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Abstract: We used a mechanistic movement model within a Bayesian framework to estimate survival, abundance, and rate
of increase for a population of humpback whales (Megaptera novaeangliae) subject to a long-term photographic capture–
recapture effort in southeastern Alaska, USA (SEAK). Multiple competing models were fitted that differed in movement, re-
capture rates, and observation error using deviance information criterion. The median annual survival probability in the se-
lected model was 0.996 (95% central probability interval (CrI): 0.984, 0.999), which is among the highest reported for this
species. Movement among areas was temporally dynamic, although whales exhibited high area fidelity (probability of return-
ing to same area of ≥0.75) throughout the study. Median abundance was 1585 whales in 2008 (95% CrI: 1455, 1644). In-
corporating an abundance estimate of 393 (95% confidence interval: 331, 455) whales from 1986, the median rate of
increase was 5.1% (95% CrI: 4.4%, 5.9%). Although applied here to cetaceans in SEAK, the framework provides a flexible
approach for estimating mortality and movement in populations that move among sampling areas.

Résumé : Nous avons utilisé un modèle de déplacement mécanistique dans un cadre bayésien pour estimer la survie, l’abon-
dance et le taux d’augmentation d’une population de rorquals à bosse (Megaptera novaeangliae) faisant l’objet d’un effort
de capture–recapture photographique à long terme dans le sud-est de l’Alaska, aux États-Unis (SEAK). Plusieurs modèles
concurrents ont été ajustés qui étaient caractérisés par des déplacements, taux de recapture et erreurs d’observation différents
selon le critère d’information sur la somme des carrés des écarts. La probabilité de survie annuelle médiane dans le modèle
retenu était de 0,996 (intervalle de probabilité centré (CrI) 95 %: 0,984, 0,999), soit une des valeurs signalées les plus éle-
vées pour cette espèce. Les déplacements entre régions étaient dynamiques dans le temps, bien que les rorquals aient dé-
montré une grande fidélité à la région (probabilité de retourner dans la même région ≥ 0,75) tout au long de l’étude.
L’abondance médiane était de 1585 rorquals en 2008 (CrI 95 %: 1455, 1644). En incorporant une abondance estimée à 393
(intervalle de confiance à 95 %: 331, 455) rorquals en 1986, le taux d’augmentation médian était de 5,1 % (CrI 95 %:
4,4 %, 5,9 %). Le cadre, appliqué dans la présente étude à des cétacés du SEAK, constitue une approche souple pour l’esti-
mation de la mortalité et des déplacements dans des populations qui se déplacent d’une région d’échantillonnage à l’autre.

[Traduit par la Rédaction]

Introduction

Movement of animals among different areas creates diffi-
culties for management. Management reference points, such
as population abundance and population trend, are con-
founded with movement, and failure to account for movement
can produce biased population estimates (Hammond 1986).
For these reasons, models of population abundance and
movement are used in populations where movement among
areas is common (e.g., Mangel 2008; Maunder et al. 2000).
Furthermore, estimates of movement rates are derived from
statistical fitting of model predictions to observed data; there-

fore, estimates of movement rates are a function of the mech-
anistic model, the statistical fitting procedure, and the data.
Data are typically from tag and recapture studies where ani-
mals are either tagged in batches (e.g., coded wire tags, disc
tags, etc.) or individually (e.g., passive integrated transponder
tags, acoustic tags, radio tags, natural markings, or genetic
tags). While both maximum likelihood (e.g., Brownie et al.
1993; Schwarz et al. 1993; Hilborn 1990) and Bayesian ap-
proaches (King et al. 2009; Dupuis and Schwarz 2007) have
been used to estimate movement rates among areas from the
recaptures of tagged individuals, the Bayesian approach ex-
plicitly incorporates parameter uncertainty in the movement
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rate estimates through posterior probability distributions
(Gelman et al. 2004). Furthermore, uncertainty in important
management reference points, such as population abundance
and population trend, can also be calculated as probability
distributions from model parameters (Meyer and Millar
1999; Punt and Hilborn 1997).
The Hilborn (1990) model was developed to provide a bio-

logically based modeling framework from which survival and
movement parameters could be estimated in a maximum like-
lihood framework. In contrast with more statistical ap-
proaches of tag recaptures in multiple states (e.g., Brownie
et al. 1993), the Hilborn (1990) approach uses relatively sim-
ple biological models of the movement and mortality proc-
esses to predict the counts of tagged individuals. Estimates
of the model parameters are obtained by fitting the predicted
counts to observed counts via a Poisson likelihood. The Hil-
born (1990) model was initially applied to tagged fishes (An-
ganuzzi et al. 1994; Arrizabalaga et al. 2004) and
elasmobranchs (Xiao 1996); however, applications more re-
cently have been to humpback whales (Megaptera novaean-
gliae) in the North Atlantic (Stevick et al. 2006), sperm
whales (Physeter macrocephalus) (Whitehead 2001), killer
whales (Orcinus orca) (Foote et al. 2010), and tundra swans
(Cygnus columbianus) (Wilkins et al. 2010). The advantage
of the Hilborn (1990) approach is the flexibility with which
the movement and mortality processes can be modeled for
the tagged population, and consequently a number of exten-
sions have been developed, including a framework for evalu-
ating the precision and accuracy of movement estimators
(Xiao 1996), the number of identifications as an estimate of
effort (Whitehead 2001), and using the recapture rates to ex-
pand new captures to provide a population abundance esti-
mate (Straley et al. 2009). Yet, nowhere has the statistical
estimation of this framework been expanded to include un-
certainty in the distributional assumptions of observations or
in uncertainty in the estimation of movement and mortality
rates.
The population of endangered North Pacific humpback

whales spend the summer in discrete, high-latitude feeding
aggregations and migrate to winter areas near Hawaii or
Mexico (Straley et al. 2009). Photographic mark–recapture
methods used on their summer feeding grounds are labor in-
tensive, and thus only a few areas can be regularly moni-
tored. Whales can move among areas or move to areas that
are not monitored. Furthermore, detection probability may
vary among dates within a sampling area owing to differen-
ces in effort, variation in factors that affect detection such as
sea surface conditions, and individual diving behavior (Ste-
vick et al. 2004; Nielson and Gabrielle 2008).
Glacier Bay National Park and adjacent waters represent a

