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Introduction 

National Parks contain scenic and dynamic landscapes where natural disturbance processes 
dominate. Examples of disturbance agents are wildland fires, landslides, avalanches, floods, 
insect damage and windthrow. Monitoring the location, severity and types of disturbances 
occurring in the parks, including any variation in those factors associated with climate change, is 
a priority for park managers.  Therefore landscape dynamics has been selected as one of seven 
core ―Vital Signs‖ tracked by the NPS North Coast and Cascades Network (NCCN) Inventory 
and Monitoring Program.   In cooperation with academic partners from Oregon State University, 
NCCN has developed a landscape monitoring method using new remote sensing change 
detection method called LandTrendr (Thompson et al. in review). This method generates 
geographic information system (GIS) maps of landscape change from 1986 to the present for 
areas inside and outside NCCN park boundaries.   

After the location and extent of disturbances were mapped, a change agent needed to be 
determined for each disturbance. Following a remote sensing workshop in 2002, a set of eight 
agents were selected as of interest to the NCCN (Table 1). NCCN developed a Random Forest 
statistical model to classify disturbances into one of the categories shown in Table 1 based on 
spectral characteristics of the disturbance and its location on landscape. A tenth agent called ―No 
Visible Change‖ was added to the model to represent areas that had undergone change that was 
not of interest to the network.  These ―uninteresting‖ changes included annual variations in cloud 
cover, snow level, phenology, topographic shadow, and soil moisture.  

Table 1. Original North Coast and Cascades Network landscape change monitoring goals. 

Landscape Change Agent 

Avalanche chute clearing 
Landslide 
Debris Flow 
Fire 
Insect/disease defoliation in forest 
Riparian disturbance 
Clearcut 
Rural development 
Windthrow 

  

The collaborative project between NPS and Western Washington University (WWU) funded by 
this cooperative agreement was initiated in order to provide student interns the opportunity to 
conduct lab- and field-based accuracy assessment of these labeled landscape change maps.   The 
objectives of the project were threefold:   

1) provide students with an opportunity to gain educational experience with both computer-
based remote sensing methods and field work,  

2) provide NPS with validation of the statistical agent labeling model using aerial photo 
interpretation method and field work, 



3) determine the viability of using students in any future aerial photo and/or field-based map 
assessments.   

We wanted to achieve disturbance labeling accuracies in the 80th percentile that would be similar 
to those generated by the validation techniques provided by the Random Forest statistical 
package. The expectation was that validation using aerial photography and spectral 
characteristics of disturbances would be as accurate as, or more accurate, than validation using 
field visits. We also hoped that the students would be able to learn to identify disturbance agents 
correctly with no prior experience with aerial photo interpretation and only using the training 
provided by park staff. 

Methods 

Six students from Western Washington University (WWU) signed up for the internship. The first 
phase of the internship was to conduct the accuracy assessment of the disturbance labels 
generated by the Random Forest statistical model. Students worked in the WWU GIS lab to 
identify disturbance agents at three NCCN parks (Mt. Rainier (MORA), North Cascades 
(NOCA), and Olympic (OLYM) using aerial photography in Google Earth and disturbance 
spectral characteristics generated from Landsat satellite images. Training was provided prior to 
beginning of actual work to help students differentiate various disturbance agents. 

Once the aerial photo interpretation was completed, the WWU students conducted field work at 
NOCA, hiking to areas where LandTrendr had detected change.  Students used aerial photos and 
GPS to locate the disturbance areas, identified the disturbance type, and recorded site 
characteristics such as disturbance shape and location on landscape. An effort was made to 
include all types of disturbances in field visits; however some types were underrepresented due 
to their infrequent occurrence in the study area or access difficulties.Results of field work were 
compiled into one dataset and students performed two types of accuracy assessment: 

1) Disturbance agents identified in the field were compared to the agents generated by 
looking at aerial photography in the lab. 

2) Disturbance agents identified with aerial photography in the lab were compared to agents 
generated by the Random Forest statistical model. 

Finally, students summarized their results and prepared reports found in Appendices A through 
G of this document. Student reports also contain detailed information on aerial photo 
interpretation and field methods. 

Results 

At North Cascades National Park, students labeled 2069 disturbances using aerial photography. 
This random sample of disturbances represents approximately 10% of disturbances found inside 
and 20% of disturbances found outside the park boundary. Student-generated labels were then 
compared to disturbance labels generated by the Random Forest statistical model. If one assumes 
that the agents chosen by students in the lab are ―correct,‖ accuracy of the random forest-
generated labels ranged from 52.3 to 74.2 percent with an average of 60.1 percent (Appendices A 
through F).  



Following validation work in the lab, 320 disturbances were visited in the field at NOCA. The 
following general areas in the park were sampled: Bridge Creek drainage, areas along Devil‘s 
Dome loop trail, areas along Highway 20, Cascade River Road and Ross Lake, and Stehekin 
Valley and adjacent trails. The same disturbances were labeled again in the lab using aerial 
photography.  Students compared field and aerial photography assessments to determine the 
degree of agreement between the two methods of agent identification.  Agreements ranged 
between 68 and 83 percent, with an average of 73.28 percent (Appendices A through F).   

Both types of assessments revealed a number of commonly confused categories including Fire 
and Insect, No Visible Change and Insect, Clearcut and Development, and various mass 
movement categories. It was determined that some labeling categories needed to either be 
combined or redefined to achieve greater separation between disturbance agents. For example, 
Debris Flows were often confused with Landslides or Riparian disturbances because they 
possessed elements of both those categories. The label of No Visible Change, which suggested 
lack of disturbance, was renamed to Annual Variability to more accurately represent the spectral 
variability of events that are found in this category. With the goal to achieve greater separation 
between Rural Development and Clearcut category, the Rural Development label was changed to 
just Development and redefined to represent disturbances where buildings and infrastructure 
occupy the majority of the area covered by the disturbance patch. Some categories, such as 
Windthrow and Insect/Disease, proved to be too specific.  These categories were renamed to 
include multiple landscape disturbances that produce similar spectral and visual outcome. Table 
2 shows a list of new labeling categories.  

Table 2. Landscape disturbance types monitored by the NCCN. 

Landscape Disturbance Types 

New Label Previous Label 

Avalanche Avalanche chute clearing 
Clearing Clearcut 
Development Rural Development 
Fire Fire 
Forest Collapse Windthrow 
Forest Decline Insect/disease defoliation in forest 
Mass Movement 
Mass Movement 

Landslide 
Debris Flow 

Riparian Riparian disturbance 
 

After labeling categories were combined or redefined, student results and Random Forest model 
were updated to match the new categories and accuracy matrices were rerun to see if new 
disturbance combinations would improve the results.  Even though there were improvements in 
majority of cases and better consistency was achieved (a range between 59.44 and 67.33 percent 
with an average of 64.8 percent (Appendix G)), the improvement was not significant enough to 
achieve our goals of at least 80 percent accuracy. We felt this was the result of using old 
definitions of disturbance categories and that accuracies could improve if new definitions were 
used and better training was provided to the students.  This hypothesis was tested by having an 
experienced park staff perform a photo-based accuracy assessment using new category 
definitions on the same disturbances that were evaluated in the field (Appendix H). Three 
hundred and twenty seven disturbances were evaluated.  An accuracy of 81.04 percent was 



achieved when comparing aerial photo interpreted labels with Random Forest generated labels. 
A lower accuracy of 72.17 percent was achieved when aerial photo interpreted labels were 
compared with disturbance labels generated in the field. 

To improve future training and validation results, a new study guide was developed that 
contained descriptions and definitions of each disturbance category and provided examples of 
disturbances as seen on an aerial photo, a series of Landsat images, and a spectral graph 
(Appendix I).  Two students, A. Hayes and S. Clary, who participated in earlier work, were 
retained on volunteer basis to receive new training and blindly redo earlier validation using new 
definitions. Table 3 shows new validation results with an achieved overall accuracy of 84.1 
percent. 

Table 3. Confusion matrix displaying correlation between disturbance agent assignments determined 
using aerial photography with disturbance agent assignments generated by the computer model (RF 
Model). 
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Agricultural 108     4 1     1   1   115 93.9 

Annual 
Variability 

  148       7   4 1     160 92.5 

Avalanche   1 89 3   1   12 7     113 78.8 

Clearing   3 14 357 5 7   28 5 3 2 424 84.2 

Development 14     50 43     1   3   111 38.7 

Fire     2     100   2       104 96.2 

Forest Collapse     2     1 1 1       5 20.0 

Forest Decline   2 1 5   13   252       273 92.3 

Mass Movement   1       1   1 26     29 89.7 

Riparian       3 3 1   1 1 32   41 78.0 

Unknown                     0 0 N/A 

Grand Total 122 155 108 422 52 131 1 303 40 39 2 1375 
 

Producer's 
Accuracy 

88.5 95.5 82.4 84.6 82.7 76.3 100.0 83.2 65.0 82.1 0.0 
  

              
Overall Accuracy: 84.1 

         
  

 
 

At Mountain Rainier National Park, students labeled 1540 randomly selected disturbance patches 
using original definitions.  These patches represent about 20 and 40 percent of disturbances 
inside and outside of park boundary, respectively. After the new disturbance category definitions 
were developed, these patches were relabeled in the lab using the aerial photography method by 
one of the students.  Part of the newly labeled sample will be used by NCCN for development of 



a Random Forest statistical model specific to MORA.  Remaining sample will be used for 
validation purposes. 

