004, Anttila et al. 2008).   

A considerable amount of effort has also been dedicated to examining the correlation, 

coherence, and permanence of ecological quantities in time and space (Legendre 1993, Posadas 

et al. 2006, Soininen et al. 2007), but few ecological studies have incorporated this structure to 

spatial and temporal design of monitoring programs (e.g. Rhodes & Jonzén 2011).  Several 

studies, rooted in the reality that monitoring networks are usually resource limited, have quantified 

the optimal spatial and temporal allocation of a pre-determined pool of sampling effort based on 

spatial and temporal biological variability (e.g. Gray et al. 1992, Kitsiou et al. 2000, Rhodes & 

Jonzén 2011), or have optimized sensor density or allocation of established networks (e.g. 

Siljamo et al. 2008).  The challenge when applying representative range calculations to ecological 

point sensors is identifying a threshold of what is considered “representative” with a meaningful 

biological interpretation.  The first study to focus on the implications of representativeness range 

in ecological modeling was Jacobs (1988), who used autocorrelation models to investigate the 

representativeness of an arctic climate sensor network that was incorporated in muskoxen and 

caribou population models.  The United Nations’ Food and Agriculture Organization (FAO) 

released a technical paper (Gray et al. 1992) devoted to the biological assessment of marine 

pollution effects on benthos, which described quantitative and qualitative techniques to estimate 

the number of replicate and the optimal spatial allocation of random samples.  Anttila et al. (2008) 

incorporated both autocorrelation and interpolation error in a study of water quality sensors in 

inland lakes.  In another study, structure functions were used to quantify the independence of 

measurements in space as a function of range to estimate the spatial and temporal 

representativeness of the timing of birch tree blooming events in Europe (Siljamo et al. 2008).  To 

our knowledge, the first a priori optimization of an ecological sampling network occurred in 2013, 

where cluster analyses were used to identify homogenous Alaskan eco-regions for sensor 

placement (Hoffman et al. 2013).  Even though temporal variance is known to change through 

space (Damian et al. 2003, Certain et al. 2007), estimates of representative range have focused 

on the distance decay of the mean of a quantity and not the variance.   
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This study was undertaken to compare six methods used to define representative ranges 

of point measurements using fish densities collected by active acoustic echosounders in Puget 

Sound, WA. 

3.2. Materials & Methods 
Six methods were chosen to quantify the representative range of temporal point 

measurements (Table 3.1).  Four of these methods estimate the representative range of the 

mean of a quantity, with the remaining two estimating the representative range of the variance.  

The six methods mirror the evolution of techniques used to optimize meteorological sensor 

networks, and can broadly be categorized into four approaches: 1). Distance between sensors 

based on the spatial correlation, 2). Sample size calculations assuming random sampling to 

detect a minimum threshold of change, 3). Scales at which spatial and temporal variability are 

equivalent, and  4). Maximization of spatial variance.   

The first approach calculates the optimum distance between sensors based on the 

relationship of spatial measurements.  Only one method was examined within this approach, 

using empirical measurements to model the decay of spatial autocorrelation with distance (e.g. 

Anttila et al. 2008). The range at which measurements become independent is the range that 

measurements are considered representative.  This method evolved in the mid- to late 1960s in 

meteorology (Hershfield 1965), and has the most widespread acceptance in biological or 

ecological studies (e.g. Jacobs 1988, Anttila et al. 2008). 

Historically, spatial autocorrelation models of representative range evolved to models of 

interpolation error (e.g. Kagan 1966, Gandin 1970, Milewska & Hogg 2001).  Lacking a 

meaningful error threshold to determine representative range, the interpolation error was not 

explicitly used to calculate a representative range, but was used to describe the uncertainty 

introduced by adopting each approach or method.  In this study, interpolation error curves, for 

linear and areal interpolation, are used to quantify the error introduced by each of the four 

methods used to quantify the representative range of the mean.  

The second approach assumes a random sampling framework to identify biological 

changes through space or time (e.g. Rycroft 1949).  Assuming sensors collect data at fixed points   
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Table 3.1. Properties of all six methods examined to estimate the representative range of 
ecological point sensors.   

 
  

Method Quantity 
Property 

Spatially 
Explicit? Analytical Approach Root or Reference 

Gray’s Sample Size 
Calculation Mean No Paired t-test/Repeated 

Measures ANOVA Gray et al. (1992) 

t-test Sample Size 
Calculation Mean No Paired t-test/Repeated 

Measures ANOVA 
Sullivan 
(2006) 

t-test Power Analysis 
Mean No Paired t-test/Repeated 

Measures ANOVA 
Zar 
(2010) 

Coefficient of 
Determination Model  Mean Yes Autocorrelation Anttila et al. (2008) 

Theoretical Spectra 
Variance Indirectly Modeled Spatial Power 

Spectra 
See: Gilman et al. 
(1962) 

Equivalent Spatial and 
Temporal Scales Variance Indirectly Empirical Spatial and 

Temporal Power Spectra See: Wiens (1989) 
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before and after a perturbation, the number of sensors can be calculated from a paired t-test 

sample size calculation.  Three proposed methods fit within the random sampling approach: Gray 

et al. (1992) calculated the number of required replicates using a derivative of minimum sample 

size calculations for a paired t-test or repeated measures ANOVA (Sullivan 2006), the repeated 

measures, paired t-test was used as the second method, and the third method is a sample size 

calculation for a paired t-test including statistical power (Zar 2010).  

Although changes in temporal variance can be used as a secondary metric of biological 

change (Underwood 1991), there is no reason to assume that temporal variance matches the 

spatial structure of the mean (as spatial models of temporal variance differ from spatial models of 

the mean; c.f. Damian et al. 2003, Sampson et al. 2001).  To illustrate using examples, Certain et 

al. (2007) demonstrated spatial heterogeneity in the temporal variance of seabird populations and 

Damian et al. (2003) provided a method to assess spatial heterogeneity in the temporal variance 

of precipitation.  No studies have proposed methods to quantify the representative range of 

temporal variance measurements.  

Point measurements of temporal variance have an equivalent spatial range over which 

they can be interpolated.  The third and fourth approaches quantify representative ranges (i.e. 

spatial period) of temporal variance, which necessitates a switch from the spatial to frequency 

domain. The third approach modeled the theoretical power spectrum as a function of the spatial 

autocorrelation model developed for the second approach.  The spatial period at which 95% of 

the maximum observed variance in fish density was observed was set as the representative 

period of variance.  The final approach compared the empirically derived spatial and temporal 

power-spectra to identify equivalent scales of spatial and temporal variability by identifying 

periods at which identical magnitudes of spatial and temporal variability were observed.   

3.2.1. Representative Range of the Mean 

3.2.1.1. Correlation Coefficient Models  

 The most intuitive methods used to quantify representative range are lagged 

autocorrelation functions (i.e. correlograms) and semi-variograms (Jacobs 1988), which describe 

the positive or negative relationship among measurements in a series through time or space 
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(Legendre 1993, Mønness & Coleman 2011).  Lagged Pearson’s product-moment correlation 

coefficients (𝝆) define the correlation between all measurements at a given lag (h), which can be 

simplified as the covariance (𝑪) of measurements at lag h standardized by the variance (𝛔𝟐): 

𝝆 𝒉 =   
𝑪 𝒉
𝛔𝟐

                      [𝟏] 

where covariance is a quantity used to measure similarity.  The lagged autocorrelation can be 

interpreted as the degree to which measurement A resembles measurement B relative to the 

variance in the system as a whole, which can be modeled using an exponential model: 

𝝆 𝒉 =   𝝆 𝟎 𝒆!𝛂𝒅                    [𝟐] 

where 𝝆 𝟎  is the autocorrelation at lag 0, d is the number of lags, and α is the inverse scale 

height, the range at which the autocorrelation decays by a value of e (Kagan 1972).  In theory, 

𝝆(𝟎) should always be one, indicating a perfect autocorrelation at lag-0.  In practice, these lags 

often deviate from one due to variability operating below the sampling grain that cannot be 

resolved.  Lagged correlation coefficients are used to estimate biological patch sizes (Legendre 

1993), and to determine analysis resolutions that do not violate statistical assumptions of 

independence (Schneider 1990).  The squared correlation coefficient is mathematically identical 

to the coefficient of determination (R2), which quantifies the proportion of variability described 

from spatial correlation.   

In contrast, semi-variograms (γ) measure the dissimilarity at each lag (h) as half the 

average squared difference of all measurements (𝑧) at each lag: 

𝛄 𝒉 =    𝟏
𝟐𝑵(𝒉)

[𝒛 𝒙𝒊 + 𝒉 − 𝒛 𝒙𝒊 ]𝟐
𝑵(𝒉)
𝒊!𝟏            [3] 

Dissimilarity typically increases with distance, until semi-variance asymptotically approaches half 

the variance of the series.  Semi-variograms are usually described by three parameters, the 

range, sill, and nugget (Gringarten & Deutsch 2001).  The range parameter is the lag at which the 

semi-variance approaches half the variance, or the sill.  Beyond this range, measurements 
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become statistically independent and the variance will no longer increase with distance.  In 

theory, there should be no dissimilarity (semi-variance) at a range of zero, as measurements 

should be perfectly autocorrelated.  In practice, there is often semi-variance below the grain size, 

quantified by the nugget.  Covariance and semi-variance are quantities that measure similarity 

and dissimilarity, which sum to the variance (Gringarten & Deutsch 2001).   