“hotspot” for humpback whales in Alaska (Nielson and
Gabrielle 2008) owing to its high productivity and abundant
forage fish (Robards et al. 2003). Understanding trend, abun-
dance, and rates of mortality is important for park manage-
ment because Glacier Bay is a summer destination for large
cruise ships, with more than 220 ship entries into the park
over the past several years (Gende et al. 2011). Ship routes
overlap high-density areas used by whales resulting in fre-
quent ship–whale encounters (Harris et al. 2012). Glacier
Bay is the location of one of the world’s longest and consis-
tently monitored capture–recapture efforts for humpback

whales and is complemented by regular, but less frequent,
monitoring of three other areas in southeastern Alaska
(SEAK), including Frederick Sound, Lynn Canal, and Sitka
Sound. Although basic mark–recapture models have been
successfully used to derive abundance estimates from these
data (Baker et al. 1992; Straley 1994), none have done so
that explicitly accounts for uncertainty in model parameters.
Based on the Hilborn (1990) movement model, we devel-

oped a Bayesian estimation framework to generate biologi-
cally meaningful estimates of population abundance,
survival, and movement rates for the population of humpback
whales in SEAK. We considered alternative models to reflect
different hypotheses regarding the temporal changes in move-
ment rates, the mechanisms affecting recapture rates, and the
error distribution in counts of recaptured whales. The
Bayesian implementation of the movement model is not lim-
ited to whales, however, and provides a framework that can
be applied to any study that marks and repeatedly recaptures
marked individuals.

Materials and methods

Humpback whale data

Study areas
Our study site (SEAK) includes several areas that consis-

tently support large aggregations of humpback whales and
have been targeted for photographic capture–recapture efforts
between June and September from 1994 to 2008. These feed-
ing areas, which include Glacier Bay and Icy Straight (GBIS),
Sitka Sound (SS), and Frederick Sound and Lynn
Canal (FSLC) (Fig. 1), differ in the levels of sampling effort
(number of days expended to identify whales) and spatial ex-
tent. Study areas were based on humpback feeding and move-
ment patterns within SEAK (Straley et al. 2009).

Photo-identification
Humpback whales were individually identified by the

black and white pattern on the ventral surface of the flukes.
Photographs of the ventral flukes were taken with 35 mm
film and digital cameras and compared with photographic
catalogs (Straley and Gabriele 2000) to identify and establish
a sighting history matrix for each individual. Photographic
quality was graded as good, fair, or poor using standardized
criteria. To eliminate or reduce bias, poor quality images
were excluded from analysis. Furthermore, calves were ex-
cluded from analysis because the pattern on the flukes is sub-
ject to change during the first year, and calves are
inconsistent in their ability to show their flukes upon diving.
New whales were added to the monitored population (cap-
tured) each year when they could not be matched to existing
photographs; such whales were assigned to a tag group g
based on the year of capture. A whale is “recaptured” when
resighted with photographic documentation. These terms are
consistent with capture–recapture terminology; however, no
whales were physically captured in this study.

Modeling framework

The movement model
The model predicts how many tagged individuals would be

alive in tag group g coming from area i to area j in year t,
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where t is after the year of capture. The model for the popu-
lation dynamics of the tagged population is

ð1Þ bNg;i;j;tþ1 ¼ bNg;i;tð1� ftÞji;j;t

where bNg;i;j;t is the expected number of tagged animals in tag
group g (g = 1, …, G) from area i (i = 1, …, n) in area j
(j = 1, …, n) in year t (t = 1, …, T); ft is the mortality rate
in year t, which we assume here is constant across years
(ft = f); ji,j,t is the probability of migrating from area i to
area j during period t. The capture event for tag group g and
area j is Tg,j,t. We set the initial number of whales for tag
group g as being bNg;i;0 ¼ Tg;j;t, where i = j is the first area
the animals were captured. Thus, all values of i refer to the
area where the animal was last recaptured. After year t, the
(unobserved) number of tagged whales are summed over

their locations to create a vector of tagged abundancesbNg;i;tþ1 ¼
P3

j¼1
bNg;i;j.

To model the observation process of tagged animals, a de-
tection probability is applied to the predicted number of
tagged animals

ð2Þ bRg;i;j;t ¼ bNg;i;j;t � pj;t

where bRg;i;j;t are the expected number of recaptures, and pj,t are
the recapture rates in area j at time t. Movement probabilities
to the three areas (SS, GBIS, FSIS) were confined to sum to 1
(e.g.,

P3
i¼1 ji;j ¼ 1). The original Hilborn (1990) application

did not employ this constraint, which allowed the model to
estimate the confounded parameter of mortality and move-
ment to unsampled areas.
The model predicts bRg;i;j;t to be the number of recaptures