At Olympic National Park, students were able to label 2029 disturbances, out of 4404 originally 
selected, using the photo interpretation method.  These labels will be reevaluated using new 
definitions of disturbance categories and used for Random Forest model development and 
validation of OLYM results. 

Conclusions 

Working with WWU students on this project has allowed the NCCN to achieve all the goals 
identified during the project planning stages. NCCN was able to evaluate the agents of change 
originally proposed for monitoring (Table 1) with respect to the new disturbance mapping 
methodology. Using inputs from students, as well as information gathered in the field, some of 
the disturbance types were updated in order to better reflect evolving understanding of 
disturbance processes and updated current terminology. In some cases the new label represented 
inherent uncertainty about the proximate cause of disturbance, especially in cases where there are 
interactions among disturbance types.  

This project also allowed NCCN to evaluate two different approaches to validating disturbance 
agent labels generated by a statistical model. Field validation proved to be problematic, because 
the project involved assessment of large areas inside and outside park boundaries and because 
disturbance events occurred in areas that were difficult to access. Validation using the 
combination of aerial photos and TimeSync proved a better method because; 1) it provided 
different perspectives, both visual and spectral of the disturbances, 2) it allowed viewing of the 
entire disturbance patch in all cases, 3) older disturbances could be viewed on their 
corresponding older aerial photos, and 4) there was no doubt about the location and boundaries 
of the disturbance patches, which was the case on the ground due to irregular patch shapes 
combined with typical GPS position error. The ―Unknown‖ disturbance label was used less 
frequently in the lab compared to the field.  Based on this experience, office validation was 
determined to be a more effective method of accuracy assessment for the Random Forest 
labeling model. 

The project provided excellent educational opportunities for students, who learned first-hand 
about modeling landscape dynamics in natural areas, applied GIS, GPS and remotely sensed data 
in scientific research, learned how to use GPS equipment for navigation and data collection, and 
wrote, in a majority of cases, their first scientific report.  

Lab validation using aerial photos is a cost-effective approach to generate field-based accuracy 
assessment data of landscape change maps that are increasingly being used by federal agencies 
for monitoring purposes. With some adjustments to training, WWU students could be used again 
to perform accuracy assessments for this or similar projects.  NPS involvement in this project 
supports the research and educational mission of WWU and the academic mission to provide 
leadership in natural resource studies. 
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INTRODUCTION 

There are over 84 million acres of national park lands in the United States. (NPS 2011). It 

is the responsibility of our National Park Service (NPS) to protect and preserve these lands. 

However, with the lack of information about the animals, plants and ecosystems that make up 

these parks, it is difficult to fulfill this responsibility. To address this problem, in 1999, the NPS 

announced the Natural Resource Challenge as an action plan for preserving natural resources 

(Stanton 1999). It centered on the idea that in order to better protect and preserve our national 

parks, we must first be fully informed about what exactly we are protecting and preserving. The 

biggest duty of this challenge involves expanding the inventory and monitoring effort, 

specifically in response to landscape changes. Inventories provide baseline information about 

natural resources in the parks, and monitoring of ecosystem health will reveal important trends 

which can be used to prepare for and manage for landscape responses to climate change 

(Antonova & Thompson 2011). It would require an unfeasible amount of human power, time 

and money to physically go into our parks to inventory and monitor every acre of the 

landscape. A more efficient tool is necessary to accurately document and regularly monitor our 

parks’ landscape changes. Remote sensing allows for cost-efficient landscape monitoring with 

fine temporal and coarse spatial resolution, giving the NPS the best tool to capture landscape 

characteristics at regular intervals, showing patterns over time. This project involves the 

accuracy assessment of a computer-generated model, which was created using remote sensing 

techniques to locate areas of landscape disturbance and to determine the size, severity and 

agent of those disturbances. The disturbance processes monitored by this model include 

avalanche chute clearing, fire, defoliation due to insect and disease, landslides, riparian 



changes, wind throw, clearing due to logging, and rural development. This project focuses on 

one of the largest parks of the North Coast and Cascades Network of the NPS: North Cascades 

National Park (Figure 1). This park, as well as a 10-mile buffer area around it, is the starting 

point for this project, which, if successful, will eventually be implemented in all the network 

parks. 

 

Figure 1 North Coast and Cascades Network of the NPS, located in Washington State. The network is comprised of 
seven parks- four that are largely historic; San Juan Island, Ebey’s Landing, Fort Vancouver, and Lewis and Clark, as 
well as three large wilderness parks; Mount Rainier, North Cascades and Olympic.  (Cartography by N. Antonova) 



METHODS 

Computer Model:  

 A model was developed by the North Coast and Cascades Network along with Oregon 

State University for monitoring landscape changes in large parks using Landsat satellites. This 

algorithm was dubbed LandTrendr, for Landsat-based Detection of Trends in Disturbance and 

Recovery. It maps patches of disturbance on a landscape by tracing pixel trajectories through a 

stack of yearly images. More specifically, the process involves preparing a stack of yearly 

satellite imagery, extracting spectral trajectories for each pixel, statistically identifying and 

fitting trajectory segments with consistent trends, extracting summary information from each 

of these segments, and mapping areas of disturbance. The mapped disturbances are then 

labeled with a disturbance agent using a statistical model based on spectral and topographic 

variables associated with each disturbance (Antonova & Thompson 2011). The validation 

process compares computer-generated labels with labels that were assigned in-field or in-lab 

using aerial photography.  

In-Lab Disturbance Agent Assignment: 

Western Washington University interns, Robert Bryson, Shelby Clary, Allyson Hayes, 

Monica Ponce-McDermott, Ian Oehler, and Nathan Schaller were given the task to assign 

disturbance agent labels (Table 1) to the LandTrendr-generated disturbance polygons. We used 

Google Earth aerial photography alongside transformed Landsat TM satellite imagery to attach 

an agent label to each disturbance polygon. The Landsat imagery was transformed using a 

tasseled-cap transformation. This transformation allows the user to view major spectral 

components of a landscape scene by reducing spectral bands down to three dimensions, 



wetness, greenness and brightness (Campbell 2007).  TimeSync software was used to display 

the entire stack of transformed Landsat image chips centered on each disturbance polygon 

identified by the LandTrendr model. This software also displayed a trajectory of the wetness 

values in each image which highlighted trends over time, aiding in the assignment of 

disturbance agents (Figure 2). The first step in identifying a disturbance agent was to look at the 

aerial photo in Google Earth, zooming out to become familiar with the landscape context. Next, 

we zoomed in to the disturbance and used the time slider feature to view aerial photos from 

different years to determine if vegetation was removed (Figure 3). We would then look at the 

TimeSync trajectory to see if wetness declined or increased significantly around the year of the 

disturbance. We also looked at the Landsat tasseled cap imagery chips to see if spectral 

changes around the year of disturbance occurred. Lastly, if a fire was suspect, we used 

historical fire polygon data to confirm fire agents.  

Table 1  List of all possible disturbance agents assigned in this study. * The agent label “no visible change” was 
assigned when disturbance polygons were located in high elevation areas, where no removal of vegetation 
occurred and the disturbance was likely due to phonological changes. † “Unknown” was assigned when an obvious 
disturbance occurred, but the agent was indiscernible. ‡ “Water” was assigned to polygons located directly on 
bodies of water where the disturbance was detected because of changes in water volume.  

Disturbance Agents 
Agricultural 

 

Landslide 

Avalanche 

 

No Visible Change* 

Clearcut 

 

Riparian 

Debris Flow 

 

Unknown† 

Development 

 

Water‡ 

Fire 

 

Wind 

Insect/Disease     

  

 



 

Figure 2 A screenshot of TimeSync software displaying a 2003 riparian channel changing disturbance. The 
trajectory (right) shows a prominent increase in wetness in 2003, indicative of a riparian channel change 
disturbance. On the left is an image viewer showing the transformed Landsat image chips centered on the 
disturbance, spanning from 1984 to 2010. The top two visible chips are from before the disturbance, and the last 
four are years following the disturbance. Note the changes in spectral values. When paired with Figure 3, the 
Google Earth aerial photography before and after the disturbance, the disturbance agent can easily be declared as 
riparian with high confidence. 

 

Figure 3 Google Earth aerial photographs before (left) and after (right) a riparian channel changing disturbance. 
Disturbance polygon is shown here in orange. Notice how the polygon is predominately in a forested cover type in 
the before image, and completely within the stream cover type in the after photo.  



In-Field Disturbance Agent Assignment: 

 Interns went on two eight-day field research trips to the North Cascades National Park 

and surrounding lands. We were trained by NPS employees on how to accurately identify 

disturbance agents in the field, including specific signs of insect and disease damage (Figure 4). 