𝑪 𝒉 + 𝟐𝛄 𝒉 = 𝛔𝟐                      [𝟒] 

The lagged correlation coefficient inversely mirrors the semi-variance, and is the complement to 

the semi-variance standardized by the variance (Mønness & Coleman 2011): 

𝝆 𝒉   𝐱  𝛔𝟐 =   𝛔𝟐 − 𝟐𝛄 𝒉                       [𝟓] 

𝝆 𝒉   =   𝟏 −
𝟐𝛄 𝒉
𝛔𝟐

                      [𝟔] 

In Equation [6], the lagged correlation coefficients approach zero at the same range as the semi-

variance approaches the sill, and 𝝆 𝟎  is the compliment of twice the semi-variogram nugget 

standardized by the variance.  Spherical semi-variogram models are analogous to the 

exponential decay model of spatial autocorrelation.  Selection of correlograms or semi-

variograms is largely a matter of preference and precedent within a discipline when analyzing 

one-dimensional data (Mønness & Coleman 2011).  Semi-variograms are slightly more robust to 

departures from stationarity than lagged autocorrelation functions and can describe two-

dimensional, irregularly spaced measurements.  Semi-variogram analysis and interpretation has 

been hampered by ambiguity in terminology (Bachmaier & Backes 2008) and statistical testing in 

the absence of permutations (c.f. Walker et al. 1997).  Autocorrelation functions, mathematically 

identical to lagged correlation coefficients, remain more intuitive to a broad audience.  For this 

reason, modeled variograms parameters have previously been used to fit correlation coefficient 

models to parsimoniously and intuitively describe the decay of representativeness with range 

(Anttila et al. 2008).   
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Assuming a random data series, lagged-correlation coefficients are distributed around 

zero with a variance of 1/n, with n bins the length of the data series.  Assuming a random 

distribution, the 95% confidence interval of lagged correlation coefficients is 2/√l, where l is the 

number of lags in the series.  Substituting 2/√l for 𝜌 ℎ  in Equation [2], and then solving for the 

representative range (rrep) as the range given by the number lags (d) of grain size g: 

𝒓𝒓𝒆𝒑 =   −𝒈

𝒍𝒏

𝟐
𝒍

𝟐

𝝆 𝟎

𝜶
                [𝟕] 

A coefficient of determination model was applied to describe how similarity in fish density 

decayed with distance in Admiralty Inlet.  Lagged Pearson’s correlation coefficients were 

calculated within each transect (n=547), then squared to create lagged coefficients of 

determination (R2).  An exponential decay model was fit to the lagged correlation coefficients and 

coefficients of determination across all transects using a least squares algorithm.  Once the range 

was calculated, the area of a circle defined by the representative radius was calculated.  These 

areas were scaled to a square kilometer to make inferences about the number of required 

packages within each square kilometer of the sampling domain.  

3.2.1.2. Random Sampling Sample Size Calculations 

 Gray et al. (1992) created a framework to optimize spatial sampling effort and allocation 

when analyzing the effects of marine pollution on benthos.  The focus of the sampling effort was 

the number of stations n needed to detect a difference in community abundance at lag t.  The 

sampling effort was given by: 

𝒏 =   
𝐬𝟐

𝑹𝑷𝑬𝟐𝒙𝟐  
                      [𝟖] 

where s and 𝑥 are the standard deviation and mean taken from a pilot study, and RPE is the 

minimum effect size as a proportion of the mean.  Equation [8] appears to be a derivative of the 

sample size calculation for detecting the mean difference in paired means (Sullivan 2006), where 

measurements are paired through time: 
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𝒏𝒑𝒂𝒊𝒓𝒔 =
𝒁𝟏!𝛂 𝟐

∗ 𝝈𝒅
𝑬

𝟐

                    [𝟗] 

The critical value, 𝑍!!𝛂 !
, for a 0.95 significance level (α= 0.05) is 1.96. The 𝜎! is the standard 

deviation of the paired differences between times at each station.  The variance of differences 

between normal distributions is the sum of both variances. Assuming variance remains constant 

through time, 𝜎! can be expressed as: 

𝝈𝒅 = 𝟐 ∗   𝝈𝒕𝟐                      [𝟏𝟎] 

where 𝜎!! is the spatial variance at time t.  If Equation [8] is a derivative of Equation [9], Equation 

[8] underestimates the required sample size by a factor of (𝑍!!𝛂 !
)!, (3.84 assuming α= 0.05) by 

not including the squared Z test statistic in the numerator and by another factor of two for not 

accounting for the increased variance of the normal difference distribution.  E in Equation [9] is 

the absolute effect size, which when standardized by the mean, 𝑥, produces the RPE from [8]: 

𝑹𝑷𝑬 =
𝑬
𝒙
                      [𝟏𝟏] 

Given a known sampling domain S over which 𝜎! was measured, and assuming a relatively even 

distribution of sensors, the representative area can be can be calculated as: 

𝒂𝒓𝒆𝒑 =   
𝑺

𝒏𝒑𝒂𝒊𝒓𝒔
                      [𝟏𝟐] 

Combining Equations [9] and [12] by substituting Equation [9] for 𝑛!"#$% in Equation [12]: 

𝒂𝒓𝒆𝒑 =
𝑺

𝒁𝟏!𝛂 𝟐
∗ 𝝈𝒅

𝑹𝑷𝑬 ∗ 𝒙

𝟐                       [𝟏𝟑] 

The range r to represent an area a is defined by the area of circle:  

              𝒂𝒓𝒆𝒑 =   𝝅𝒓𝒓𝒆𝒑𝟐                       [𝟏𝟒] 

which can be combined with Equation [13]: 

𝒓𝒓𝒆𝒑 =   
𝑺

𝝅 ∗
𝒁𝟏!𝛂 𝟐

∗ 𝟐𝝈𝒕
𝑹𝑷𝑬 ∗ 𝒙

𝟐                       [𝟏𝟓] 
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Equation [15] is used to avoid Type I errors associated with a false positive test.  In 

monitoring networks, failures to recognize Type II errors are more egregious than a false positive 

(Underwood 1997, Underwood & Chapman 2003), as Type II errors are unidentified biological 

impacts that cannot be mitigated.  Power analysis calculations can be used to identify the sample 

size required to identify effects with adequate statistical power (Zar 2010).  The required number 

of pairs in a paired t-test power analysis is expressed as:  

𝒏𝒑𝒂𝒊𝒓𝒔 =   
𝝈𝒅𝟐    𝒁𝟏!𝜶 𝟐

+   𝒁𝜷
𝟐

𝑬𝒅𝟐
                      [𝟏𝟔] 

where 𝜎!!  can be calculated following Equation [10].  Both 𝑍!!! !
 and 𝑍!  represent critical Z-

statistics corresponding to subjectively chosen alpha and beta values, which are commonly set at 

1.96 (α = 0.05) and 0.84 (β = 0.80).  Ed is analogous to the effect size introduced in Equation [9].  

The representative range can then be calculated by substituting npairs into Equations [12-14].  

This method calculates the required sample size for measurements paired through time, 

and analyzed using a paired t-test, where the number of pairs is the number of spatially 

distributed sensors.  Measurements are only compared at two distinct times, pre- and post-

installation.  T-tests assume normal distribution of paired differences, which is satisfied if both 

paired sets are normally distributed by the normality of normal difference distribution (Zar 2010).  

T-test sample size calculations do not consider the structure or gradients contributing to the 

spatial variability, but treat spatial variability as the variance of a normal distribution to be 

sampled. A t-test sample size calculation assumes random sampling, which treats all spatially 

distinct stations as random samples of the mean.  The sampled population may be non-randomly 

distributed through space, but the spatial structure is assumed to be identical at both sampling 

times.  Unlike autocorrelation analysis which describes the range to which inferences can made, 

the sample size calculation calculates the number of stations required to make statements about 

the domain if spatial variability is treated as random variance.  Statistical power to identify change 

through time is compromised by randomly sampling and ignoring spatial structure.  Sample size 

calculations require estimates of spatial variability, which must be acquired from some form of 
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mobile survey.  The more baseline mobile data that are collected, the more certain estimates of 

the spatial variance become.  

In the case study, estimates of 𝑟!"# were calculated independently using Gray’s sample 

size, t-test sample size, and power analysis formulas.  To remove the spatial autocorrelation from 

the series due to non-random fish distributions (Bence 1995), sample size calculations were 

conducted at statistically independent grain sizes over the extent of an entire grid (n = 57).  

Sequentially sampled line-transects were used to minimize the confounding of spatial and 

temporal variance. The minimum effect size, E, was subjectively established as 1dB, which 

equates to a 25.9% change in fish density.  A one dB re 1µPa at 1m change compared to the 

grand mean of -77dB effect size of 1dB translates to a RPE of 0.0129 ( ±!  !"
!!!  !"

).  Alpha was 

constant, 0.05, and beta in the power analysis was conservatively set to 0.90. 

3.1.1.3. Relative Standard Interpolation Error 

Rather than estimating the range to which a measurement can be interpolated through 

space, it is often beneficial to model departures from the interpolated estimate.  These 

departures, called interpolation errors, increase with distance from a point and thus increase as 

the density of sensors within a domain is decreased.  Sensor density can be optimized by the 

predetermined magnitude of allowed interpolation error in the linear (Gandin 1970) or areal 

interpolation (Kagan 1966).  A more detailed derivation can be found in Milewska & Hogg (2001).  