Fig. 1. Southeastern Alaska study area including Glacier Bay and Icy Strait (GBIS), Sitka Sound (SS), and Frederick Sound and Lynn Ca-
nal (FSLC).
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for each tag group that came from area i to area j in each
year t; therefore, the Poisson likelihood requires counts of in-
dividuals by group, previous area i, current area j, and year t.
Individual capture histories were used to compute the cell
values in the four-dimensional recapture array. The tag
group g was defined as the year of initial capture. The initial
area (i.e., the first “from” area) was the area of capture. We
considered two alternatives for defining subsequent “from”
areas i. The first option was to define i as the area of capture.
This was the approach used in Hilborn (1990) and Straley et
al. (2009). For short recapture histories or removals, this ap-
proach works well, but it will not be sensitive to dynamic
patterns in movement (i.e., animals establishing patterns of
returning to specific areas different from their capture area).
Instead, we used a Markovian process where the “from” loca-
tion i was updated based on the previous area of recapture.
The area of current recapture was area j in year t. Note that
there is the potential to introduce bias in estimates of move-
ment probabilities if the probability of recapture and move-
ment patterns are correlated (i.e., an individual habitually
moves to a poorly sampled area where it is undetected and
then moves to a well sampled area and recaptured). As an ex-
ample of converting an individual recapture history, an indi-
vidual captured in 2000 had the following capture–recapture
history: 101103011, where 0 = not recaptured, 1 = GBIS,
2 = SS, and 3 = FSLC. The whale was initially captured in
GBIS in 2000 and subsequently recaptured in GBIS in 2002
and 2003; therefore, all movements over this period were re-
corded as moving from GBIS to GBIS. In 2005 the whale
was recaptured in FSLC and was recorded as having moved
from GBIS in 2004 to FSLC in 2005. The whale was recap-
tured in GBIS in 2007 and subsequently recorded as having
moved from FSLC in 2006 to GBIS in 2007 with a final re-
capture in GBIS in 2008. The data from this whale was com-
bined with other whales captured in 2000 to produce a data
array of 8 years by three “from” areas by three “to” areas.
To deal with identifying the same whale in multiple areas

in a single year, a hierarchy of whale areas was established
based on previous analyses of migration patterns of SEAK
whales. Whales in SEAK typically stage in FSLC prior to
moving either to SS or GBIS, and there has been little ex-
change observed between SS and GBIS in previous surveys
(Straley et al. 2009). The hierarchy was GBIS > SS > FSLC
as described in Straley et al. (2009). For example, a whale
observed in SS in June 1999 and subsequently observed in
GBIS in August 1999 would be recorded as “from” GBIS
for that year.

Model structural uncertainty
To address alternative hypotheses about the movement and

recapture rates, we composed several model structural forms
with different rates of movement and several alternatives with
variation in effort, areas, and time on recapture rates.

Movement rates
The movement among areas in year t was composed of a

3 × 3 matrix J with each element of the matrix ji,j repre-
senting the rate at which whales moved from area i to area j
between year t and year t + 1. Two alternatives were mod-
eled for the movement rate matrix. The first approach as-
sumed that movements remained constant over the period of

data analysis. The second approach assumed that movements
shifted at 3-year intervals; thus, there were five movement
matrices: J1:5. The five movement rate matrices were esti-
mated with the first one spanning the years 1994–1996 and
the other four sequentially spaced in 3-year intervals among
the 12 remaining years. The choice of 3-year intervals was
somewhat arbitrary, but they provided a means of examining
whether movement patterns changed over the course of the
period of data analysis.

Recapture rates
The recapture rate was modeled using four forms of func-

tions of effort (days). In the first two of these forms, the
probability of sighting was modeled as a linear function of
effort E in area j and year t.

ð3Þ logitðpj;tÞ ¼ aj þ bjðEj;t � EÞ
The logit() function was used to ensure that the probability

of recapture would remain in the interval [0,1], and the effort
covariate was standardized by its mean (E). The probability
of capture was modeled both as a single equation among all
areas (i.e., aj = a, bj = b) and as area-specific equations. In
the last two, the probability of sighting was modeled as an
asymptotic function of effort in area j and year t.

ð4Þ pj;t ¼ g j 1� exp �Ej;t

dj

� �� �

where gj was defined on the interval [0,1] and dj > 0. This
functional form has an asymptotic recapture rate g, which is
approached quickly (low values of d) or slowly (high values
of d). As in the linear case, the coefficients in the nonlinear
form were modeled with area-specific coefficients or as a sin-
gle equation among all areas.

Bayesian estimation
In Bayesian estimation, the posterior probability distribu-

tion is proportional to the prior times the likelihood (Gelman
et al. 2004). Two likelihood functions were employed in the
analyses: the Poisson and extra-Poisson. In the Poisson case,
the observed tag recaptures for each group g from area i re-
captured in area j in year t were modeled as

ð5Þ Rg;i;j;tjq � Poisonðlg;i;j;tÞ
where lg,i,j,t is the expected number of recaptures, and q is
the vector of model coefficients (e.g., q = (a, b, f, J1:5) for
a model with the recapture rate (pi,j) as a linear function of
effort across all sites and five movement matrices. From the
equations in the Movement model section, the number of
predicted recaptures for each group g from area i found in
area j in year t can be calculated as the expected number of
recaptures, thus lg;i;j;t ¼ bRg;i;j;t. The probability mass function
for a recapture from an individual group g from area i found
in area j in year t under the Poisson likelihood is