We had the locations of disturbance polygons loaded onto GPS units and used those to 

navigate to each polygon and assign a disturbance agent based on what we saw. In the case 

where a polygon was inaccessible by foot, (i.e. a polygon was located across a valley) we would 

navigate to the nearest location, usually perpendicular to the polygon, to assign disturbance 

agents. In addition to disturbance agents, interns recorded their level of certainty, UTM 

location, distance from polygon and other observations.  

 

Figure 4 Signs of a tree infected by the Mountain Pine Beetle, one of the most common causes of tree mortality in 
the North Cascades National Park. (A) Stand of Lodgepole Pine infested by Mountain Pine Beetle. Old dead trees 
are gray, and newly killed trees show an indicative, bright orange color. (B) Close up of newly killed Lodgepole Pine 
needles. (C) Trunk of an infested Lodgepole Pine with “pitch tubes”, an attempt by the tree to extract the 
unwanted intruders. 

 

 



Accuracy Assessment 

In this study, we performed two types of accuracy assessments. The first, in- field vs. in-

lab was to determine the validity of identifying disturbance agents using aerial photography. 

The second, Computer Model vs. In-Lab, was to assess how well the computer model was at 

assigning disturbance agents.   

After field work was complete, the 320 polygons identified in the field were recorded in 

a database and all interns were given these same disturbance polygons to be analyzed and 

labeled using aerial photography. We used the same in-lab, aerial photo disturbance agent 

assignment methods as previously mentioned. We then compared the disturbance agent 

assignments made in the field with our in-lab agent assignments to first determine the validity 

of identifying disturbance agents using our in-lab, aerial photography technique. Next, we 

compared all the agent assignments made in-lab for the North Cascade National Park 

disturbance polygons with those generated by the computer model determine how well the 

model and in-lab methods correlated in assigning disturbance agents. 

RESULTS 

In-Field vs. In-Lab Disturbance Agent Assignments: 

 The comparison between the disturbance agent calls made in-field and those made in-

lab with aerial photography and TimeSync, showed an overall accuracy of 68.1% with a kappa 

statistic of 0.56 (Table 2). The disturbance agents with high correlation (greater than 50% user 

and producer accuracies) were avalanche, clearcut, fire, insect/disease and riparian. Those with 

low or zero correlation were agricultural, debris flow, development, landslide, no visible 



change, unknown, water and wind. There was much confusion with avalanche and debris flow 

agent assignments.  

Computer Model vs. In-Lab Disturbance Agent Assignments: 

 The comparison between the disturbance agent calls made by the computer model and 

those made in-lab with aerial photography and TimeSync, showed an overall accuracy of 54.4% 

with a kappa statistic of 0.46 (Table 3). The disturbance agents with high correlation (greater 

than 50% user and producer accuracies) were agricultural, clearcut, debris flow and fire. Those 

with low or zero correlation were avalanche, development, insect/disease, landslide, no visible 

change, riparian, unknown, water and wind. No visible change and insect/disease were the two 

agents with the largest confusion. I assigned 114 disturbances to have no visible change, while 

the computer model agreed with only 43 of those as no visible change and assigned 47 to be 

insect/disease, and 24 to be other various disturbance types. The computer model assigned an 

insect/disease agent label to 103 polygons while I only agreed with 35 of those labels and 

assigned 47 of those as no visible change and 21 to be other various disturbance types.  



 

Figure 5 Shows differences in occurrence of each of the disturbance agents between ones determined in-lab using 
aerial photography and transformed Landsat chips and those determined using in-field techniques. 

 

Figure 6 Shows differences in occurrence of each of the disturbance agents between the computer-generated 
agent calls and those determined using aerial photography and transformed Landsat chips. 
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Table 2 Confusion matrix displaying correlation between disturbance agent assignments determined in the field (Field Call) with disturbance agent assignments determined using aerial 

photography (Aerial Photo Call). Kappa statistic ( k̂ ) determines how much better the classification is than one resulting from chance. For this study, the classification was 56% better than 

a random assignment of disturbance types. 

 

   
Field Call 

   

   
Agricultural Avalanche Clearcut 

Debris 
Flow 

Development Fire Insect/Disease Landslide 
No 

Visible 
Change 

Riparian Unknown Water Wind 
Grand 
Total 

User's 
Accuracy  
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Agricultural                           0 N/A 
 

 
Avalanche   16   4     7   1   3     31 51.6% 

 

 
Clearcut     28   2       2         32 87.5% 

 

 
Debris Flow   2   4     5   3 1 1     16 25.0% 

 

 
Development           1               1 N/A 

 

 
Fire           21 4             25 84.0% 

 

 
Insect/Disease   2   1   5 128       6     142 90.1% 

 

 
Landslide                           0 N/A 

 

 
No Visible Change   2         24   17   5     48 35.4% 

 

 
Riparian     1       1     2       4 50.0% 

 

 
Unknown                 17 1 2     20 10.0% 

 

 
Water                 1         1 0.0% 

 

 
Wind                           0 N/A 

 

  
Grand Total 0 22 29 9 2 27 169 0 41 4 17 0 0 320 

  

  
Producer's 
Accuracy 

N/A 72.7% 96.6% 44.4% 0.0% 77.8% 75.7% N/A 41.5% 50.0% 11.8% N/A N/A 
   

                   

                
Overall 

Accuracy 
68.1% 

 

                
Kappa 

Statistic 
0.556805 
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Table 3 Confusion matrix displaying correlation between disturbance agent assignments determined using aerial photography (Aerial Photo Call) with disturbance agent assignments 

generated by the computer model (Computer Model Call). Kappa statistic ( k̂ ) determines how much better the classification is than one resulting from chance.  For this study, the 

classification was 46% better than a random assignment of disturbance types. 

 

   
Aerial Photo Call 

   

   
Agricultural Avalanche Clearcut 

Debris 
Flow 

Development Fire Insect/Disease Landslide 
No 

Visible 
Change 

Riparian Unknown Water Wind 
Grand 
Total 

User's 
Accuracy  
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Agricultural 3   1             1       5 60.0% 
 

 
Avalanche   9   1     1   9       1 21 42.9% 

 

 
Clearcut   4 48 1 1 2 3   9 1 3     72 66.7% 

 

 
Debris Flow   2   10   1   3 1 2       19 52.6% 

 

 
Development 1   5   1         8       15 6.7% 

 

 
Fire           24 2   5   1     32 75.0% 

 

 
Insect/Disease   5 4 1   6 35   47   2 3   103 34.0% 

 

 
Landslide   1               1       2 0.0% 

 

 
No Visible Change   3       2     43   3     51 84.3% 

 

 
Riparian     1       1     5       7 71.4% 

 

 
Unknown                            0 N/A 

 

 
Water                           0 N/A 

 

 
Wind                           0 N/A 

 

  
Grand Total 4 24 59 13 2 35 42 3 114 18 9 3 1 327 

  

  
Producer's 
Accuracy 

75.0% 37.5% 81.4% 76.9% 50.0% 68.6% 83.3% 0.0% 37.7% 27.8% 0.0% 0.0% 0.0% 
   

                   

                
Overall 

Accuracy 
54.4% 

 

                
Kappa 

Statistic  
0.461553 

 

 

 

 

 

 

 

 

agreementchance

agreementchanceaccuracyobserved
k

_1
__ˆ








DISCUSSION 

This study was motivated by the NPS Natural Resource Challenge, and the purpose of 

this project was to determine whether using this agent labeling statistical model could act as a 

more efficient tool than manual labeling in aiding the NPS in accurate inventories and 

monitoring of landscape dynamics in and around the parks.  Although the model did show a 

moderate correlation with in-lab accuracy assessments (Table 3), due to substantial 

opportunity for error in this study, it is difficult to confirm or dismiss the prospective utility of 

this model. 

Opportunity for error:  

Generally when a confusion matrix is constructed, there is a predicted class that is 

tested against an actual class (ground truth). There is much error associated with both 

confusion matrices in this study because the determination of actual ground truth classes was 

not always unambiguous This large opportunity for error is problematic in testing how well the 

model is at identifying disturbance agents. 

In Table 3, the computer model agent calls are the predicted class and the in-lab aerial 

photo agent calls are the actual class. At the start of this project, the interns were not 

professional aerial photo-interpreters, and could have easily labeled disturbances with 

incorrect agents. For example, it took me a few weeks to be able to identify insect disturbances 

using the in-lab technique, resulting in me unknowingly dismissing slight dips in wetness and 

labeling disturbance as “no visible change.” If more time was allowed, I would go back and 

blindly re-assign agent labels to all the polygons now that I am more familiar with the aerial 



photography and trajectory characteristics of each disturbance. I would then perform a second 

confusion matrix in the hope of obtaining a more valid accuracy assessment.  

In Table 2, the in-lab aerial photo agent calls are the predicted class and the in-field 

agent calls are the actual class. In the field, many of the disturbances we saw were unreachable 

by foot, so we had to view them from a distance, usually across a valley. At times it was difficult 

to determine where exactly the disturbance polygon was located based on aerial photo maps. 