The relative standard interpolation error (RSIE) is significantly different in the calculation and 

interpretation from the RPE presented above.  RSIE is the error introduced by interpolating point 

measurements to distant points or areas.  When linearly interpolating between two points, the 

RSIE is maximized at the midpoint of the vector defined by those points. RSIE of linear 

interpolation (Gandin 1970) can be calculated as: 

𝑹𝑺𝑰𝑬𝒊𝒏𝒕𝒆𝒓𝒑𝒐𝒍𝒂𝒕𝒊𝒐𝒏.𝒑𝒐𝒊𝒏𝒕 = 𝟏 −   
𝟐𝛒𝟐(𝒅𝟐)

𝟏 +   𝛈 +   𝛒(𝒅)
                      [𝟏𝟕] 

where 𝛒(𝒅) is the modeled exponential decay function from Equation [2], and η is defined as: 

𝛈 = 𝟏 −   𝛒 𝟎                     [𝟏𝟖] 
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Using a predetermined acceptable RSIE, Equation [17] can be solved to give the maximum 

interpolation distance d.   

The objective of spatially distributed networks is often to estimate the mean of a quantity 

within a domain as opposed to the value at a given point in space.  Areal interpolation of a point 

measurement produces a different interpolation error.  Assuming the representative area is a 

circle, the representative range will be the radius of a representative circle.  The areal 

interpolation error (Kagan 1966) is quantified as:  

𝑹𝑺𝑰𝑬𝒊𝒏𝒕𝒆𝒓𝒑𝒐𝒍𝒂𝒕𝒊𝒐𝒏.𝒂𝒓𝒆𝒂 =    𝛔𝛆𝟐 + 𝟎.𝟐𝟑𝛔𝒑𝟐
𝑺

𝑫𝟎
                      [𝟏𝟗] 

where 𝛔𝐩𝟐 is the temporal variance at the point sensor, S is the area over which the point source is 

interpolated, 𝑫𝟎 is the inverse of a in Equation [2], and σ!! is defined as: 

𝛔𝛆𝟐 = 𝛈𝛔𝒑𝟐                      [𝟐𝟎] 

Given a predetermined RSIEinterpolation.area in Equations [17], the equation can be solved for the 

area S, which is the area of the circle defined by radius rrep: 

𝑺 =
𝑫𝟎 𝑹𝑺𝑰𝑬𝟐 − 𝛔𝛆𝟐

𝟎.𝟐𝟑 ∗ 𝛔𝒑𝟐

𝟐

                      [𝟐𝟏] 

Then solved for the rrep as a function of S, similar to Equations [12-15]: 

𝒓𝒓𝒆𝒑 =   

𝑫𝟎 𝑹𝑺𝑰𝑬𝟐 − 𝛔𝛆𝟐
𝟎.𝟐𝟑 ∗ 𝛔𝒑𝟐

𝟐

𝝅
                        [𝟐𝟐] 

Relative standard interpolation error (RSIE) analysis is based on the modeled 

exponential decay in spatial autocorrelation.  Even if RSIE isn’t used to determine the 

representative range of biological networks, it can be used to estimate interpolation errors.  In the 

absence of a meaningful RSIE threshold, RSIE curves were calculated to describe the error 

introduced at the four representative ranges identified by correlation coefficient models, Gray’s 

sample size calculation, t-test sample size calculations, and power analysis.  RSIE analysis can 

be conducted on any data that has been used to estimate autocorrelation.  The only additional 

requirement is the temporal variance when interpolating a point measurement to the surrounding 

area (see Equation [19]).  Except for Equation [19], every parameter is derived from the spatial 
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autocorrelation, derived from the mobile acoustic survey.  In this case, temporal variance, in 

Equation [19], was calculated from the stationary acoustic survey (i.e. echosounder), but could 

also be calculated using repeated mobile data. 

3.2.2. Representative Range of Variance Measurements 

3.2.2.1. Theoretical Spectra 

Temporal variability, like the mean, varies through space (Damian et al. 2003).  The 

spatial heterogeneity of temporal variance is visualized by Hovmöller diagrams (Hovmöller 1949), 

which illustrate variability across space and time. Temporal variability is structured in space (e.g. 

Fig. 10c in Torrence & Compo 1998, Certain et al. 2007, Hocke & Kampfer 2011), such that loci 

demonstrating high temporal variability are spatially aggregated.  Point measurements used to 

estimate the temporal variance of a quantity also have a representative range.  To transition from 

the representative range of a mean to the variance of a quantity, the analytical approach shifts 

from the time or distance domain to the frequency domain.   

The first technique to estimate the representative range of temporal variance is a 

combination of autocorrelation and spectral power.  Due to autocorrelation in a series, the power 

spectra of a red-noise, first order auto-regressive process is minimized at small periods and 

increases logistically with period (Gilman et al. 1962): 

𝑳𝒇 =   
𝟏 −   𝛒𝟐(𝟏)

𝟏 +   𝛒𝟐 𝟏 − 𝟐𝛒 𝟏 ∗ 𝐜𝐨𝐬 𝟐𝝅 ∗ 𝒌
𝒍   

                      [𝟐𝟑] 

where 𝐿! is the ratio of the predicted variance relative to the variance of a random, white-noise 

process and multiplying 𝐿! by the white noise variance produces an estimate of the true predicted 

variance.   𝜌 1   is calculated by substituting 1 for d in Equation [2].  The factor of two within the 

cosine argument was not included in Gilman et al.’s (1962) original derivation, but included in 

subsequent applications (e.g. Torrence & Compo 1998) so that Lf approaches the maximum 

variance at frequencies approaching zero.  In Equation [23], l is the maximum lag distance, and 

𝑘
𝑙 is the frequency as a function of the maximum lag distance l, which is equivalent to the 

inverse of the period: 

𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒚 =   
𝒌
𝒍
                        [𝟐𝟒] 
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𝒑𝒆𝒓𝒊𝒐𝒅 =
𝟏

𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚
                        [𝟐𝟓] 

The autocorrelation at lag 1, ρ 1 , was first modeled in Equation [2].  Note that at frequencies 

approaching zero (i.e. maximum period), the cosine term approaches zero and the maximum 

predicted variance in a red-noise spectrum simplifies to: 

𝑳𝒇.𝒎𝒂𝒙 =   
𝟏 −   𝛒𝟐(𝟏)

𝟏 +   𝛒𝟐 𝟏 − 𝟐𝛒 𝟏
                    [𝟐𝟔] 

The normalized variance increases logistically over observation scales as a function of the first 

order correlation coefficient.  The scale to which the variance can be considered representative is 

the scale at which a suitably high proportion b of the maximum variance, expressed in Equation 

[26], is expected to be observed.  Equation [23] can be set equal to the proportion p of the 

maximum predicted variance in Equation [26] and then solved for the frequency.  The inverse of 

the frequency is the period at which measurements of the variance are considered 

representative, and can be calculated from Equation [25].  The frequency from Equation [23] at 

which we expect to see p described in Equation [25] is the scale at which measurements of 

variance are considered representative.  This relationship can be quantified by combining 

Equations [23] and [26]: 

𝒑 ∗
𝟏 −   𝛒𝟐 𝟏

𝟏 +   𝛒𝟐 𝟏 − 𝟐𝛒 𝟏

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧  [𝟐𝟔]

=   
𝟏 −   𝛒𝟐(𝟏)

𝟏 +   𝛒𝟐 𝟏 − 𝟐𝛒 𝟏 ∗ 𝐜𝐨𝐬 𝟐𝝅 ∗ 𝒌
𝒍   

        

𝐄𝐪𝐮𝐚𝐭𝐢𝐨𝐧  [𝟐𝟑]

              [𝟐𝟕] 

Which is further simplified to: 

𝒑𝒆𝒓𝒊𝒐𝒅𝒓𝒆𝒑 =   
𝒍
𝒌
  = 𝒈 ∗

𝟐𝝅

𝐚𝐜𝐨𝐬

𝟏 +   𝝆𝟐 𝟏 −   𝟐𝝆 𝟏
𝒑 − 𝟏 −   𝝆𝟐 𝟏

−𝟐𝝆 𝟏

                      [𝟐𝟖] 

 Modeled power spectra assume that the scale at which the variance approaches the 

maxima is the scale at which the variance can be considered representative. The only spatial 

parameter included in the model is the first order autocorrelation, assuming a red-noise random 

walk model.   
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In the example, power spectra were modeled using the best-fit autocorrelation model 

previously described.  This model assumes fish densities are distributed around a uniform field 

with first order autocorrelation.  This assumption is more easily explained in a one-dimensional 

time series, where the value at interval n is only dependent on the previous value and a variance 

Y, without any trends, covariates, or natural cycles in the data. 

𝑿𝒏 = 𝝆(𝟏)𝑿𝒏!𝟏 + 𝒀𝒏, 𝐟𝐨𝐫  𝐚𝐥𝐥  𝒏  𝐥𝐚𝐠𝐠𝐞𝐝  𝐛𝐲  𝐝𝐢𝐬𝐭𝐚𝐧𝐜𝐞  𝒕                      [𝟐𝟗] 

 Red-noise spectra were modeled using the lagged correlation coefficients fit to an 

exponential decay model.  The proportion of the maximum variance deemed representative, p, 

was subjectively set at 95%.  The scale at which the predicted variance reached 95% of the 

maximum variance was calculated from Equation [28].  The maximum period described in 

spectral analysis is usually limited by the Nyquist frequency to half the extent of the series 

(Denman 1975), but the theoretical spectra was empirically derived from the first order 

autocorrelation, assuming a random walk over large periods, and can be modeled over longer 

periods than the Fourier power spectra.  The result is that the modeled spectra can be 

extrapolated beyond the constraints of the Nyquist frequency.    