ð6Þ pðRg;i;j;tjbRg;i;j;tÞ ¼
bRRg;i;j;t

g;i;j;t

Rg;i;j;t!
expð�bRg;i;j;tÞ

The extra-Poisson was also used because capture–recapture
data may have additional variability beyond the Poisson dis-
tribution (i.e., both mean and variance = l). Several items
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may cause the variance in the observed recaptures to be
greater than the mean: (i) recapture probabilities of individual
whales may differ depending upon how the individual dis-
plays its fluke when making a dive (Straley et al. 2009);
(ii) whales may emigrate from the study areas and thus not
be available for capture in all years (Straley et al. 2009);
(iii) movement among areas may be influenced by other
members of the population; for example, movement to feed-
ing areas may be maternally influenced (Baker et al. 1986);
and (iv) heterogeneity in movement behavior. To incorporate
such additional variability in the relationship between pre-
dicted and observed recapture data, the following relationship
was constructed:

ð7Þ Rg;i;j;t � Poisonðlg;i;j;tÞ
lg;i;j;tjq � logNðmg;i;j;t; tÞ

The probability density function of the lognormal distribu-
tion is

ð8Þ pðlg;i;j;tjmg;i;j;t; tÞ

¼
ffiffiffiffiffiffi
t

2p

r
1

lg;i;j;t
exp �t

2
½logðlg;i;j;tÞ � mg;i;j;t�2

n o
where the mean of the lognormal for group g, recovered in
area j, coming from area i in year t is the predicted number
of returns, mg;i;j;t ¼ bRg;i;j;t, and the precision t is equal to the
inverse of the variance (1/s2). The probability density func-
tion of the extra-Poisson distribution for an individual group g
from area i found in area j in year t is

ð9Þ pðRg;i;j;tjmg;i;j;t; tÞ
¼

Z 1

0

PoisonðRg;i;j;tjlg;i;j;tÞpðlg;i;j;tjmg;i;j;t; tÞ dl

The likelihood was calculated for each observed recap-
ture by multiplying across the individual probabilities of
observing the recaptures Rg,i,j,t given the parameter vector
q (i.e., f(R|q) = ∏g∏t∏i∏j f(Rg,t,i,j|q)).

Priors
All model parameters were given vague prior distributions

(Gelman et al. 2004; Box and Tiao 1973) to reflect a lack of
knowledge prior to analyzing the SEAK capture–recapture
data. Priors on the mortality rate were given uniform priors
(f ∼ U(0,1)). Priors for the coefficients of the linear model
relating effort to recapture rate were given normal distribu-
tions defined in terms of precision: aj ∼ N(0,0.001) and
bj ∼ N(0,0.001). Priors for the coefficients of the asymp-
totic model relating effort to recapture rate were given beta
priors for the asymptotic capture rate (i.e., at high levels of
effort) and noninformative uniform priors for the increase in
capture rate as a function of effort (e.g., gj ∼ Be(1,1), dj ∼
U(0,1000)).
The joint posterior distribution of model parameters given

the observed recaptures p(q|R) can be specified for each of
the 16 models described above; for example, the joint poste-
rior for the model in which the probability of capture was an
area-specific, nonlinear function of effort and the measure-
ment error was described by a extra-Poisson distribution.

ð10Þ pðqjRÞ / Gðtj0:001; 0:001ÞBeðfj1; 1Þ

�
Y3
j¼1

Beðg jj1; 1ÞUðdjj0; 1000Þ

�
Y5
k¼1

Y3
i¼1

Y3
j¼2

Beðjk;i;jj1; 1Þ

�
YG
g¼1

Yn
i¼1

Yn
j¼1

YT
t¼tg

pðRg;i;j;tjmg;i;j;t; tÞ

� pðmg;i;j;tjf; g j; dj;ji;j;tÞ
We constructed a directed acyclic graph of the model de-
scribed in eq. 10 to provide a graphical depiction of the
structure (Fig. 2).

Implementation of Bayesian estimation
The posterior distributions of the model parameters q were

estimated by drawing samples from the full conditional distri-
butions of each parameter given values of all other parame-
ters. This was implemented by using a Metropolis within
Gibbs Markov chain Monte Carlo (MCMC) approach (Gel-
man et al. 2004; Gilks and Spiegelhalter 1996). Several pa-
rameters did not have standard distributions, namely the
mortality rate f and the effort coefficient dj; thus, the poste-
rior distributions for these parameters could not be updated
using the Gibbs sampler (Roberts and Polson 1994) and
were instead updated by using distribution-free adaptive
rejection Metropolis steps (Gilks and Spiegelhalter 1996;
Spiegelhalter et al. 2003). The Bayesian estimation was
implemented in WinBUGS (Spiegelhalter et al. 2003), and
WinBUGS code for the model described in eq. 10 is
available as a supplement to this article (Supplemental
Appendix S11).
To evaluate if the posterior draws were arising from a sta-

tionary target distribution, multiple chains were run from dis-
persed initial values for each model, and the scale reduction
factor (SRF; Gelman et al. 2004) was computed for all moni-
tored quantities (model coefficients and tagged abundance es-
timates). The diagnostics were implemented using the
R2WinBUGS package (Sturtz et al. 2005) in R (R Develop-
ment Core Team 2009). Monitored parameters in all models
had SRF values that indicated samples were being drawn
from the target distribution (i.e., SRF ≈ 1) by 50 000 sam-
ples. The initial 30% of the samples were used to reach the
stationary target distribution and were discarded with the
subsequent samples thinned to produce approximately 1000
draws from the stationary target distributions. The 1000
draws were used to compute the posterior mean and symmet-
ric 95% probability intervals or credible intervals (95% CrI).
We used deviance information criterion (DIC) to evaluate

model predictive ability with a penalty for model complexity
(Spiegelhalter et al. 2002). The DIC is a function of the devi-
ance D(R|q) and the effective number of parameters pD. In a
hierarchical model, the effective number of parameters is typ-
ically less than the total number of estimated parameters,
because information is being shared among random effects
(e.g., the variability in the extra Poisson models being
derived from a distribution with common precision t). Model

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/f2012-098.
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selection using DIC assumes that the posterior mean of the
model parameters, which is used to calculate pD, is a good
point estimate for the posterior distribution (Spiegelhalter et
al. 2002). In addition, recent work suggests that DIC may be
biased toward selecting more complex models in some cir-
cumstances (Ward 2008). Each model was fitted several
times to quantify the within-model simulation variability, and
the average values were presented. The within-model simula-
tion variability was on the order of three to four units of
DIC; thus, differences among models of this magnitude were
attributed to variability within the MCMC simulations.