Much of the agent call discrepancies in Table 2 may be due to analyzing an incorrect location on 

the landscape. Error in the field may have also spawned from analyzing disturbances that 

occurred years prior to analyses. A lot can change in terms of regrowth over the years, and 

many of the polygons we were analyzing in the field were associated with disturbances that 

occurred over 10 years ago which may have led to assigning inaccurate agent labels. In 

addition, there was much confusion associated with debris flow and avalanche disturbances 

(Table 2). This may be due to the fact that both of these disturbances can overlap in space and 

in their spectral characteristics. Many debris flows occur within old avalanche chutes, and from 

a distance, look similar, especially if the disturbance occurred years ago and regrowth has 

begun. 

In addition to methodological errors in the field, the small sample size (Table 2) 

corresponding to some disturbance categories on the confusion matrix added some 

unavoidable error to this study. Working in the field, we were not able to reach a sufficient 

number of polygons relating to each of the disturbance types due to random assignment of 

polygons, landscape composition, time limitations, etc. In the field, we saw very few instances 



of agricultural, debris flow, development, landslide, riparian and wind disturbances. Increasing 

the sample sizes of many of these disturbance categories is essential to be able to more 

accurately assess the performance of the model.  

 Overall, the computer model performed in moderate correlation with the in-lab agent 

assignments, with a kappa statistic of .46 (Table 3). This means the computer classification was 

46% better than a random assignment of disturbance types. Despite the discrepancies between 

the in-lab agent labels assignments and the model label assignments, there is definitely some 

moderate correlation, suggesting the model is correctly identifying many of the disturbances. 

The next step may be to perform the in-lab methods again with a more experienced eye to 

determine if the correlation values improve and to increase the sample size of the 

aforementioned disturbance categories. 
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Appendix B 

Student Report 

Ian Oehler



Introduction  

 

 The goal of the NPS Natural Resource Challenge is to better understand the health of our 
park‟s natural ecosystems. One way to accomplish this is to gain a more sufficient awareness of 
relationships that effect ecosystem health. Knowing climate change has the potential to alter how 
ecosystems function, and importantly in our case the relation of ecosystem health to natural 
disturbances, monitoring the parks changing landscape dynamics seems crucial. Natural 
Disturbances have a particularly heavy influence on an ecosystems health. Because of this, 
understanding and analyzing how changing disturbance variables like distribution, size, and 
frequency in the North Coast and Cascade Parks network seem to be of great importance. Of course 
assessing accuracies of modeling and analyzing tools that look at disturbances across landscapes is 
critical. As with any scientific work assessing the accuracy of methodology used to obtain new data 
might be just as important as getting the end results. 

For this reason our goal was an attempt at assessing the accuracy of a statistical model that 
assigns agents to disturbances.   Our team looked at data which identified disturbances across the 
landscape of North Cascades, Olympic, and Mount Rainier National Parks and spanned from 1985 
until the present. These disturbances are assigned by LandTrendr, a program which identifies trends 
of disturbance and recovery by looking at spectral value changes.  The data inputted into LandTrendr 
is taken from Landsat imagery which dates back approximately 25 years. Another part of the 
accuracy assessment work was looking at aerial photos in conjunction with spectral imaging which 
displayed patterns of changing values. These values are associated with „greenness‟ and „wetness‟ 
changes and represent vegetation patterns across the landscape. The disturbances we encountered 
and recorded were agriculture, avalanche, fire, insect/disease, landslides, riparian, wind, clear-cuts, 
and human development. 

 

Methods 

 
 Our team‟s job was to translate and document data associated with disturbance events found 

by Landtrendr. By doing this we could later come back and look at accuracies. We put each event 
into one of the twelve disturbance categories mentioned above. Accomplishing this involved 
interpreting aerial photos and Timesync imaging to choose the correct disturbance associated with 
each event. Our main area of study was the North Cascades National Park but we also examined 
disturbances throughout Mount Rainier National Park and Olympic National Park. Because this is 
such a large area with many disturbance events the most efficient method was to be in lab looking at 
aerial photos along with each disturbance events imaging via Timesync.   

Assessing the accuracy of the disturbances called in the lab required us to go in the field and 
observe disturbance events there.  We spent a total of 16 days backpacking in the North Cascades 
observing and documenting disturbance events first hand.  Our team‟s interpretation of the data, 
which was presented by Timesync, coupled with high resolution aerial photos, from Google Earth, 
was our methodology for interpreting and analyzing a disturbance.  To monitor such a large 
timeframe and area of parks land, Landsat satellite imagery along with high resolution aerial photos 
were used. Landsat imagery has been collected yearly since 1985.  Because of this when observing 
changes in the overall „wetness‟ of groundcover vegetation about 25 years of data is available. 
Varying degrees of changes in the „wetness‟ and the subsequent recovery of vegetation over time 



correspond with different disturbance agents. For each disturbance event identified by Timesync a 
spectral trajectory and image stack are created that is unique to each event. This is shown in Figure 2 
and is an example of an image stack and trajectory that shows a fire event on a healthy forest. Most 
disturbance events shared characteristics with other disturbances of the same agent and eventually 
patterns become evident when using Timesync. When documenting each disturbance event we had 
three options for showing our confidence level. These being a 1-3 scale with 3 being the most 
confident and 1 being very unsure.     
 
Results 
 Many of my disturbances that I identified in the North Cascades area were located near Lake 
Chelan and were caused by fire damage on the landscape. Although fire damage was the most 
visible from an aerial perspective insect damage was the most common in the area. In populated 
regions outside of the North Cascades Park the most common disturbance was agriculture and 
development. Disturbances that I identified in the Mount Rainier National Park were mostly insect with 
riparian also being common. Disturbances outside of the Mount Rainier Park in the area were mostly 
clear cuts and located on the west side of Mount Rainer. In the Olympic National Park region virtually 
all of the disturbance events that I identified were clear cuts.  Most of my disturbances that I identified 
generally followed a pattern that was based on vegetation cover, placement on the landscape in 
relation to position on hill slopes, and whether the location was inside or outside park boundaries.  I 
frequently found that the most difficult disturbance to identify with a high degree of certainty to be the 
insect/disease agent. The trajectory for insect damage would often be very close to unchanging but 
very subtle declines in wetness were the most common. 
 Our field work consisted of two separate eight day excursions into the backcountry of the North 
Cascades National Park. We spent six days on each trip day hiking to disturbance events and 
documenting what we found.   Overall the most common disturbance across the landscape that we 
observed was insect and disease damage. From my experience this disturbance happens to be the 
most difficult to call in the lab. We observed in the field though that insect damage is very noticeable 
on the landscape.  We found that spruce budworm and mountain pine beetle damage to be the most 
prevalent insects affecting trees.    

As indicated by the overall accuracy‟s shown in both tables, my aerial photo interpretation is in 
higher agreement with the field calls then with the automated disturbance model. Also important to 
notice in the two error matrix tables is the kappa statistic. Table 1, which shows the agreement 
between aerial photo calls (WWU calls) and field data (Field calls), reports of kappa of .75. This 
suggests that an observed call is 75% better than a call made by chance. Table 2, which shows the 
agreement between aerial photo calls (WWU calls) and automated disturbance model (computer 
calls), reports a kappa of .61. And in the same way this suggests that an observed call is 61% better 
than one made by chance.  
 

Discussion 
I found that the process of identifying disturbances in the field was much different than doing it 

in the lab setting. In the field you are deprived of a couple of tools which we had access to in the lab. 
This along with the varied topographic landscape of the North Cascades makes identifying 
disturbances slightly more difficult. We also found that many disturbances were impossible to observe 
from even relatively close distances because of vegetation cover. Again this varies from the lab 



setting where aerial views of each disturbance were available. The long time frame of data that is 
available helped greatly when trying to identify the patterns that emerged due to disturbance events.  
It‟s interesting that agreement between insect identification for both of my error tables is so high, as I 
have mentioned identifying the insect/disease agent was difficult for me. The reason behind this is 
that many of my insect calls were of low certainty but despite this it appears that many of them were 
correct. When comparing both error matrixes it‟s obvious that Table 1 has higher agreement 
accuracies for all three of the accuracy categories. The most obvious explanation for this difference is 
making calls in the field provided a more certain and accurate analysis of a disturbance event. Being 
that the purpose of this work is to assess the accuracy of the model looking at both error matrixes 
seems to be the most helpful way  to do this while at the same time presenting the related data.  
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Appendix C 

Student Report 

Monica Ponce



Introduction 

The objective of this internship was to validate the use of LandTrendr to identify landscape disturbances 

within the North Coast and Cascade Network (NCCN) of parks. Once the disturbances are identified 

accurately the information will be used to facilitate the National Parks Service Inventory and Monitoring 

Program. With LandTrendr as a tool fewer resources would be needed for ground truthing and manual 

identification of disturbances. 

The North Coast and Cascade Network of parks includes Olympic, North Cascades, Rainier, Lewis and 

Clark, Fort Vancouver, Ebey’s Landing and San Juan Island National Historic Park. For this internship we 

were only focusing on North Cascades, Mount Rainier, and Olympic National Parks. Our data analysis 

mainly focuses on North Cascades National Park.  