3.2.2.2. Equivalent scales of space and time 

Biological communities vary through a spectrum of spatial and temporal periods.  

Linkages between the spatial and temporal periods at which biological and physical systems vary 

are well established (NASA 1988, Steele et al. 1994, Wu 1999).  In general, quantities varying 

over large spatial periods will also vary over large temporal periods.  Although the relationship 

between periods of spatial and temporal variability is highly variable (c.f. Steele et al. 1994, NASA 

1988, Wu 1999), the linkage between spatial and temporal period suggests that an equivalent 

spatial period exists for every temporal period.  To maintain predictive power, spatio-temporal 

modeling of processes or communities must be conducted at equivalent spatial and temporal 

periods (Wiens 1989, Wu 1999).  

The observed variance of a quantity is dependent on the grain or period at which a 

quantity is measured (Wiens 1989).  Spatial and temporal variability must be treated as 

equivalent when scaling between mobile and stationary measurements of a quantity.  Assuming 
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spatial and temporal variability can be directly compared, the spatial and temporal periods at 

which equal magnitudes of variance are observed are equivalent.  Point source measurements of 

temporal variance, collected over a known temporal extent and period, can be considered 

spatially representative at the equivalent spatial period.  Measurements of temporal variance 

collected from a point sensor can then be considered representative of spatial variability at the 

equivalent spatial period.     

The period-dependent variance has historically been quantified using spectral power.  In 

general, spectral power (i.e. variance) increases with period following a power-law.  Assuming 

linearity in the spatial and temporal power-law spectra, the variance at the largest resolvable 

temporal period, limited by the Nyquist frequency (Platt & Denman 1975), can be compared to the 

spatial spectra to identify the corresponding spatial period at which equivalent amounts of 

variability are expected to be observed.   

Averaging the localized wavelet spectra across all instances yields the global wavelet 

spectra, mathematically analogous to the Fourier power spectra (Hudgins et al. 1993, Percival 

1995, Perrier et al. 1995). Like the Fourier power spectra, the global wavelet spectrum assumes 

the series is stationary, limiting the spatial and temporal analysis to relatively short extents.  The 

advantage of using wavelet analysis over traditional spectral density is that wavelet analysis 

allows the visualization of non-stationary dynamics before integrating through time or space to 

identify transient spatial or temporal scales of variance.  Continuous wavelet transforms, which 

analyze periods at redundantly small intervals, were used to increase period resolution (Torrence 

& Compo 1998), and averaged through time using: 

𝒘(𝑻)   =   
𝑾𝟐 𝑻
𝜹𝟐

=   
𝟏
𝑵
   |  𝑾𝒏 𝑻 |𝟐
𝑵!𝟏

𝒏!𝟎

                      [𝟑𝟎] 

where  𝑊! is the mean wavelet power, T is the bandwidth over which wavelet powers are 

averaged over n times to N length.  The analyzed spatial and temporal scales increased with 12 

steps per octave, a common period resolution in ecological contexts (Urmy et al. 2012), from 

twice the resolution of the series to the Nyquist frequency as: 

   𝑻
𝟐𝒈→𝑵𝒚𝒒𝒖𝒊𝒔𝒕

=   𝒈 ∗ 𝟐
𝒊!𝟏𝟏

𝟏𝟐                       [𝟑𝟏] 
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where g is the spatial or temporal grain of the measurement, and the maximum scale is limited by 

½ the extent of the series (i.e. Nyquist frequency; Platt & Denman 1975).  Wavelets were 

decomposed using a Morlet wavelet of frequency 6, with a known dilation of 1.03 to translate the 

wavelet scale to the equivalent Fourier power spectra period (Torrence & Compo 1998).  Peaks 

in the global wavelet spectrum artificially inflate the power of peaks observed at large periods 

relative to small periods compared to the true Fourier power spectra (Liu et al. 2007).  This 

potential bias was not corrected here because the bias is a uniform factor of the wavelet scale in 

both the spatial and temporal series (Liu et al. 2007).  The uncorrected global wavelet spectrum 

approaches the Fourier spectral power as both are smoothed with increasingly large bandwidth, 

suggesting that the global wavelet spectrum best-fit line will be less biased than any individual 

peak intensity.   

Finding equivalent scales of spatial and temporal variability require high scope 

measurements covering the spatial extent of the domain or at twice the extent of the proposed 

interpolation range.  Linearity in both the spatial and temporal spectrum must be empirically 

verified across all spatial and temporal periods of interest as the best-fit spectrum can deviate 

from linearity due to localized variance or the presence of patches (Platt & Denman 1975).  

Periods cannot be analyzed larger than the inverse of the Nyquist frequency, one half of the total 

extent (Platt & Denman 1975).  Therefore interpolation distance will always be limited to at least 

half the survey extent.   

Wavelet analysis was used to quantify the localized period dependent variance spectra 

within a series (Torrence & Compo 1998).  The global wavelet spectrum was calculated for all 

547 spatial transects and 360, 12-minute stationary sampling periods.  The mean global wavelet 

power was calculated at each spatial and temporal period.  Global wavelet power was calculated 

as a function of period instead of frequency to standardize irregularities in line-transect length.  

Both wavelet power and scale were log normalized, and a best fit line was regressed using linear 

least squares for both mobile and stationary data: 

𝑺𝒑𝒂𝒕𝒊𝒂𝒍  𝑷𝒐𝒘𝒆𝒓  𝑺𝒑𝒆𝒄𝒕𝒓𝒖𝒎:   𝐥𝐨𝐠𝟏𝟎(
𝑾𝒔

𝟐 𝑻𝒔
𝜹𝒔𝟐

)   = 𝒎𝒔 ∗ 𝐥𝐨𝐠𝟏𝟎(𝑻𝒔) +   𝒃𝒔                      [𝟑𝟐]   
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𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍  𝑷𝒐𝒘𝒆𝒓  𝑺𝒑𝒆𝒄𝒕𝒓𝒖𝒎:   𝐥𝐨𝐠𝟏𝟎(
𝑾𝒕

𝟐 𝑻𝒕
𝜹𝒕𝟐

)   = 𝒎𝒕 ∗ 𝐥𝐨𝐠𝟏𝟎(𝑻𝒕) +   𝒃𝒕                      [𝟑𝟑]   

where m and b are the slope and intercept of the best-fit lines.  The maximum temporal power 

spectrum can be defined as the power spectrum at the Nyquist frequency, or a period of ½ the 

temporal series length N: 

𝐦𝐚𝐱 𝒘𝒕 𝑻 = 𝒎𝒕 ∗ 𝐥𝐨𝐠𝟏𝟎(𝑻𝟏
𝟐𝑵(𝒕)

) +   𝒃𝒕                      [𝟑𝟒]   

This equation can be substituted into Equation [32] to find the spatial scale at which spatial 

variance matches that observed at the largest temporal scale: 

𝐦𝐚𝐱 𝒘𝒕 𝑻 = 𝒎𝒔 ∗ 𝐥𝐨𝐠𝟏𝟎(𝑻𝒔) +   𝒃𝒔                        [𝟑𝟓] 

and then solved for Ts to yield the representative spatial scale of the variance Ts.rep: 

𝑻𝒔.𝒓𝒆𝒑 =   𝟏𝟎
𝐦𝐚𝐱 𝒘𝒕 𝑻 !  𝒃𝒔

𝒎𝒔                         [𝟑𝟔] 

 This is the scale at which an equivalent amount of spatial variability is observed at the 

maximum temporal scale.  The spatial and temporal sampling grain should approach equivalence 

to facilitate unbiased comparisons.  Here, fine spatial (20m) and temporal (1.2 seconds) grains 

were used, which each incorporated six acoustic pings.  The suitability of spatial and temporal 

grain size can be checked by the difference in the y-intercept of each log-normalized modeled 

spectrum after the fact, if not then caution should be used in scaling between spatial and 

temporal variance. 

3.2.3. Interrelationship and Independence of proposed methods 
All of these methods are linked, but provide independent estimates of the representative 

range based on unique assumptions and interpretations.  Lagged coefficients of determination 

are equivalent to the square of the lagged correlation coefficients, produced by the 

autocorrelation function.  The autocorrelation function is the autocovariance standardized to the 

variance of the series. A cosine transformation of the autocovariance yields the red-noise 

modeled Fourier spectra (Denman 1975).  The global wavelet spectrum is the empirically derived 

version of the modeled power-spectrum based on the first order autocorrelation.  The modeled 

power spectrum forms the backbone of significance tests of peaks in the global wavelet 



 

 

79 

spectrum.  All of these methods are linked, but provide independent estimates of the 

representative range based on unique assumptions and interpretations.   

3.2.4. Case Study: Fish Densities in Admiralty Inlet, WA 
Two six-meter diameter tidal turbines will be installed into Admiralty Inlet, Puget Sound, 

WA in the summer of 2016 as part of a tidal MHK energy pilot project.  Puget Sound is a complex, 

tidally dominated estuarine system in Washington state, covering more than 1,988 km2 (NOAA 

1987).  Admiralty Inlet is a shallow sill forming the major entrance to Puget Sound (Figure 3.1) 

with average tidal flux in excess of 1.5 x 104 cubic meters of water per second (Babson et al. 