Derived quantities: abundance and trend estimates
The population abundance estimate in area j and year t

(Wj,t) was calculated as the sum of the estimated number of
live tagged whales bNj;t and untagged whales Uj,t (Seber
1982):

ð11Þ Wj;t ¼ bNj;t þ Uj;t

Wj;t ¼
XG
g¼1

bNg;j;t þ Tg;j;t � 1

pj;t

Abundance estimates were calculated for each area j and
year t with uncertainty by using samples from the posterior
distribution of pj,t (e.g., plj;t for sample l, l = 1,…, L). Abun-
dance estimates for the entire SEAK area were calculated
with uncertainty by summing across the samples of Wl

j;t (e.g.,
Wl

t ¼
Pn

j¼1 W
l
j;t).

To evaluate the trend, a log-linear approach was used to es-
timate the average growth rate between 1995 and 2008 (e.g.,
log(Wt) = log(W1995) + log(s) × t, where s is the growth
rate (Quinn and Deriso 1999). The linear regression equa-
tion can be solved by using matrix algebra for each itera-
tion l of the MCMC chain, thus producing posterior
distributions for log(s) with the same convergence properties
of the MCMC chain. We use the well-known equation (e.g.,
McCullagh and Nelder 1983) for linear regression coeffi-
cients in matrix form b = (XTX)–1 XTY, where b is the vec-
tor of linear regression coefficients (b = [log(W1995), log
(s)], X is the vector of years, and Y is the vector of log
abundance estimates, log(Wt). In addition, the population
growth rate using an estimated abundance in 1986 of 393
(95% confidence interval (CI): 331, 455) (Straley 1994)
was also computed by assuming log-linear growth between
1986 and 2008 (e.g., log(Wt) = log(W1986) + log(s) × t).
The vector of whale abundances in 1986 was generated by
sampling randomly from a normal distribution with mean of
393 and standard deviation of 31 (1.5 × the standard devia-
tion calculated from the Straley (1994) estimate).

Results

Model selection
Models were named according to how many movement

matrices were used (P for a single matrix or P5 for multiple
matrices), the recapture rate model employed (E for linear
effort and NLE for nonlinear effort), whether the forms

Fig. 2. Directed acyclic graph of the model including a nonlinear effect of effort on the probability of recapture, time-varying movement
matrices, and overdispersion in the Poisson counts of whale recaptures. Nodes (circles) are connected by dashed lines for logical (determinis-
tic) relationships and solid lines for stochastic relationships; boxes indicate constants (data supplied to model and assumed known without
error). See text for description of symbols.
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were area-specific (3), and whether they incorporated extra-
Poisson (XP) variability in the whale count data (Tables 1
and 2). Overall, models that specified measurement error
with a Poisson distribution had higher DIC values than
models with extra-Poisson measurement error (Tables 1 and
2), owing to the lower deviance (on the order of 1000
units) relative to the number of additional effective parame-
ters pD (on the order of 200–300 units). The role of the ex-
tra-Poisson variability was to increase the dispersion in
counts of recaptured whales relative to their expected value
and suggested that some of the biological processes (e.g.,
variability in dive characteristics among individuals, emigra-
tion from the study area, and maternally influenced move-
ment) were prevalent in the data.
For all models with the extra-Poisson variability, the model

with the lowest DIC value was P5NLE3XP, whereas the next
closest model was P5NLEXP, which had values of DIC that
were within five to six units (Table 2). Models P5NLE3XP
and P5NLEXP both had probabilities of recapture as a non-
linear function of effort, but they differed in the number of
parameters used to define the effort-to-recapture relationship.
Model P5NLE3XP developed site-specific relationships,
whereas P5NLEXP used a single relationship among sites.
The reduction in DIC due to the additional recapture parame-
ters was justified after taking the within-DIC variability into
account. To facilitate discussion of the modeling results, sub-
sequent reference to model P5NLE3XP will be the “SEAK
model”.
Model predictions of recaptures and dynamics of whale

movement among areas from the SEAK model matched the
observed recaptures well. Using the 1994 tag group, which
was the tag group with the longest time series of recaptures,
median predicted annual recaptures had similar annual pat-

terns as the observed recaptures (Fig. 3). In addition, the
95% credible intervals encompassed all observed recaptures,
with the exception of a single observed recapture event in
2000 for whales heading from SS to FSLC.