By monitoring landscape change within the NCCN parks we will be better prepared and more equipped 

to make management decisions. In order to monitor landscape changes we need to know what the most 

common landscape disturbance types are. Based on previous assessments the most common 

disturbance types in our interest parks are avalanche, fire, debris flow, riparian, landslide, 

insect/disease, wind, clear cut, agriculture and development. The goal is that with the use of LandTrendr 

various common disturbances will be easily and quickly identified. 

Methods 

In order to identify disturbance polygons in the national parks we were provided with identification 

training, specifically what criteria best represent the different disturbance types. Using Landsat satellite 

imagery with tassel cap transformation we were able to identify various dimensions of brightness, 

greenness, and wetness. These three dimensions were visualized with gradients of color allowing, for 

example, a closed canopy conifer forest to be distinguished from a broadleaf forest simply by color. 

With an understanding of what different vegetation types look like we were able to better detect when 



environments change from one type of habitat to another. Also by looking at the color patterns of a 

specific location over a period of time we were more confident in identifying not only when a 

disturbance took place but what type of disturbance it was. This process is known as LandTrendr and will 

be referred to as such.  

After receiving the identification training we were each given a segment of the polygons to identify with 

disturbance agents using LandTrendr and confirming our identifications with aerial photography. These 

polygons were selected at random and each student was focused on specific areas in the three national 

parks. Our later ground truthing and data analysis focused on North Cascades National Park and thus 

that is where the rest of the methods described here refer to. My specific study sites for the North 

Cascades Park where in the northwestern park area and around the outside of the southern tip of the 

park. These identifications were used to compare against the computer model’s identifications (See 

results). 

The next step was for us to go into the field (ground truthing) to identify as many of the North Cascades 

polygons as was feasible. The polygons identified in the field focused on the outside central western 

border of the park and the southern third of the park. Also once in the field we were given specific 

training regarding detection of various insect infestations. The two most common insect infestations 

encountered were Spruce Budworm and Mountain Pine Beetle. This insect training allowed for more 

detailed disturbance identification. 

Once in the lab we were each given the same polygons that we identified in the field for identification 

with the use of LandTrendr and aerial photography.  The lab identifications were used to compare 

against the field identifications (See results). 

In order to compare our ability to label disturbance agents with the ability of the model to label the 

disturbances error matrices were created. By creating error matrices we can further investigate areas of 



discrepancy. We also calculated our user, producer and total accuracies along with our Kappa Statistics. 

This information tells us how precise we were in labeling the agents along with how useful the labeling 

model will be for future use. 

Results 

Based on my error matrix for aerial photography versus field calls (See attached error matrix) the only 

types of disturbances that were not seen in both instances were development (only seen in the field) 

and landslide (only seen with aerial photos). My user accuracy was 50% or above for 4 of the 10 

disturbance types (clear cut, fire, insect/disease and riparian) and below 50% for 6 of the 10 disturbance 

types (avalanche, debris flow, development, landslide, no visible change and unknown). My producer 

accuracy was 50% or above for 6 of the 10 disturbance types (avalanche, clear cut, fire, insect/disease, 

no visible change and riparian) and below 50% for 4 of the 10 disturbance types (debris flow, 

development, landslide, and unknown). My total accuracy was 70.63%. Discrepancies between aerial 

photography and field calls larger than 10 polygons only occurred in one situation. Using aerial photos I 

claimed 37 polygons were no visible change while in the field we said they were insect/disease. Other 

smaller common discrepancies included avalanches and unknowns in the field being called various other 

disturbances with the photos. My Kappa statistic was 0.59. 

Based on my error matrix for the model versus aerial photography (See attached error matrix) the types 

of disturbances that were not seen in both instances were unknown, water and wind (all only seen in 

the aerial photos). My user accuracy was 50% or above for 4 of the 10 disturbance types (avalanche, fire, 

no visible change and riparian) and below 50% for 6 of the 10 disturbance types (clear cut, debris flow, 

insect, unknown, water and wind). My producer accuracy was 50% or above for 6 of the 10 disturbance 

types (avalanche, clear cut, debris flow, fire, insect and riparian) and below 50% for 4 of the 10 

disturbance types (no visible change, unknown, water, and wind). My total accuracy was 57.33%. 



Discrepancies between the model and aerial photography larger than 10 polygons only occurred in two 

situations. The model claimed 56 polygons were insect while using the photos I said they were no visible 

change. Also the model claimed 11 polygons were insect and I said they were fire from the aerial 

photos. Other smaller common discrepancies included avalanches, fire, no visible change and unknown 

polygons with aerial photos being called other disturbances with the model. My Kappa statistic was 

0.44. 

Discussion 

Aerial Photography versus Field Calls  

Not seeing development in the lab may have been due to the event being recent and the images not 

being up to date. Also only seeing the landslide with aerial photos may be because of the scale and age 

of the event. In the field we may not have been able to see the entire landslide and possibly labeled it as 

avalanche if the vegetation was growing back.  

In regard to my user accuracy for 4 of the 10 disturbance types (clear cut, fire, insect/disease and 

riparian) when I look at a aerial photos I have a 50% or greater chance of the disturbance type being 

labeled correctly in the field and for 6 of the 10 disturbance types (avalanche, debris flow, development, 

landslide, no visible change and unknown) below a 50% chance of being labeled correct in the field. 

Meaning my user accuracy is not very good in the areas of avalanches, debris flows and no visible 

change. This is where I may need more training or practice to increase my accuracy. The areas where I 

have trouble in the field may be due to scale and my inability to see the big picture. In this segment of 

polygons landslides and development were not that common, had they been my user accuracy may 

have been better.  

With respect to my producer accuracy for 6 of the 10 disturbance types (avalanche, clear cut, fire, 

insect/disease, no visible change and riparian) when I’m in the field I have a 50% or greater chance of 



the disturbance type being labeled correctly on the aerial photos and for 4 of the 10 disturbance types 

(debris flow, development, landslide, and unknown) below a 50% chance of being labeled correctly on 

the aerial photos. Meaning my producer accuracy is not very good in the areas of debris flows and 

unknown polygons. Debris flows may have been troublesome with the aerial photos because of my lack 

of confidence in identifying the difference between a debris flow and a riparian disturbance, where in 

the field it may be easier to tell the difference.  Unknowns may be due to a lack of light or poor lighting 

over the polygons, making it difficult to id. As mentioned previously landslides and development were 

not common disturbances. 

The 37 polygons of no visible change, labeled by photo, that were insect/disease in the field may have 

been due to scale and perception. In the field it was easier to see the affected trees and being amongst 

them may make it seem like every tree is infected. With this perception of insect infestation everywhere 

we may have been more likely to label disturbances that way.  

Model versus Aerial Photography 

Unknown polygons may have been seen with aerial photos because a person was labeling them and the 

model would automatically designate a disturbance type. With a computer model there would not be 

doubt in the identification process. Also the model may have had a stricter or more streamline 

evaluation process; basically it is either this or that. 

With my user accuracy for 4 of the 10 disturbance types (avalanche, fire, no visible change and riparian) 

when I look at the model I have a 50% or greater chance of the disturbance type being labeled correctly 

in the aerial photos and for 6 of the 10 disturbance types (clear cut, debris flow, insect, unknown, water 

and wind) below a 50% chance of being labeled correct in the photos. Meaning my user accuracy is not 

very good in the areas of clear cut, debris flow and insect. Comparing the model to my aerial photos for 

North Cascades may be misleading due to the fact that my early identifications may not have been as 



accurate as my later identifications. There was a learning period that wasn’t taken into consideration. 

Insect identification was for sure something that I got more confident in labeling over time. Within the 

polygons wind and water were not that common. The model may not have recognized the water as a 

different disturbance type. 

With regard to my producer accuracy for 6 of the 10 disturbance types (avalanche, clear cut, debris flow, 

fire, insect and riparian) when I’m looking at the aerial photos I have a 50% or greater chance of the 

disturbance type being labeled correctly in the model and for 4 of the 10 disturbance types (no visible 

change, unknown, water, and wind) below a 50% chance of being labeled correctly in the model. 

Meaning my producer accuracy is not very good in the area of no visible change. Once again this is 

where my later training with the insects helped me to better tell the difference between a subtle insect 

disturbance and no visible change. Unknowns, wind and water were very few polygons to test accuracy. 

Large discrepancies between the model and aerial photography were 56 polygons the model labeled as 

insect while using the photos I said they were no visible change.  This may be due to my lack of 

understanding of the subtleties of insect infestations especially at the beginning of the internship. Also 

in reference to the 11 polygons the model labeled as insect and I labeled as fire from the aerial photos 

may be due to my ability to distinguish between large polygons that are partially burned or near fire and 

from insect polygons.  

In line with using humans to identify disturbances, longer training periods may reduce large areas of 

error along with a more specific list of identification criteria. The time spent in the field allowed for a big 

picture understanding of what disturbances actually look like not just snap shots on the computer. 