2006) at speeds in excess of 3.5 ms-1 (Gooch et al. 2009).  The pilot tidal energy site has been 

proposed ~750m from Admiralty Head in 55m of water (FERC 2014).  Tidal energy is a relatively 

new suite of technologies with unknown effects on local fish communities.  Due to this 

uncertainty, the Federal Energy Regulatory Commission (FERC) requires approval of site-specific 

monitoring plans before issuing development permits. To date, requirements of all environmental 

monitoring plans lack specific guidelines and are not standardized across sites (c.f. Copping et al. 

2014).  Active acoustics are a common tool for measuring fish and macrozooplankton densities in 

marine environments, and are commonly deployed at MHK sites (e.g. NYSERDA 2011).  In its 

infancy, MHK installations are capital limited, making the cost effectiveness of biological 

monitoring critical to the success of the industry.  Repeated active acoustic mobile surveys for 

long-term (>5 years) biological monitoring are cost prohibitive.  Stationary sensor networks are 

assumed to be more cost effective than repeated mobile surveys.  A network of static active 

acoustic sensors has been proposed to monitor the effects of tidal energy converters on fish 

density, but the number of sensors and their placement is uncertain.  Historically, regulators have 

erred on the side of precaution when facing uncertainty in designing monitoring programs 

(Underwood 1997, Underwood & Chapman 2003), sometimes deploying numbers of sensors and 

sampling effort that would be cost prohibitive in a long (> 5 year) monitoring program (e.g. 

NYSERDA 2011).   

In a baseline demonstration project, spatiotemporal fish density distributions were 

measured from concurrent mobile and stationary acoustic surveys.  Measurements of spatial and   
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Figure 3.1. Admiralty Inlet, Puget Sound, USA.  (top left) Admiralty Inlet at the mouth of Puget 
Sound.  (bottom left) the location of the stationary echosounder, at a proposed tidal energy pilot 
site, is denoted by the white square in relation to the two spatial grids north and south of the 
stationary package, each consisting of high and low resolution transects.  

N 

1000 m 
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temporal mean and variability of fish density were used to estimate the representative range 

using the previously described six approaches.  Fish densities were quantified using mean 

volume backscattering strength (Sv; units: dB re 1 µpa), a log-normalized acoustic metric of 

density (MacLennan et al. 2002).  The second approach calculates the number of sensors 

needed to monitor a site, while the remaining three approaches calculate the spacing between 

sensors.  The number of sensors can be converted to the representative range to create a 

common metric used to compare estimates from each method.  The area of the domain divided 

by number of sensors is the average representative area of each sensor.  If the representative 

area of each sensor is a circle, then the radius of a circle of the average representative area is 

the representative range.   

3.2.4.1. Mobile Acoustic Survey 

 Two mobile acoustic surveys were conducted from May 2nd to May 13th and June 3rd to 

June 14th, 2011.  Each survey repeatedly sampled two grids of transects, one at and one south of 

the proposed pilot site, during day and night.  A total of 57 sampling grids were completed over 

both surveys encompassing all tidal states, with a total of 547 transects.  Transects were oriented 

perpendicular to the shore and the flow of the predominant tidal current (Figure 3.1), surveyed at 

approximately 3.6 m/s (7 knots).  The grids covered an area of 16.1 km2 with transects spaced ¼ 

km apart near the proposed pilot site switching to lower resolution transects spaced ½ km apart.  

Analysis was constrained to within 25m of the bottom, approximately twice the vertical footprint of 

the proposed turbines. 

Mobile acoustic data were collected at 1 Hz using a 120 kHz transducer with a 7 ̊ beam 

width (between half power points) traveling at 7 knots, transmitting at 500 Watts and a 512 ms 

pulse duration.  Surface turbulence due to tidal currents was a major feature in the acoustic data 

record and was identified using the schools detection algorithm in Echoview (v5.4.91 Myriax Inc.) 

acoustic data processing software.  School detection parameter settings were:  minimum total 

school length = 5m, minimum total school height = 3m, minimum candidate length = 5m, 

minimum candidate height = 3m, maximum vertical linking distance = 10m, and maximum 

horizontal linking distance = 10m.  Identified schools that intersected the 3m depth surface 
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exclusion range were excluded as turbulence.  Noise was removed from data using a -75 dB 

threshold, which corresponded to a 16 dB signal to noise ratio.  The threshold was set to assist 

the turbulence removal algorithm and to exclude microzooplankton from the analysis.  The 

echosounder was calibrated prior to surveys using a tungsten carbide sphere following the 

protocols outlined in Foote et al. (1987).   

3.2.4.2. Stationary Acoustic Survey 

 An autonomous, bottom-deployed, upward facing 120 kHz splitbeam echosounder 

sampled at 5 Hz for 12 minutes on a 2 hour duty cycle from May 10th to June 9th, 2011, collecting 

357 twelve-minute samples (Figure 3.2).  Similar to the mobile survey, the transducer had a 7 ̊ 

beam angle (between half power points) and transmitted at 1000 Watts.  The stationary 

echosounder was deployed at the location of the proposed pilot energy site, located in the high-

resolution portion of the north spatial survey grid in ~55m of water and ~750m from Admiralty 

Head.   Noise was removed using a -75 dB threshold, identical to the spatial survey, and data 

was constrained to 25m from the bottom.    

3.2.4.3. Grain, Extent, and Scope 

Distance decay, and hence representative range, is dependent on the spatial or temporal 

grain (i.e. analysis resolution) and extent of measurements (i.e. range; Ciach & Krajewski 2006, 

Nekola & McGill 2014).  Acoustic backscatter cannot be analyzed at a grain of a single 

transmission as backscatter varies between individual samples, but stabilizes as pings are 

averaged following the central limit theorem (Simmonds & MacLennan 2005).  Six pings were 

averaged to create analytical cells, which resulted in a 20m grain in the mobile survey and a 1.2 

second grain in the stationary survey.  Each mobile line-transect and stationary 12-minute 

sampling period was analyzed independently, creating 547 mobile and 357 stationary samples. 

The extent of line-transects ranged between 1,300m and 3,100m, depending on the line-transect, 

which yielded a scope range of 65 to 155.  The extent of each stationary sampling period was 12 

minutes, with a corresponding temporal scope of 600.  
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Figure 3.2. Static sensor sampling strategy.  The static echosounder was deployed for 30 days 
(May 9th, 2011 to June 8th, 2011) and sampled fish densities at 5Hz for 12 minutes on a two hour 
duty cycle.  Data was analyzed at a 1.2 second grain size (six pings), yielding 600 analysis cells 
per 12 minute sampling period.  
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3.3. Results 
3.3.1. Representative Range of the Mean 

3.3.1.1. Correlation Coefficient Model  

The autocorrelation of nekton density measurements decayed rapidly as a function of 

distance (Figure 3.3).  Exponential decay models were fit to both the lagged Pearson’s correlation 

coefficient (Figure 3.3, top) and lagged coefficient of determination models (Figure 3.3, bottom).  

Following Anttila et al.’s (2008) assumption that the lagged coefficient of determination is 

analogous to “representativeness”, the coefficient of determination decayed exponentially 

following (ρ(h) = 0.3392e-0.168d).  The y-intercept at lag 1 (ρ(1) = 0.286) demonstrated that less 

than a third of the variability between sequential observations was explained by autocorrelation.  

The median data series length of all transects was used to calculate a threshold for significance 

(2600 m transect sampled at a 20m resolution, yielding l = 130 samples), because correlation 

coefficients were calculated for each transect.  Therefore the 95% CI for a lagged, correlation 

coefficient given the median transect length was 0.175.  The square of the lagged correlation 

coefficient 95% CI yields the 95% CI for the coefficient of determination, which was 0.0307 for the 

fish density data.  This threshold corresponds to the range at which observations became 

approximately independent.  Based on an empirically derived threshold of R2 = 0.0307, the 

representative range of stationary sensors measuring fish density was estimated to be 285.65 

meters in Admiralty Inlet.  Based on the area defined by a circle with a radius of 285.65m, 3.9 

sensors per square kilometer would be needed to monitor the domain (Table 3.2).  

3.3.1.2. Sample Size Calculation    

 The number of required sensors was calculated individually within each sampling grid (n 

= 57) following both Gray et al.’s (1992) formula (Equation [8]), and the derived sample size 

calculation in Equations [15-16].  The mean representative range using Gray et al.’s (1992) 

formula in each grid was 403.9 m, with a median value of 366.0 m (Figure 3.4, left).  The 

statistically derived sample size calculation from Equation [15] yielded a representative range of 

30.57 m and a median representative range of 21.7 m (Figure 3.4, middle).  The power analysis 

holding alpha constant (α = 0.05), and with beta set at 0.90 (Equation [16]), resulted in a mean   
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Figure 3.3. Lagged coefficient of determination model.  Black points denote the mean (top) 
lagged correlation coefficient or (bottom) coefficient of determination across all 547 transects at 
each lag distance.  The individual correlation values for all 547 transects are marked by the fine 
points. 
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Figure 3.4. Distribution of representative ranges calculated for each sampling grid required to 
identify a 1 decibel change from (left) Gray et al.’s 1992 formula, (center) sample size calculation 
to identify mean paired differences, and (right) using a power analysis assuming alpha = 0.05 and 
beta = 0.90.  
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Figure 3.5. The mean representative range of each sensor calculated from paired t-test power 
analyses conducted on each spatial grid (n=57).  The polygon envelops the mean range at alpha 
= 0.05 +/- one standard deviation.  
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representative range of 88.45 m and a median range value of 81.9 m (Figure 3.4, right).  