Movement rates
In general, whales tended to return to areas in which they

had previously been recaptured. In the 1994 tag group, recap-
tured GBIS whales returned to GBIS with little movement to
either SS or FSLC (Fig. 3), and this pattern was consistent
among other tag groups (i.e., those whales captured in 1995,
1996, etc.). In contrast, there appeared to be some movement
by whales from SS to FSLC over the study period (Fig. 3).
In particular, in 2004 approximately 20 whales moved from
SS to FSLC and then continued to return to FSLC from
2005 to 2008. Note that the observed number of whales re-
captured in FSLC in 1999 were low because of limited study
effort in that year (1 day).
To evaluate the major pathways of movement by whales

among areas, movement rates were used to identify connec-
tivity among areas (Fig. 4). Area fidelity was high among all
areas, as whales were more likely to be recaptured (i.e., me-
dian probability of movement) in the area of previous recap-
ture than any other area (Fig. 4). Although GBIS and SS had
higher median area fidelity rates than FSLC over the entire
study period, whales shifted among feeding areas toward
FSLC in the later years. From 1994 to 2002, the movement
patterns were characterized by high area fidelity on the order
of 0.80 (Fig. 4). Notable movements among areas were ex-
changes of whales between FSLC and SS and between
GBIS and FSLC, whereas there was little connectivity be-
tween GBIS and SS (Fig. 4). From 2003 to 2005, the SS to
FSLC median movement rate was 0.232 (95% CrI: 0.163,

Table 1. Deviance information criterion (DIC) for models assuming Poisson measurement error.

Movement
matrices Recapture rates Deviance pD DIC Abbreviation
Single Linear effort 3525.6 8.8 3544.4 PE

Nonlinear effort 3474.2 8.3 3482.5 PNLE
Area-specific linear effort 3498.9 12.8 3511.7 PE3
Area-specific nonlinear effort 3416.8 10.6 3427.5 PNL3

Multiple Linear effort 3398.6 30.4 3429.0 P5E
Nonlinear effort 3351.3 30.4 3381.7 P5NLE
Area-specific linear effort 3369.8 33.5 3403.3 P5E3
Area-specific nonlinear effort 3294.5 32.4 3326.9 P5NLE3

Note: DIC is a sum of the deviance; pD is the effective number of parameters in the model.

Table 2. Deviance information criterion (DIC) for models assuming extra-Poisson measurement error.

Movement
matrices Recapture rates Deviance pD DIC Abbreviation
Single Linear effort 2591.6 309.3 2900.8 PEXP

Nonlinear effort 2571.1 298.5 2869.6 PNLEXP
Area-specific linear effort 2578.8 306.1 2884.8 PE3XP
Area-specific nonlinear effort 2561.4 293.3 2854.7 PNL3XP

Multiple Linear effort 2557.0 308.3 2865.3 P5EXP
Nonlinear effort 2538.9 297.7 2836.6 P5NLEXP
Area-specific linear effort 2557.7 304.1 2861.8 P5E3XP
Area-specific nonlinear effort 2538.3 293.1 2831.4 P5NLE3XP

Note: DIC is a sum of the deviance; pD is the effective number of parameters in the model.
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0.310); the SS to SS median movement rate was 0.681
(95% CrI: 0.597, 0.763), with little return of whales from
FSLC to SS during this period (0.109; 95% CrI: 0.071,
0.166). In addition, during 2003–2005 the FSLC to GBIS
movement rate was 0.205 (95% CrI: 0.141, 0.278), whereas
movement between these two areas was approximately 0.15
or less during other periods.

Recapture rate and tagged abundance
The recapture rates were modeled as a nonlinear function

of effort for each of the three areas. FSLC had the greatest
range in the level of effort (1–54 days), which was similar to
SS (7–52 days), whereas the range of effort in GBIS was
higher and more consistent (52–87 days). The asymptotic
levels of recapture rate were highest in GBIS with a median

Fig. 3. Median predicted counts of whales (solid line), 95% credible intervals (dashed lines), and observed counts (points) for the group of
humpback whales tagged in 1994. Predictions are from the lowest valued DIC model for GBIS to GBIS (a), GBIS to SS (b),
GBIS to FSLC (c), SS to GBIS (d), SS to SS (e), SS to FSLC (f), FSLC to GBIS (g), FSLC to SS (h), and FSLC to FSLC (i). Note that the
y axes differ in scale among the source locations.
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asymptotic rate 0.770 (95% CrI: 0.345, 0.991), whereas the
median asymptotic rate was 0.718 (95% CrI: 0.305, 0.983)
in SS and 0.268 (95% CrI: 0.210, 0.355) in FSLC. An
asymptotic relationship between recapture rate and effort was
only apparent in FSLC, whereas in the other two areas recap-
ture rates were more linearly related to effort (Fig. 5).
Few tagged whales died during the study period, and the

estimated median mortality rate was 0.00425 (95% CrI: 8.3 ×
10–3, 0.0164). Few tagged whales were lost, but new whales
were added each year; therefore, the abundance of tagged
whales increased over the study period (Fig. 6). The distribu-
tion of tagged whales remained relatively uniform across the
study areas until 2003, when the number of tagged whales
started to increase in FSLC and GBIS. Some of the increase
in FSLC was due to capturing 75 whales there in 2004. In ad-
dition, the movement patterns described above from 2003 to
2005 (SS movement to FSLC) increased tagged abundance in
FSLC (Fig. 6). Movement from FSLC to GBIS during 2003–
2005 and captures in GBIS also increased the tagged abun-
dance in GBIS. The uncertainty in the tagged abundance esti-

mates increased over the study period, which was due largely
to the increased observation error associated with larger mean
levels of tagged whales. In other words, as the number of
whales increased in the study areas, the estimates became less
precise. Such increases in variance at higher mean levels were
a function of using the extra-Poisson error model.

Population abundance estimates and trends
Although the annual population abundance estimates (Wt)

were somewhat variable, the SEAK stock abundance in-
creased over the study period; the lowest median estimate of
696 (95% CrI: 672, 722) whales was found in 1997, whereas
a median estimate of 1586 (95% CrI: 1455, 1644) occurred
in 2008 (Fig. 7). The abundance estimates were relatively sta-

Fig. 4. Schematic indicating movement patterns among feeding
areas in southeastern Alaska. Line width is proportional to median
estimates of movement among areas.