However these steps to improve accuracy would require more resources.  
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Avalanche 15   5     5   5   3 33 45.5 

Clearcut   28   1             29 96.6 

DebrisFlow 3   2               5 40.0 

Development       0             0 N/A 

Fire         22 4         26 84.6 

Insect/Disease         5 122       7 134 91.0 

Landslide 2   1       0 2     5 0.0 

No Visible Change 1   1 1   37   33   5 78 42.3 

Riparian 1             1 4 2 8 50.0 

Unknown   1       1       0 2 0.0 

Grand Total 22 29 9 2 27 169 0 41 4 17 320   

Producers 68.2 96.6 22.2 0.0 81.5 72.2 N/A 80.5 100.0 0.0     

             Overall 70.63 

           Kappa Statistic 0.59 

        Correlation 
 

        Large Error  
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Avalanche 17       2 6 1       26 65.4 

Clearcut 5 1 1 8   7   1     23 4.3 

DebrisFlow 3   1 1   3 1       9 11.1 

Fire       23 1 4   2     30 76.7 

Insect 7     11 66 56     1   141 46.8 

NoVisibleChange 2     2   61   1     66 92.4 

Riparian         1   3     1 5 60.0 

Unknown               0     0 N/A 

Water                 0   0 N/A 

Wind                   0 0 N/A 

Grand Total 34 1 2 45 70 137 5 4 1 1 300   

Producers 50.0 100.0 50.0 51.1 94.3 44.5 60.0 0.0 0.0 0.0     

             Overall 57.33 
           Kappa Statistic 0.44 
           Correlation   
           Large Error   
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Accuracy Assessment of Disturbance Monitoring in the North Coast and North Cascades Network 

The goal of this project was to assist the National Parks Service Inventory and 
Monitoring Program with its monitoring of landscape dynamics in the North Coast and North 
Cascades Network (NCCN).  The project sought to assess the accuracy of the LandTrendr 
software used to identify disturbances within the NCCN, including North Cascades, Mount 
Rainier and Olympic National Parks.  Disturbed areas in these three parks were identified using 
LandTrendr software that also assigned them a specific agent of disturbance. Disturbance 
categories included land converted for agricultural use, avalanches, clear cuts, debris flows, land 
development, fire, insect infestation, landslides, riparian disturbances, wind throws, unknown 
disturbances and areas with no visible change, suggesting these areas were incorrectly identified.  
Once LandTrendr made designations, data was analyzed visually on computers and assigned a 
disturbance agent independent of the LandTrendr assignment.  In addition to this second 
analysis, selected areas from this data were also surveyed onsite in North Cascades National Park 
and once again given disturbance designations independent of the LandTrendr findings. These 
field calls were then compared to both the LandTrendr findings for North Cascades National 
Park and the visual assignments done on the computer to generate error matrices giving a better 
idea of the accuracy of the monitoring program.  

 Identification of the disturbed areas in the NCCN began with feeding tasseled-cap 
transformed Landsat aerial images of all three parks over multiple years into the LandTrendr 
program, thus determining if a disturbance had occurred and labeling that disturbance with a 
specific agent.  The tasseled-cap transformation took the Landsat aerial image and simplified it 
into three bands, representing how much brightness, wetness and greenness were in each pixel of 
the image, to produce a false color image used by LandTrendr and later Timesync.  Once 
Landsat images from multiple years were analyzed by LandTrendr and disturbed area identified, 
only those found to have occurred in less then five years, ‗fast disturbances‘, were further 
visually analyzed.  This visual analysis of the Landsat aerial images and tasseled-cap images and 
trajectories in Timesync resulted in a new set of calls being made about the agent of disturbance 
for each area, independent of any previous designation made by LandTrendr.  These visual calls 
comprise the data set used for the first comparison against LandTrendr software in the creation 
of Table 1 on page 2.  

Selected areas were further examined through survey in the field on east side of North 
Cascades National Park.  Each plot was assessed individually on site, and in some cases from a 
distance, and assigned an agent of disturbance independent from both earlier LandTrendr and 
visual assessments already made.  This data comprises the second set that was compared against 
calls made by LandTrendr used in Table 2 on page 3. 

After all data was collected, analysis of the selected data sets began by summarization in 
an error matrix.  The first set of data being compared was the visual calls made on computer for
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Table 1. Computer calls compared to LandTrendr calls
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Table 2. Field calls compared to LandTrendr calls
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North Cascades National Park only, Mount Rainier and Olympic being excluded, against the 
LandTrendr outputs for those same areas.  The second data set included only the areas that had 
been surveyed in the field at North Cascades compared to the LandTrendr outputs for those same 
areas.   

The overall error resulting from the matrix created to compare visual calls to the 
LandTrendr calls was 74.2%, meaning that these calls were 74.2% accurate when compared to 
LandTrendr.  Especially low points in user and producer accuracy occurred for the landslide and 
unknown categories, where the agent was assigned accurately 0% for the time.  The overall error 
resulting from the second matrix, that compared field calls to LandTrendr calls, was 70.3%.  
Low points in user and producer accuracy occurred in the debris flow, no visible change and 
unknown categories with 0% of agents accurately assigned.  

 Sources of error for this project relate to both LandTrendr and assessments made by 
individuals.  In some instances, the classification scheme set up to group disturbance agent 
lacked an appropriate category in which to place a disturbance, for example an area where trees 
had been thinned but were not necessarily completed cleared.  This resulted in classifications to 
being readjusted to fit disturbances types which otherwise would not fit into a certain category.  
There is also the issue of individuals not being able to determine the exact agent for an area on 
ether a computer or in the field.  The agent could be placed into the ‗unknown‘ category, but this 
category was not recognized in LandTrendr and thus it resulted in larger than normal error for 
that category in the error matrix.  There is also error that results from simply making the wrong 
visual call either on a computer or in the field that also generates errors in accuracy.  

 Overall, LandTrendr software produced results that tended to be more accurate then those 
made by humans visually.  In some instances such as with landslides in the first error matrix, 
visual calls did not produce a single correct result when assigning a disturbance agent. Visual 
calls made on both the computer and in the field also consumed considerable amounts of time, as 
well as a lesser but still relevant amount of funds, for results typically less accurate then 
LandTrendr findings.  Additionally, field surveys were limited in terms of accessibility to study 
sites, only those on or near trails or visible from them were assessable.  While the time spent to 
verify the accuracy of this program was valuable, it would appear that further assessments of 
accuracy on the LandTrendr program would prove unnecessary.  
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I. Introduction  

 Landscapes change over time as a result of changes in land use and weather-
driven natural disturbances. Throughout this landscape dynamics project our team of 
GIS interns and specialists identified agents of previously mapped landscape 
disturbances both by means of working in a computer lab and also going out in the field. 
The landscape disturbances were mapped using stacks of yearly Landsat images of 
North Cascades National Park and surrounding areas. This is most easily described as 
a satellite that flies over the entire park each year, and scans for changes in greenness, 
wetness and brightness. Our team was given a random sample of all the disturbances 
for the study area ranging from the year 1985 to 2010, represented by a polygon with a 
plot ID. Our task was to identify a disturbance agent for each of these disturbances 
using aerial photo interpretation techniques. Agents were picked from the following list: 
agricultural, avalanche, clear cut, debris flow, development, fire, insect/disease, 
landslide, riparian, wind, no visible change, or unknown. We chose the “unknown” or “no 
visible change” agents when no logical conclusion could be made about what we were 
examining on the aerial photos. For example, commonly we would label disturbance 
polygons that would appear at very high elevations as “no visible change”.  These 
events were insignificant in the sense that there was most likely no disturbance, but 
they do stay in our model and are an important part of our data sets. Our team had two 
week long field trips where we went out into the park, viewed some disturbances 
polygons first hand. The main goal of the field trips was to get a variety of different 
disturbance agents so once we got back to the lab we would run the assessment 
models to see how accurate we were while viewing these polygons from different 
perspectives. Earlier I mentioned that our team was testing the accuracies of 
disturbance polygons identified by remote sensing because of its useful ability to span 
very large areas, much of which were inaccessible by foot. 

 

II. Description of the Study Area 

 During this accuracy assessment, our team had to identify disturbances both 
inside and outside of park boundaries. Our study area included a 10-mile buffer zone 
around the park where we sampled our out of park disturbances. The first backpacking 
excursion took us to the west side of the park to the Bridge Creek trailhead and down 
south through the Bridge Creek drainage.  As we camped in a couple different locations 
like the Fireweed and North Fork camps down the drainage, the team split up into 
groups of 2 to 4 people to go out on day hikes to identify as many visible disturbance 
polygons as possible. The Bridge Creek drainage is on the east side of the Cascades, 
meaning we were hiking in the drier, warmer part of the park. At the end of our trip, we 
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were given a boat ride along the whole length of Ross Lake and back so we could have 
even another perspective of seeing the disturbances.  