Representative ranges of 403.9, 30.57, and 88.45 meters corresponded to a sensor density of 

1.95, 340.6 and 40.68 per square kilometer (Table 3.2).  

 Holding alpha (α = 0.05) and the effect size constant (E = 1 dB), representative range 

increased 30% from 88.45 m to 115.41 m by decreasing beta from 0.90 to 0.70 (Figure 3.5).  This 

increase in representative range was smaller than the standard deviation of independently 

calculated representative ranges (α = 0.05, β = 0.90) for each sampling grid (σ = 36.17 sensors, n 

= 57).  If beta is held constant at a conservative value (β = 0.90), and alpha increased from 0.05 

to 0.1, and the representative range increased from 88.45 m to 97.98 m (Figure 3.5).  

 3.3.1.3. Relative Standard Interpolation Error   

 Interpolating point measurements of fish density over any representative range 

introduced interpolation errors (Figure 3.6).  The absolute interpolation error, analogous to the 

standard deviation surrounding the interpolated estimate, is 2.93 dB at the shortest representative 

range, 30.57 m.   Given that decibels is a logarithmic scale, an error of +/- 2.93 dB equates to a 

96% increase or a 49.93% decrease in fish density at the interpolated point.  The next smallest 

representative range, calculated from the power analysis, resulted in an interpolation error of 3.44 

dB (+120% or -54.7%) at a range of 84.45 m.  The interpolation error stabilized and 

asymptotically approached the average standard deviation, 4.32 dB.  Differences in interpolation 

error between the larger two representative ranges, 285.65 m and 403.9 m, were proportionately 

smaller compared to the interpolation error at shorter representative ranges.  At 285.65 m, the 

absolute interpolation error was 4.16 dB (+160.6% or -61.6%), compared to 4.27 dB (+167.3% or 

-62.6%) at 403.9 m. 

 Areal interpolation errors increased following a power function with a fractional exponent 

(Figure 3.7).  The absolute error when estimating the density of fish over an area defined by a 

representative range of 30.57 meters (2.9x10-3 km2) was 2.4 dB (+73.8% to -42.5%), compared to 

an error of 3.69 dB (+133.88% or -57.24%) over an area defined by a range of 88.45 meters.  

The interpolation error increased to 6.37 dB (+333.5% to -76.9%) within the area defined by a 

radius of 285.65 meters and 7.53 dB (+466.2% to -82.3%) at a range of 403.9 m.  
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Figure 3.6. The error introduced by interpolating point measurements to spatially discreet points.  
The four representative ranges of the mean are marked along the curve.  
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Figure 3.7. The error introduced by aerially interpolating point measurements to spatially discreet 
points through space.  The four representative ranges of the mean, corresponding to the area of 
the circle defined by its radius, are marked along the curve.  
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3.3.2. Representative Range of the Variance 

3.3.2.1. Theoretical Spectra 

 The relative variance modeled from the first order autocorrelation of fish densities 

asymptotically approached a maximum value of 4.98 times the white noise variance over infinite 

periods.  The scale at which 95% of the maximum variance, 4.74, was measured is considered 

the representative scale of the variance.  The relative variance exceeded the 95% maximum 

threshold at a period of 1,338 m (Figure 3.8, Table 3.2).  Data analyzed over larger periods than 

1,338 m would see negligible increases in variance. 

3.3.2.2. Equivalent Periods of Spatial and Temporal Variance 

 As expected, both spatial and temporal spectral power increased with period (Figure 3.9).  

The spatial and temporal spectra had a near identical y-intercept (0.34 and 0.33 log10(dB2)), 

strengthening the argument that the spatial and temporal grains were comparable.  Since there is 

no relationship between spatial and temporal units, it is not possible to statistically test differences 

between the two spectra.  Ordinate units were set relative to the 20m and 1.2 second grain of the 

spatial and temporal surveys.  At these resolutions, the spatial spectra (Y = 0.34 + 0.777X) 

increased more rapidly than the temporal spectra (Y = 0.33 + 0.478X).  The modeled maximum 

temporal variance at the Nyquist frequency, equivalent to a period of six-minutes, was 1.51 

log10(dB2).  The corresponding spatial variability was observed at a period of 648.71 meters.  

Anecdotally, an approximately equal amount of variance was seen within the 547 spatial and 360 

temporal spectra, as denoted by the standard deviation envelopes in Figure (3.9).   

3.3.3. Summary of Representative Ranges 
The representative spatial range of static temporal sensors is dependent on the quantity 

measured, the derivation method, and associated assumptions.  Six methods were used to 

quantify the tradeoff between sensor density and statistical precision.  The representative range 

of the mean fish density was 30.57 m, 88.45 m, 285.65 m, or 403.9 m depending on the analytic 

method.  The representative range of the variance was estimated at 648.7 m and 1,388.1 m 

(Table 3.2).  Converting the representative radii of the means to areas and assuming complete 

spatial coverage of a static network translated to 340.61, 40.68, 3.90, or 1.95 sensors per square  
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Figure 3.8. The theoretical power spectra of fish density modeled from the first order auto-
regressive function.  The period at which the expected variance reaches 95% of the maximum 
expected variance is considered the representative range of the variance. 
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Figure 3.9. Corresponding spatial and temporal power, calculated from the global wavelet 
spectrum.  Spatial and temporal units are 20 m and 1.2 sec, respectively.  The spatial period at 
which we expect to observe identical magnitudes of variance as the maximum temporal period is 
the scale to which the variance can be considered representative.  
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Table 3.2. Representative range of a point measurement of fish density in Admiralty Inlet, WA 
calculated from each of the six examined methods. 

Method Representative Range 
(meters) 

Devices per 
km2 Estimated Cost/km2 

Coefficient of 
Determination Model  288.65 3.90 $292,500 

Gray’s Sample Size 
Calculation 403.90 1.95 $146,250 

t-test Sample Size 
Calculation 30.57 340.61 $25.5 million 

Power Analysis 88.45 40.68 $3.0 million 
Theoretical Spectra 1,388.10 0.015 $1,125 
Corresponding Spatial and 
Temporal Scales 648.70 0.75 $56,250 
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kilometer.  Sensor densities measuring the mean were higher than those needed to monitor the 

variance, which required 0.75 and 0.015 sensors per square kilometer, suggesting that networks 

established to measure the mean of a quantity will have adequate spatial coverage to also 

characterize the variance.   

3.4. Discussion 
3.4.1. Biological Monitoring at MHK sites 

Marine hydrokinetic energy is an emerging industry that is striving to become cost 

competitive with traditional electricity production.  Environmental monitoring programs at MHK 

sites represent a large portion of pilot site development budgets (e.g. NYSERDA 2011), and, if 

initial sampling is not reduced, will contribute to both operating and decommissioning costs during 

the life cycle of all projects.  Goals of environmental monitoring at MHK sites are to be both 

efficient and cost effective.  Sensor networks are assumed to be more cost effective for ongoing 

monitoring compared to repeated mobile surveys due to the cost of labor, fuel, and vessel 

operation.  Still, the cost of static monitoring networks may be inflated by the environmental 

precautionary principle (Underwood 1997, Underwood & Chapman 2003), where any error in 

survey design or judgment should be made in favor of environmental protection.  Uncertainty 

surrounding the required density of sensors in a static monitoring network potentially inflates the 

cost of implementation for capital limited, fledgling industries.  Quantifying the representative 

range and the error introduced through spatial interpolation removes uncertainty from the network 

design, which will ultimately save resources.  Depending on the spatial extent of the network and 

the cost of purchasing, deploying, retrieving, and analyzing data from each sensor, the 

representative ranges estimated in this study represent significant cost savings compared to the 

ad hoc network designs of current MHK biological monitoring programs.   

The density of monitoring sensors at MHK sites also has implications for the economic 

feasibility of developing MHK pilot sites.  The estimated cost of purchasing, deploying, and 

retrieving an acoustic sensor is approximately $75,000 (J.K. Horne 2014 personal 

communication, NYSERDA 2011, Verdant Power 2010a).  The proposed Admiralty Inlet tidal 

turbine site covers 0.09 square kilometers, which would require 31 sensor packages using the 
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most conservative paired t-test sample approach, 4 using the power analysis, and 1 using Gray et 

al.’s (1992) calculations and Anttila et al.’s (2008) coefficient of determination models.  This range 

of instrument densities represents a cost difference of over $2.25 million.  To put these numbers 

into perspective, the Roosevelt Island Tidal Energy project in East River New York deployed an 

array of 24 acoustic transducers (NYSERDA 2011) to monitor a 0.086 square kilometer site 

(FERC 2012) as one component of a $2.35 million monitoring plan that also costs $340,000 

annually for maintenance and operation (Verdant Power 2010b).  This instrument density 

converts to a representative range of 33.77 m, consistent with the most conservative 

representative range calculated in this study.  Monitoring program costs among surveys designed 

with different representative ranges will be further exaggerated when pilot programs are scaled to 

larger commercial domains.  Based on calculations from Admiralty Inlet, a monitoring network 

with complete spatial coverage designed to measure mean fish density within a one square 

kilometer commercial installation would cost $2.575 million, $1.7 million, $300,000, or $150,000 

depending on the method chosen to calculate representative range.  Networks measuring the 

variance of fish density at the same site would require one sensor package at a cost of $75,000.  