Fig. 5. Modeled probability of recapture as a function of effort. So-
lid lines are median values, whereas dashed lines indicate 95% cred-
ible intervals. Grey boxes indicate the range of effort (days) in the
study areas of Glacier Bay and Icy Straight (a), Sitka Sound (b), and
Frederick Sound and Lynn Canal (c).
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ble from 1995 to 2003 and from 2005 to 2008; however,
abundance estimates increased sharply between 2003 and
2004. This jump in abundance was attributable, in part, to
128 newly tagged whales in 2004, which was markedly
higher than in other years where the median rate was 54
newly tagged whales per year (not including 2004). Wt was
sensitive to both the captures in year t (Tg,j,t) and the recap-
ture rate pj,t (Seber 1982) (eq. 11). Recapture rates for all
areas were typically less than 0.4, which increased the popu-
lation abundance estimate by approximately 450 whales be-
tween 2003 and 2004. Median population abundance
estimates corrected downward after 2004 because of fewer
captures in those years. Uncertainty in the SEAK abundance
estimates were a function of the uncertainty in tagged abun-
dance (Fig. 7) and uncertainty in pj,t. As a result, the uncer-
tainty in Wt followed the general patterns in uncertainty from
the tagged abundance estimates (i.e., greater uncertainty at
higher abundances).
Quantification of the trends in abundance provided two es-

timates of the population growth rate for SEAK humpback
whales. The median population growth rate over the study
period was 5.84% (95% CrI: 4.98%, 6.52%), and the median
growth rate by incorporating population abundance in 1986
(Straley 1994) was slightly lower at 5.13% (95% CrI: 4.43%,
5.86%). Because the growth rates were affected by the num-
ber and variability in annual abundance estimates, we utilized
the growth rate obtained from the longest time series (5.13%;

95% CrI: 4.43%, 5.86%) to provide an estimate of population
growth rate for SEAK humpback whales.

Effect of priors
Previous authors have found that the specification of the

prior on the error variance term can have important implica-
tions for coefficient estimates (Su et al. 2004); however, we
found that altering the prior distribution of the variance term
did not appreciably affect the coefficient estimates of the
SEAK model (Fig. 8). Alternative specifications of priors in-
cluded using a Gamma G(0.01, 0.01) rather than a Uniform
U(0,30) on the inverse of the variance (or precision equal to
1/s2) of the lognormal distribution incorporated into the extra-
Poisson error. The relative mean differences (difference in
mean coefficient estimate divided by mean coefficient esti-
mate under U(0,30)) of several parameter estimates changed
by approximately 3.5%: both the coefficients defining the
recapture rate in GBIS, a movement parameter from GBIS
to SS in the last period, and the mortality rate. Thus, relative
to the uncertainty in the model coefficients, the specification
of prior had minimal impact on the coefficient estimates of
the models and their 95% credible intervals (Fig. 8).

Discussion

Multiple structural models and a long-term photographic
capture–recapture data set from three separate areas provided

Fig. 6. Abundance estimates of tagged whales in each of the three study areas (Glacier Bay and Icy Straight, circles; Sitka Sound, squares;
Frederick Sound and Lynn Canal, triangles) from 1995 to 2008. Median abundance estimate (points) and 95% credible intervals (lines) are
plotted for each area.
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the opportunity to evaluate competing hypotheses regarding
the movements, changes in abundance, and survival of hump-
back whales in SEAK. Our modeling effort indicated that the
median population growth rate for humpback whales in
SEAK was 5.1% per year since 1986, which is consistent
with other estimates of SEAK humpback growth rates (e.g.,
5.5%–6% in Calambokidis et al. (2008) and 6.5% in Barlow
and Clapham 1997)).
In this study, few whales marked in any given year died

during the study period, resulting in a very high estimate of
annual survival probability (0.996; 95% CrI: 0.984, 0.999).
We believe our survival estimates accurately reflect the true
annual survival probability of whales in SEAK over the study
period and are not a spurious model result. The annual sur-
vival probability estimated here is higher than humpback
whales in the Gulf of St. Lawrence (survival = 0.93; Ramp
et al. 2010) or the western Atlantic, which range from 0.950
(95% CI: 0.928, 0.972; Clapham et al. 2003) to 0.964
(95% CI: 0.946, 0.976; Rosenbaum et al. 2002); however, it
is similar to estimated survival probabilities of other ceta-
ceans located in the North Pacific such as bowhead whales
(Balaena mysticetus) (survival = 0.99; Zeh et al. 2002) and
gray whales (Eschrichtius robustus) (survival = 0.98; Punt
and Hilborn 1997). Differences in survival between Pacific
and Atlantic stocks of whales could be due to differences in
mortality factors, such as entanglement, ship strikes, disease,
and predation (Allen and Angliss 2011). Although the sur-
vival probability here is higher than SEAK humpback whales

from 1979 to 1996 (annual survival probability of 0.957,
95% CI: 0.943, 0.967; Mizroch et al. 2004), survival proba-
bility estimates may differ between the two studies because
SEAK data were collected from two feeding areas in Mizroch
et al. (2004), and only 3 years of overlap exist between the
two data sets.
Our work indicates that there is little connectivity between

the SS and GBIS study areas, whereas whales regularly
moved to SS and GBIS from FSLC. Marine mammals have
relatively small energetic costs to moving (Williams 1999),
and humpbacks in particular can move vast distances (Ras-
mussen et al. 2007). During the summer months, humpbacks
are primarily foraging on sand lance, capelin, herring, eu-
phausiids, and krill (Witteveen et al. 2008), which can form
dense concentrations in SEAK (Gende and Sigler 2006). Ce-
tacean movement has been related to foraging opportunities
in killer whales (e.g., Foote et al. 2010) and humpback
whales (Stevick et al. 2006). Further, when humpback whales
target prey resources (Stevick et al. 2006), abundances of
humpbacks can increase dramatically owing to following
their prey (Whitehead and Carscadden 1985). Such variabil-
ity in prey resources may partially explain movement among
areas in our study, which has important implications for man-
agement of the substock.
The dynamic nature of movements among areas and our

model structure precludes calculating area-specific population
growth rates. Thus, SEAK cannot be divided into constituent
sample areas for management. This fact may complicate man-