 For the second trip, our team was broken into two groups which each took on a 
different section of the park then both groups met back up at the research station in 
Newhalem, WA to gather the data. We identified disturbance agents for polygons along 
Flat Creek, Park Creek Pass, Goody Ridge, Stehekin Valley and Cascade River Road.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Photos from the field: 

Top Left – Debris Flow in 

Stehekin Valley 

Top Right – Shelby Clary 

in front of large fire 

disturbance 

Bottom Left - Land slide 

on the way to Flat Creek 

Bottom Right – Ally 

Hayes on a debris flow 

looking towards the 

Bridge Creek drainage 
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In the computer lab each intern was given disturbance polygons that were located both 
inside and outside of the North Cascades Nation Park boundaries. Since the data for 
the first accuracy assessment was strictly inside park boundaries, much of the computer 
work that had polygons both inside and outside played a part in the second accuracy 
assessment. Earlier I listed the twelve different agents that our team was trying to 
identify. These disturbances vary greatly between inside and outside the park 
boundaries. While studying areas that are inside the park boundaries we would find only 
natural agents such as avalanches, debris flows, fires, insect infestations, landslides, 
riparian changes, or wind throw events.  

  

III. Methodology and Approach 

User‟s and Producer‟s Accuracies 

For each of our accuracy assessments we had to find the user‟s accuracy, which 
in short is the number of correctly identified polygons in a given disturbance over the 
number of polygons that claimed to be in that disturbance class. The user‟s accuracies 
can be seen in column “N” for assessment 1 and column “O” for assessment 2 on the 
next page. After we found the user‟s accuracy we had to find the producer‟s accuracy 
which can be calculated by taking the number of correctly identified disturbances of a 
given class over the number of polygons actually in that class. The producer‟s 
accuracies can be seen in row 15 for assessment 1 and row 16 for assessment 2 on the 
following page.  

After both the user‟s and producer‟s accuracies were calculated, we were 
instructed to find the total accuracy for each error matrix. The total accuracy can be 
calculated by taking the number of correct disturbances over the total number of 
disturbances. This percentage shows a summary value which does not reveal if there 
was some error between classes or if some classes might have been really bad and 
some really good. This is why our model included the user‟s and producer‟s accuracies. 

 

Sampling 

 To stay unbiased and random, the several groups of polygons that were 
distributed throughout the interns were sampled from an extremely large number 
(14,123) of returned disturbance polygons using a method known as “stratified random 
sampling”. Since the remote sensing provided us with just over 14 thousand results, 
another question one might ask about this project is how we selected which disturbance 
polygons to use for our testing. Once again our GIS specialist selected stratified random 
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sampling as our sampling method. Stratification is the process of dividing members of 
the population into homogeneous subgroups before sampling. Within these subgroups 
stratified sampling has the minimum number of disturbances randomly placed into each 
category. This method often improves the results by reducing sampling error.   

Google Earth and Timesync 

 While identifying disturbance polygons in the lab we used two main programs, 
Google Earth, and Timesync. On Google Earth I was able to view aerial photos, many 
which contained photos from the past, with the disturbance polygons layered on top. 
With Timesync, we were given image stacks containing colored pixels from the year 
1985 to 2010 for each polygon along with a trajectory of that particular polygon‟s 
“wetness”. On the next page I provided a screenshot of what the Timesync layout looks 
like with a disturbance‟s trajectory above and image stacks below. This particular 
disturbance was a very large fire, as you can see around the year 2004 when the 
wetness index instantly plummets. How the pixelated image stacks work is that there is 
a tasseled-cap transformation of the data we receive from remote sensing which leaves 
us with three major dimensions or “bands” known as brightness, greenness and 
wetness. These three bands are shown as different colors in the image which then 
correspond to different conditions on the ground. For example, dense vegetation would 
appear as some shade of blue green and a complete lack of vegetation would appear 
as red or orange. Our team would be given the plot ID for the disturbance and the year 
the event was suspected to have taken place. We would then try to identify a change 
between the images before the event year and the images after to help us decide what 
disturbance the polygon could have been.  

Kappa Statistic  

Our lead GIS specialist selected the Cohen‟s kappa coefficient as a statistical 
measure for our qualitative items, or as I have been labeling them, our disturbance 
agents. This statistical calculation provides us with a percent accuracy when two 
individuals (either field data vs. lab data or WWU data vs. computer generated data) 
attempt to assign an agent to the same thing (the disturbance polygons). This statistic 
takes into account the fact that the observers will sometimes agree or disagree simply 
by chance. A kappa of 1 indicates a perfect agreement, whereas a kappa of 0 indicates 
agreement equivalent to chance. For example, a kappa of .57 would suggest that an 
observed classification is 57% better than one resulting from chance. So in simpler 
terms, the closer that the kappa statistic is to 1, the more accurate we were when 
labeling the agent of disturbance polygons.  
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IV. Results 

 Most points on the Earth‟s surface have what one may call a “life history” that has 
been captured in images taken by Landsat satellites. Luckily, the North Cascades just 
happens to be one of those places. With a little help from a vast archive of Landsat 
satellite images called Landtrendr; statistical algorithms separated trends from noise 
and thereby identified periods of stability and of change for every pixel (shown on 
previous page). Our team‟s landscape dynamics model began its process by filtering 
the Landtrendr results to exclude disturbances that were too small or had too weak of a 
signal. Then once we had our desired collection of disturbance polygons, the other 
interns and I had to validate the model results by using aerial imagery. Most of the 
disturbances that we recorded from the first trip turned out to be insect infestation or 
disease polygons.  

Once we moved to disturbance polygons located outside park boundaries the 
majority of them seemed to be human-related disturbances such as clear cuts and rural 
development. Since each intern was given a different group of polygons to identify for 
the second assessment, most of my polygons that were outside the park ended up 
being located near Everson, WA and Peaceful Valley on the west side of the mountains. 
While in the lab, many of the sampled polygons that I examined appeared west of the 
park within the study area buffer. I found what seemed to be hundreds of clear cuts in 
that area, and only a few natural disasters.  

As explained before, the kappa statistic is what our landscape dynamics model is 
truly relying on. The kappa for assessment 1 was .610 meaning that an observed 
classification is 61% better than one resulting from chance. The kappa for assessment 2 
was .419 again meaning that an observed classification is 41.9% better than one 
resulting from chance.  
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Assessment 1 – Total Accuracy = 73.4%    Kappa Statistic = 61% 

Assessment 2 – Total Accuracy = 52.3%   Kappa Statistic = 41.9% 
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V. Discussion and Conclusions 

 After seeing the results from the two accuracy assessments, it becomes clear 
that there is definitely something causing the accuracy to be low. But first off, Ill discuss 
which disturbance agents were most accurately indentified. For the first assessment 
there was a slight bias in terms of the frequency of the agents. For example, the first 
assessment contained 176 insect disturbances, 149 of which were identified accurately. 
The other agents had about 20 to 30 polygons, each with varying results when it comes 
to accurate identification. I believed the reason to be because of our location out in the 
drier portion of the Cascades where there were less disturbances caused by moisture 
and/or the ability for a hillside to retain its structure. So although the first assessment 
was slightly “insect biased”, the second statistical test was set up to get a more random 
sampling of disturbance agents from the park. The total accuracy for the first 
assessment was slightly higher than the second‟s, but then again, the two tests had 
some key differences which played a large role in determining the total accuracies and 
kappa statistics.  

 The accuracies of the two assessments might be low due to a few errors from the 
disturbance polygon interpretations. These errors could be from either problems within 
the labwork/indentification process or errors in our selected method of remote sensing. 
While working on the computer trying to accurately classify the polygons, there was an 
issue from the “positional error”. While looking at aerial photos, a better reflection of the 
image could have helped us tell what the agent was. Also, a big portion of the error 
came from the fact that people make mistakes, giving the results of the assessments 
some interpreter error. When thinking about how the satellites found the disturbance 
polygons, the accuracies were low thanks to the fact that remotely sensed data cannot 
capture specific disturbance types, no matter how obvious they are. Other sources of 
error could be things as little as there being atmospheric effects masking subtle 
differences in the agents that would have let us easily identify them.  

 When trying to improve the accuracy of my classifications out in the field, I 
resorted to using land use and land cover maps to incorporate other data. I did this to 
get a better feel for what has happened in that area over time, and overall to give myself 
more information about that specific disturbance polygon. While in the lab I was able to 
change the grain of the spectral data or of the pixels given to me in the Timesync 
program. All in all, interpreting the accuracies of these different agents can yield ideas 
for an improvement of future disturbance classification.  