3.4.2. Comparison of Methods 
The principal objective of most monitoring networks is to detect and quantify change 

through space or time relative to baseline conditions at a location or time prior to any 

perturbation.  The only method included in this study that identifies the statistical power of a 

network to detect change is the repeated measures ANOVA power analysis.  If quantifying 

statistical power is a monitoring program objective, then power analysis is the best method for the 

design of monitoring sensor networks.  In practice, site-specific sampling programs incorporating 

control sites and stratified paired sensors will result in a higher statistical power than the paired t-

test power calculation presented here (Skalski & McKenzie 1982, Underwood 1991, Underwood 

1994).   

The six methods used to calculate representative range varied in their assumptions and 

results.  Four techniques examined the representative range of point measures estimating the 

mean, and the remaining two measured the representative period of the variance (Table 3.1).  
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The final method used spatial autocorrelation to identify the range at which measurements 

became statistically independent, assuming that the range at which spatial autocorrelation 

approaches zero is the range at which measurements become statistically independent.  Spatial 

autocorrelation is dependent on the location, resolution, and spatial extent of the data (Ciach & 

Krajewski 2006, Ciannelli et al. 2008).  In ecosystems where variance increases with spatial 

extent (Wiens 1989), such as those with spatial drift or a gradient, the representative range will 

increase as the survey area is expanded.  The domain of a network must be delineated before 

the representative range can be used for network design. 

The matching of temporal to spatial variance scales assumes that spatial and temporal 

variances are equivalent.  Links between spatial and temporal periods of physical and temporal 

processes have been demonstrated (e.g. NASA 1988, Steele et al. 1994, Wu 1999).  Wiens 

(1989) noted that long-term studies conducted over small spatial scales have low predictive 

power, whereas studies covering large spatial extents over short temporal periods have high 

pseudo-predictability because repeated samples were distributed in close temporal proximity.  

While Wiens (1989) emphasized the importance of analyzing spatiotemporal data at equivalent 

spatial and temporal scales, he lamented that there was no method to define them.  Defining the 

relationship between spatial and temporal variance spectra provides that function.   

The six methods used to estimate representative ranges are not exhaustive, but 

represent techniques available for a priori network design using data from baseline mobile 

surveys.  A posteriori methods to optimize the density of established networks exist (e.g. Sulkava 

et al. 2011), but are limited to network optimization as opposed to initial design.  These a 

posteriori methods are beyond the scope of this study, but should be used after a network is 

operational to test network performance and to optimize the spatial allocation of sampling effort.  

Janis and Robeson (2004) identify instances when a network could not be considered 

representative based on the magnitude of variability operating below the network grain (i.e. 

analogous to the nugget effect).  Sulkava et al. (2011) proposed a framework for the optimization 

of existing static networks using k++ cluster analysis.   
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3.4.3.  Optimizing Network Design for Monitoring Method 
Network design will always include subjective choices including the minimum detectable 

effect, allowed sampling or interpolation error, and acceptable rate of Type I or Type II errors.  

Current sensor networks for MHK monitoring programs are typically designed using resource or 

logistic constraints (e.g. NYSERDA 2011), without attention to the statistical repercussions.  The 

layout and spacing of sensor packages in monitoring networks should not be determined by 

resource budgets, but by the sampling required to meet the network’s design objectives.  The 

purpose of examining representative range methods was not to eliminate decision-making, but to 

modularize network design in a series of decisions based on network objectives.  The first 

decision is to choose a quantity or quantities that can be used to detect change (e.g. fish density; 

Figure 3.10).  Once a quantity of interest is chosen, then a representative metric must be 

identified to index that quantity through time (e.g. mean Sv).  This metric may be the quantity itself 

or a derived metric that a sensor is capable of measuring.  Once the metric is identified, the 

property of the metric (e.g. mean or variance) needs to be chosen.  Historically, declines in the 

mean of quantities, such as density or biodiversity, have been associated with negative biological 

effects, and provide a focus to monitoring plans (Green 1979).  Changes in the variance of 

ecological quantities may affect the health and stability of ecosystems (Underwood 1991, 

Schindler et al. 2010), making the variance of ecological quantities pertinent metrics of change.  

All six methods predicted different representative spatial ranges, so the choice of method 

must match the objective and metric used to identify change in a monitored quantity.  If the 

network objective is to measure spatial variance, then the theoretical spatial spectra should be 

used to place sensors at the spatial interval that will maximize observed variance.  If the network 

objective is to interpolate the temporal variability of a metric over space, then equivalent periods 

of variance should be used.  The major difference between mean and variance methods is that 

the variance methods identify the period at which variance measurements can be considered 

equivalent, neither variance method calculates statistical power.  

If the mean of a quantity is the principle concern, then several methods are available to 

describe changes in the mean through time and space.  These methods include random sampling  
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Figure 3.10. Hierarchal decision tree to simplify static sensor network planning, progressing from 
identification of the focal quantity to identifying the error formula to quantify network uncertainty 
introduced by interpolating between sensors.  
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to identify change, and spatial autocorrelation to describe how the distribution of a quantity varies 

through space.  If the detection of change in a quantity is the objective (i.e. did this quantity 

change after perturbation), then ANOVA sampling size calculations should be considered in the 

network design.  ANOVA-based random sampling approaches quantify the number of sensors 

required to detect a change assuming a repeated-measures sampling design that compares 

differences between pre- and post-perturbation measurements.  The density of monitoring 

instruments is estimated as the quotient of the domain divided by the number of sensors. If the 

goal of a network is to identify a change, the most appropriate of the three random sampling 

methods examined in this study is the power analysis method, which includes decisions about the 

statistical power, resolvable effect size, and prevalence of false positives.  The ANOVA-based 

random sampling methods sample from the entire spatial domain, and thus are testing the 

significance of change across the entire domain.  Given that interpolating point measurements 

across a domain will introduce interpolation error, any statements about the quantity across the 

domain should include estimates of aerial interpolation error to convey uncertainty surrounding 

the monitored quantity.  

If spatial modeling of a quantity at every point through the domain is a design objective 

(e.g. modeling species’ spatial distributions), then the spatial autocorrelation approach should be 

used.  Spatial autocorrelation directly quantifies spacing between sensors, which can then be 

used to calculate the total number of sensors for a specified domain.  Either the lagged 

correlation coefficient or lagged coefficient of determination can be used as a metric of 

representative range, but a threshold of what constitutes “representative” needs to be established 

for either metric.  The coefficient of determination is recommended as a representative metric due 

to its straightforward interpretation as the proportion of explained variance.  Unlike previous 

studies that used a significant deviation from a perfect correlation as a benchmark for 

representative range (Jacobs 1988), this study used the range at which observations became 

statistically independent as the representative range.  Once the representative range is 

quantified, interpolation error at any point can be estimated as a function of range to increase the 

understanding of uncertainty in spatial models.  
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Nekton vertical distributions changed as a function of environmental covariates, and it is 

reasonable to assume that horizontal distributions and representative ranges may also be 

influenced.  Preliminary analysis demonstrated that nekton densities were autocorrelated over 

greater distances during slack tides, increasing the representative range of the echosounder.  

This increase may be due to changes in horizontal distribution of nekton over a tidal cycle.  An 

alternative explanation is that tidal currents add a layer of confounding variability to spatially-

indexed data as a ship samples through space.  A mobile survey makes the assumption that 

measurements are instantaneous, ostensibly assuming that temporal variability does not alter the 

underlying distribution in the time it takes to sample space. Tidal currents potentially add 

variability, as nekton are transported with tidal currents.  This convolving of time and space 

confound mobile observations of spatial variability and autocorrelation at any instance in time.  

Given that nekton flux with tidal currents vary through time, an unknown bias is added to the 

autocorrelation in density measurements through time.  This bias cannot be corrected from 

measurements of tidal velocity from an ADCP, as fish and macrozooplankton are not passive 

particles that drift freely in the tidal currents.  The net result is that tidal currents may influence the 

horizontal distribution of nekton, which alters the representative range of a stationary sensor, and 

spatial autocorrelation measurements may be negatively biased by tidal currents.  There is no 

way to distinguish between the two sources of bias in this survey.  The influence of tidal currents 

on representative range estimates may be an interesting point of future research.    

This study provides an approach to design a monitoring network using a set of objective 

decisions.  The six methods included in the approach were compared using fish density data from 

a MHK pilot site, but this approach can be applied to the design of any bio-physical sensor 

network.  Distributed sensor networks are increasingly used to collect high-scope, spatiotemporal 

data to quantify ecological pattern and to aid in the understanding of processes influencing 

observed patterns across ranges of spatial and temporal scales (Porter et al. 2005).  Optimizing 

these networks to meet their design objectives will manage network expectations, increase 

network performance, increase the cost-effectiveness of distributed networks, and simplify 

network design.  Most importantly, this study provides the tools for ecologists to quantify error 
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introduced by spatially interpolating point measurements, and document the rationale used to 

determine the density of sensors in distributed monitoring networks.   

  



 

 

 

 

 
 
Chapter 4: Summary & 
Conclusions 
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4.1. Summary & Conclusions 
This thesis used data from the proposed Admiralty Inlet tidal MHK site to characterize 

nekton distributions, compare acoustic technologies, and to propose a framework for nekton 

domain monitoring.  Assuming stationary acoustic surveys will be used for long-term monitoring, 

this framework modularized the design of domain monitoring programs into informed decisions 

about objectives, monitoring metrics, instrumentation, and the number of sampling instruments 

needed.  