Fig. 7. Estimates of abundance for southeastern Alaska stock of humpback whales from 1995 to 2008. Median estimates (squares) and central
95% probability interval (lines) are indicated.
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agement that must occur on smaller scales (e.g., Glacier Bay
National Park), where government agencies have jurisdiction
at a finer geographic level than the stock dynamics. The
movement of whales among areas could mask increases in
the mortality rate in one area because of high entanglement
rates in fishing gear or high number of large vessels transit-
ing; therefore, future monitoring and management will need
to continue sampling efforts at the three areas to provide in-
ference at the SEAK level.
In the present study, there were several instances where

data were summed or discarded to meet the requirements of
the Hilborn (1990) methodology, whereas using individual-
level data may provide for a full treatment of all observa-
tions. For example, whales were summed by the year and
area in which they were initially captured, the feeding area
where they were previously recaptured, and the year and
area in which they are currently recaptured. Thus, individual
capture–recapture histories were lost. For individuals with
relatively short capture histories, the summing across individ-
uals may have little effect; however, for long-lived species
with frequent recaptures, there is substantial value in the indi-
vidual recapture histories.
Modeling the individual recapture histories provides op-

portunities for a richer set of modeling approaches (e.g., Zeh
et al. 2002). For example, within-season observations of
humpbacks among the three study areas could be utilized
under the robust design of Pollock et al. (1990). Such robust

design models can be analyzed by methods similar to those
employed here (e.g., log-linear models; Rivest and Daigle
2004). Further improvements to the robust modeling frame-
work include incorporating individual-level covariate data to
model the individual probability of recapture (Royle 2009)
in addition to the probability of survival or movement. In the
case of SEAK humpback whales, such covariates might in-
clude age, fishing gear entanglement, ship strikes, or mater-
nal lineage. Furthermore, recent contributions in capture–
recapture methods use data augmentation (Royle 2009) to
estimate the tagged and untagged population size within the
estimation framework, which is an improvement over pre-
vious methods (e.g., eq. 11).
Limitations to the Bayesian approach have been identified

previously (Dennis 1996); however, there are multiple advan-
tages to using a Bayesian estimation framework (Pollock
1991; Rivot and Prevost 2002; Smith 1991), such as incor-
poration of informative prior distributions based on simula-
tions of upper bounds of population growth rates (e.g.,
Zerbini et al. 2010) or on previous analyses. For example,
we could have used the annual survival probability esti-
mates from Mizroch et al. (2004) as priors, but we were in-
terested in an independent estimate of survival probability
from this data set. The Bayesian framework also provides
opportunities for developing a hierarchical model structure
(Rivot and Prevost 2002; Su et al. 2004), which would im-
prove the inference at the group, time, and area levels.

Fig. 8. Evaluation of different priors for the precision (inverse of variance equal to 1/s2). Mean coefficient estimates under a Uniform U(0,30)
and a Gamma G(0.01, 0.01) for the inverse of the variance of the extra-Poisson error term (points) and 95% credible intervals (lines) indicate
little difference in coefficient estimates between prior specifications.
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Although we did not include a hierarchical structure here
(except in the case of overdispersion in the Poisson counts),
adding such a structure would be a logical and important
extension of the current modeling framework.
The Hilborn (1990) approach is valuable because biologi-

cally meaningful population dynamics models can be devel-
oped within a statistical estimation framework. Although the
model was initially developed to use either Poisson or multi-
nomial likelihoods (Hilborn 1990), most applications have
opted to use the Poisson likelihood for inference (e.g., Anga-
nuzzi et al. 1994; Deriso et al. 1991; Wilkins et al. 2010). In
our application, models utilizing extra-Poisson likelihoods
were strongly favored over their Poisson counterparts. Be-
cause the individual recapture histories are not being mod-
eled, individual-level heterogeneity in recapture probability
and dependent movement among individuals (e.g., group
movement) are being incorporated into the extra-Poisson var-
iability. Because many of the applications of the Hilborn
(1990) model have been to fish or other species that move in
groups (e.g., Foote et al. 2010; Stevick et al. 2006), future
implementations of this framework should consider overdis-
persed likelihoods to deal with the statistical uncertainties ap-
propriately. The negative binomial is a logical choice in
addition to the log-Poisson that we used here.
The approach presented here differs in a few respects from

other Bayesian multistrata capture–recapture models (e.g.,
Dupuis 1995; Dupuis and Schwarz 2007) by defining a pop-
ulation dynamics model and subsequently deriving an obser-
vation model for predicted captures of animals by tag group.
Buckland et al. (2000) state that there is a growing desire
among statisticians to embed biological processes in infer-
ence. This process can ostensibly occur from two sides:
(i) statisticians can incorporate biological mechanisms into
their stochastic empirical models (e.g., using state-space
models; Meyer and Millar 1999); and (ii) process modelers
can develop adequate models of stochastic uncertainty in the
observation process. The modeling methodology presented
here attempts to take the latter approach by augmenting a
biologically based model with a more appropriate level of
stochastic uncertainty.
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