

Topics

- Effects of climate change in freshwater on salmon
- Effects of climate change in the ocean on salmon
- Life-cycle modeling (tying it all together)
- Ocean acidification
- Recommendations.....

Key management questions

- Where should we invest in salmon protection across their range?
- Do climate change predictions alter restoration plans?
- What restoration strategies can increase salmon resilience to climate change?

Restore access to diverse habitats

Ocean-type Chinook population

Waples et al. 2008

Stream-type Chinook population

Do climate change predictions alter restoration plans?

What will climate change do here?

How will restoration actions respond to those changes?

Restoration technique	Does technique ameliorate climate change effect?		
	Temperature increase	Low flow decrease	Peak flow increase
Road rehabilitation	N	N	N/Y
Riparian rehabilitation	Y	N/Y	N
Floodplain connectivity	Y	N	Y
Restore in-stream flow	Y	Y	N
In-stream habitat	N	N	N
Nutrient enrichment	N	N	N
Restore incised channel	Y	Y	Y
	Summary table by Jen Greene		

Increase habitat diversity

Restore incised channels A Increased aquifer storage Increased stream flow Increased riparian function

Summary

- Salmon vulnerability to climate change • Most severe in the south, getting better northward
- Does climate change alter restoration plans? Depends on where you areDepends on what you're trying to do
- Restoration strategies to increase resilience
 Increase habitat diversity
 Restore flow regimes

- Trends displayed at multiple scales:
 - Annual
 - Decadal
 - 60-100 years
 - Millennia

- View FW actions in context of marine ecosystem variability & integrate with marine productivity:
 - Adjust flow, hatchery release timing to match marine productivity
 - Scale hatchery production to marine productivity
- Increase salmon population diversity and complexity to buffer effects of climate change (including estuary habitat)

Collaboration topics to consider...

- Designing specific habitat restoration strategies?
- Are there key populations we need to protect?
- Snake River spring/summer Chinook how do we recover stocks in wilderness in the face of climate change?
- Klamath, Rogue, Umpqua do we treat these rivers as refugia for recolonization?
- Can the rate of climate change swamp phenotypic plasticity?