Nekton density, vertical location, dispersion, and aggregation were chosen as biologically 

pertinent quantities to characterize pelagic nekton density distributions.  Four acoustically derived 

metrics, mean Sv, center of mass, inertia, and aggregation index, were used to measure these 

four quantities through time and space.  Pre-installation measurements of these four metrics 

provide a baseline to compare with post-installation measurements to gauge the effects of a MHK 

device installation and operation.  Effects on the physical environment are easier to predict than 

ecological effects because ecological functions and trophic relationships are more complex than 

physical (Ward 1978), making the monitoring of biological quantities more important to identify 

unexpected biological effects.  Changes in metric values could represent ecological effects on the 

system.  Decreases in the density of nekton potentially reflects a deleterious effect of a turbine on 

local nekton, by repulsion or injury (Osenberg & Schmitt 1996), and changes in the density of 

predators or prey can propagate to other trophic levels (Ward 1978, Frank 2005).  Changes in the 

density, patchiness, or vertical distribution of nekton may alter foraging behavior or efficiency 

(Wellenreuther & Connel 2002), especially in turbulent environments (Pitchford et al. 2003). In 

this context, domain monitoring has the capability to identify ecologically significant changes in 

the distribution of nekton that may not be visible to near-field monitoring, which concentrate on 

identifying direct strikes or impingement (Viehman & Zydlewski 2014).   

Of the available acoustic technologies, the calibrated scientific echosounder was found to 

be robust to tidal currents and more sensitive to identify patterns in nekton distributions.  Although 

ADCP and acoustic cameras may be opportunistically available for pelagic monitoring, neither 

had the sensitivity to resolve temporal patterns observed by the echosounder.  Simultaneous 
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measurements of nekton density and vertical distribution by the echosounder and ADCP or 

acoustic camera were weakly correlated (i.e. R2 ranging from < 0.0001 to 0.029; Table 2.5 & 2.6).  

This result was not completely unexpected as these instruments were deployed approximately 

200 m apart.  Given the autocorrelation decay with distance (c.f. Figure 3.3 bottom), concurrent 

measurements separated by 200 m are expected to demonstrate a correlation (i.e. coefficient of 

determination) of 0.063.  Still, the ADCP and acoustic camera did not have the sensitivity to 

resolve well-established nekton vertical migrations, measured smaller variability magnitudes in 

covariates when compared to the echosounder.  Of the acoustic technologies compared, a 

scientific echosounder is the only instrument suitable for domain monitoring of pelagic nekton.        

The baseline study examining nekton density and vertical distribution was conducted for 

30 days.  In the future, parallel post-installation measurements can be compared to this baseline 

to quantify a turbine’s impact on the local nekton population.  Statistical comparisons of pre- and 

post installation measurements require knowledge of the natural variance of the nekton 

community.  Wavelet analysis and MARSS models quantitatively described periodicities in 

monitoring metrics through time.  Quantifying periodic variance using time series models provided 

understanding of the ecosystem, and an increased ability to detect and potentially predict 

ecological change (Ward 1978).  In this case study, nekton moved lower in the water column and 

became less dispersed in strong tidal currents, increasing the expected mean rate of interactions 

between an organism and a device during periods of peak energy production.  In contrast, the 

variance of nekton density spiked during the neap tide.  Assuming that episodic volatile periods 

have a higher probability of deleterious interactions, the risk of extreme encounters between 

nekton and a device is maximized during neap tides.  Knowledge of nekton variability and 

estimates of risk can be used in the design of a a monitoring plan to increase monitoring effort 

during high-risk periods to increase the statistical power to detect and identify biological effects 

(Lindenmayer & Likens 2009).   

A major challenge in designing environmental monitoring programs is determining the 

appropriate number of sensors needed to monitor a site.  A priori estimates of stationary sensor 

density require knowledge of spatial variability and autocorrelation, which can be acquired from a 
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mobile baseline survey.  Six techniques were compared to calculate the required density of 

stationary instruments depending on the monitored quantity (i.e. changes in the mean or 

variance), and the objective of the monitoring program.  Using this approach, MHK regulators can 

identify the appropriate representative range needed to meet the monitoring objectives and 

determine the density of instruments for a given domain.  Consistent with the precautionary 

principle (Underwood 1997), we found that a pilot turbine site in East River, NY (c.f. NYSERDA 

2011) deployed a sensor density consistent with the most conservative representative range 

calculated using data from the turbine site at Admiralty Inlet, WA (33.78 m at the NY site 

compared to 30.57 m at the WA site).  A representative range of 30.57 m is equivalent to 

deploying 340.61 sensors per square kilometer.  But given the objective of most monitoring 

networks to detect change, this study shows that a sensor density less than 12% of this estimate 

(i.e. 40.68 sensors per kilometer) is predicted to detect a 1 dB change in nekton density with 90% 

power.  Using a baseline mobile survey to quantitatively determine the density of monitoring 

sensors keeps the monitoring network in Goldi-locks zone, balancing statistically rigorous 

monitoring standards in the most cost-effective manner possible.  To ensure an effective and 

efficient monitoring program over the duration of a MHK site lifecycle (approval, installation, 

operation, decommissioning), a mobile baseline study is a critical component that adds statistical 

power and financial value to all mandated monitoring programs. 

Extending this work beyond the design of a monitoring plan, this study establishes an 

analytical framework built around wavelet analysis and MARSS time series models to quantify 

change in populations and to identify high biological risk.  Assuming volatility can be used as a 

metric of risk, scale-averaged wavelet power can be used as a proxy for instantaneous ecological 

risk.  Additional scrutiny or mitigation procedures can be applied in instances of heightened 

ecological risk, increasing the power and responsiveness of a monitoring program to potentially 

catastrophic events.  The global wavelet spectrum can also be used to infer physical processes 

that have a detectable effect on nekton communities, which can then be included in MARSS time-

series models.  MARSS models can be used to concurrently model measurements from each 

stationary instrument package, so all stationary instruments can be included in model 
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parameterization.  Concurrently modeling multiple time series adds more information to model 

parameterization and thus more certainty.  Interpolation errors, calculated using network density 

derived from representative range calculations, can be used as the observation error term in 

MARSS models to quantify sampling uncertainty.  Using MARSS models to model monitoring 

metric values after a device has been installed provides the ability to identify biological effects 

that may not be detected using simple statistical tests.  To illustrate by example, Underwood 

(1991) proposed a series of responses to environmental perturbations, including negative 

discontinuities (i.e. precipitous decline in a quantity over a short period due to a perturbation), 

long-term trends, or fluctuations.  Each of these responses can be included in MARSS models, 

and the significance of each response can be tested using likelihood ratios between models 

incorporating and excluding the hypothesized response. 

The next logical step in developing environmental monitoring for MHK sites is to compare 

the statistical power of the analytic techniques used to detect changes in ecologically pertinent 

quantities or metrics measured by sensor networks to identify the most powerful analytical tool.  

In biological monitoring, detecting and identifying change is the principle objective of sensor 

networks, but the power or sensitivity of a program to detect change is limited by sampling design 

(Underwood 1994, Zhang & Zhang 2012) and the associated analytical tool used to identify it.  

Future research should compare the power of statistical methods to identify change in data 

streams from sensor networks.  Statistical methods that explain or partition variability in a data 

stream increase statistical power in results, such as repeated measure ANOVAs (Stewart-Oaten 

et al. 1986, Underwood 1994, Grüss et al. 2014), autoregressive time series models (e.g. MARSS 

models; Holmes et al. 2012), or change point detection algorithms (Lund et al. 2007, Shao & 

Zhang 2010).  ANOVA models are used to partition variability in a quantity and identify biological 

change using Beyond BACI studies (i.e. Before-After-Control-Impact; Underwood 1991, 

Underwood 1994, Grüss et al. 2014).  Change point detection algorithms, algorithms designed to 

identify the point at which the mean or variance of a series change, identify instances when the 

mean or variance of a time series shifts after accounting for environmental covariates (Shao & 
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Zhange 2010), even in autocorrelated and periodic time series (Lund et al. 2007).  The alignment 

of change points with known anthropogenic disturbances can indicate an ecological effect.   

If using variance measurements as a metric for change, then discontinuities in the 

variance of a series coinciding with the installation or operation of a device can be detected using 

beyond Before-After-Control-Impact designs (Underwood 1991, Underwood 1994, Underwood & 

Chapman 2003), the Downton-Katz test (Downton & Katz 1993), or statistical tests to detect local 

volatility through time (Liu et al. 1999).  Analytical simulations, simulating the sampling and 

analysis of a sampling field with known spatial properties, could be used to test the statistical 

power of each analytic method using Markov chain Monte Carlo (Hastings 1970).  These 

simulated fields can be generated from the measurements of spatial and temporal variability of 

nekton collected in this study. 

Finally, statistically significant deviations in monitored quantities may not equate to 

biologically significant effects.  Small changes in a quantity of a community may be ecologically 

inconsequential or even beneficial to certain community constituents (Inger et al. 2009).  

Ultimately, it is the responsibility of governmental regulators to avoid or mitigate biologically 

significant effects of MHK installation and operation.  Further work is needed to quantify the 

threshold of change that has an effect or impacts the structure or stability of components within or 

entire aquatic ecosystems.  The minimum detectable effect size can then be compared to 

ecologically-derived thresholds of biological impacts to test the efficacy of monitoring thresholds, 

operational modification, and mitigation plans.  Ultimately, the density of sensors and the 

variables that are measured should match the sensitivity of a monitoring network to detect 

ecologically significant change.    
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