   
   

 57 

 

 

 

 

 

 

 

Appendix F 

Student Report 

Robert Bryson 



   
   

 58 

  
Field Calls 

  

  

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
eb

ri
s 

Fl
o

w
 

D
ev

el
o

p
m

en
t 

Fi
re

 

In
se

ct
/D

is
ea

se
 

La
n

d
sl

id
e

 

N
o

 V
is

ib
le

 

C
h

an
ge

 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

P
h

o
to

 

Avalanche 15 
 

5 
  

4 
 

6 1 3 34 44.1 

Clearcut 
 

28 
 

1 
      

29 96.6 

Debris Flow 4 
 

3 
       

7 42.9 

Development 
   

1 
      

1 100.0 

Fire 
    

22 10 
    

32 68.8 

Insect/Disease 1 
   

5 154 
 

22 
 

10 192 80.2 

Landslide 2 
     

0 
   

2 0.0 

NoVisibleChange 
     

1 
 

11 
 

1 13 84.6 

Riparian 
 

1 1 
    

1 3 2 8 37.5 

Unknown 
       

1 
 

1 2 50.0 

 
Grand Total 22 29 9 2 27 169 0 41 4 17 320 

 

 
Producer's Accuracy 68.2 96.6 33.3 50.0 81.5 91.1 N/A 26.8 75.0 5.9 

  

  
            

 

Overall Accuracy 74.37 

           

 

Kappa Statistic 0.61 

            

 

 
Photo 

   

 A
va

la
n

ch
e

 

C
le

ar
cu

t 

D
eb

ri
sF

lo
w

 

D
ev

el
o

p
m

e

n
t 

Fi
re

 

In
se

ct
 

La
n

d
sl

id
e

 

N
o

V
is

ib
le

C
h

an
ge

 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

W
at

er
 

G
ra

n
d

 T
o

ta
l 

U
se

rs
 

C
o

m
p

u
te

r 

Avalanche 6 1 
     

1 
   

8 75.0 

Clearcut 2 63 
   

10 
 

17 8 1 
 

101 62.4 

DebrisFlow 2 
 

2 
   

1 2 
   

7 28.6 

Development  
6 

 
2 

 
1 

 
1 

 
1 

 
11 18.2 

Fire     
4 1 

 
1 

 
1 

 
7 57.1 

Insect 2 2 
  

1 20 
 

38 
  

3 66 30.3 

Landslide       
0 

    
0 N/A 

NoVisibleChange 1 
    

4 
 

32 
   

37 86.5 

Riparian    
1 

   
1 5 

  
7 71.4 

Unknown          
0 

 
0 N/A 

Water           
0 0 N/A 

 Grand Total 13 72 2 3 5 36 1 93 13 3 3 244 
 

 Producers 46.2 87.5 100.0 66.7 80.0 55.6 0.0 34.4 38.5 0.0 0.0 
  

 

               Overall Accuracy 54.92 

             Kappa Statistic 0.42 

             

              



   
   

 59 

 

 

 

 

 

 

 

 

 

Appendix G 

Accuracy Matrices/Updated Categories 

 



   
   

 60 

  
TimeSync (Hayes) 

   
  

  

A
gr

ic
u

lt
u

ra
l 

A
n

n
u

a
l 

V
ar

ia
b

ili
ty

 

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
e

ve
lo

p
m

e
n

t 

Fi
re

 

Fo
re

st
 C

o
lla

p
se

 

Fo
re

st
 D

e
cl

in
e

 

M
as

s 
M

o
ve

m
e

n
t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

 

  

R
F 

M
o

d
el

 

Agricultural 2                     2 100.0 
 

  Annual 
Variability 

  60 3     5   1     4 73 82.2 
 

  
Avalanche   6 13     1 1 1 1   1 24 54.2 

 
Overall 
Accuracy 

61.47 

Clearing   8 3 43   1   4 1   3 63 68.3 
 

Kappa 
Statistic  

0.54 

Development 1     12 2         2   17 11.8 
 

  Fire   3       27   3     1 34 79.4 
 

  Forest Collapse     1       0         1 N/A 
 

  Forest Decline   39 2 3   1   29 1 3   78 37.2 
 

  Mass 
Movement 

  2 3           10 1   16 62.5 
 

  Riparian 1     1       1 1 15   19 78.9 
 

  Unknown                      0 0 N/A 
 

  
 

Grand Total 4 118 25 59 2 35 1 39 14 21 9 327 
  

  

 
Producer's 
Accuracy 

50.0 50.8 52.0 72.9 100.0 77.1 0.0 74.4 71.4 71.4 0.0 
   

   

  

TimeSync (Oehler)   
    

  

A
gr

ic
u

lt
u

ra
l 

A
n

n
u

a
l 

V
ar

ia
b

ili
ty

 

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
e

ve
lo

p
m

e
n

t 

Fi
re

 

Fo
re

st
 C

o
lla

p
se

 

Fo
re

st
 D

e
cl

in
e

 

M
as

s 
M

o
ve

m
e

n
t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

   

R
F 

M
o

d
el

 

Agricultural 70 1 
  

11 
    

5 
 

87 80.5 
   

Annual 
Variability  

21 
 

1 
 

5 
    

2 29 72.4 
   

Avalanche  
6 1 

    
2 

  
2 11 9.1 

   
Clearing 1 2 

 
33 17 1 

    
2 56 58.9 

   

Development 
10 3 

 
1 35 

    
2 

 
51 68.6 

 
Overall 
Accuracy 

65.26 

Fire   
1 

  
26 

 
2 1 

  
30 86.7 

 
Kappa 
Statistic 

0.59 

Forest Collapse       
0 

    
0 N/A 

   
Forest Decline  

15 
   

11 
 

23 
 

1 1 51 45.1 
   

Mass 
Movement  

1 
   

2 
  

2 
  

5 40.0 
   

Riparian     
4 1 

   
5 1 11 45.5 

   
Unknown           

0 0 N/A 
   

 
Grand Total 81 49 2 35 67 46 0 27 3 13 8 331 

    

 

Producer's 
Accuracy 

86.4 42.9 50.0 94.3 52.2 56.5 N/A 85.2 66.7 38.5 0.0 
     

                  



   
   

 61 

  

TimeSync (Ponce) 

    

  

A
n

n
u

a
l 

V
ar

ia
b

ili
ty

 

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
e

ve
lo

p
m

e
n

t 

Fi
re

 

Fo
re

st
 

C
o

lla
p

se
 

Fo
re

st
 D

e
cl

in
e

 

M
as

s 

M
o

ve
m

e
n

t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

   

R
F 

M
o

d
el

 

Annual 
Variability 

86 2 
  

3 
 

2 
 

1 2 96 89.6 

   Avalanche 8 25 
   

1 3 
 

2 
 

39 64.1 

   
Clearing 

4 2 1 
 

5 
  

1 
  

13 7.7 

 

Overall 
Accuracy 

67.33 

Development    
0 

      
0 N/A 

 

Kappa 
Statistic 

0.56 

Fire 4 
   

24 
 

2 
  

2 32 75.0 

   Forest 
Collapse     

1 0 
    

1 N/A 

   Forest Decline 34 4 
  

11 
 

63 
   

112 56.3 

   Mass 
Movement 

1 1 
  

1 
  

1 1 
 

5 20.0 

   Riparian         
2 

 
2 100.0 

   Unknown          
0 0 N/A 

   
 

Grand Total 137 34 1 0 45 1 70 2 6 4 300 
 

   

 

Producer's 
Accuracy 

62.8 73.5 100.0 N/A 53.3 0.0 90.0 50.0 33.3 0.0 
  

    

  
TimeSync (Clary) 

     

  

A
gr

ic
u

lt
u

ra
l 

A
n

n
u

a
l V

ar
ia

b
ili

ty
 

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
e

ve
lo

p
m

e
n

t 

Fi
re

 

Fo
re

st
 C

o
lla

p
se

 

Fo
re

st
 D

e
cl

in
e

 

M
as

s 
M

o
ve

m
e

n
t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

   

R
F 

M
o

d
el

 

Agricultural 61     1 1             63 96.8 

   Annual 
Variability   39   2   1     1   1 44 88.6 

   Avalanche     5 3       2   1   11 45.5 

   Clearing   5 4 84 2 1   2   1 6 105 80.0 

   
Development 

8 1   8 8         1   26 30.8 

 

Overall 
Accuracy 

75.44 

Fire 
  2       2     1     5 40.0 

 

Kappa 
Statistic 

0.68 

Forest 
Collapse             0         0 N/A 

   Forest 
Decline   17   1 1     50     1 70 71.4 

   Mass 
Movement   3 1         1 1     6 16.7 

   Riparian   3       1       8   12 66.7 

   Unknown                     0 0 N/A 

   
 

Grand Total 69 70 10 99 12 5 0 55 3 11 8 342 
    

 

Producer's 
Accuracy 

88.4 55.7 50.0 84.8 66.7 40.0 N/A 90.9 33.3 72.7 0.0 

     



   
   

 62 

 

  
TimeSync (Schaller) 

   
  

  
A

gr
ic

u
lt

u
ra

l 

A
n

n
u

a
l 

V
ar

ia
b

ili
ty

 

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
e

ve
lo

p
m

e
n

t 

Fi
re

 

Fo
re

st
 

C
o

lla
p

se
 

Fo
re

st
 D

e
cl

in
e

 

M
as

s 

M
o

ve
m

e
n

t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

 

  

R
F 

M
o

d
el

 

Agricultural 8                   1 9 88.9 
 

  Annual 
Variability 

  73 12     2   6   2   95 76.8 
 

  
Avalanche   5 24 1       7       37 64.9 

 
Overall 
Accuracy 

59.44 

Clearing   5 16 56 1   1 1 2 7 4 93 60.2 
 

Kappa 
Statistic  

0.49 

Development 2       5             7 71.4 
 

  Fire     1     4   1       6 66.7 
 

  Forest Collapse             2         2 N/A 
 

  Forest Decline   33 8 3       14   4 2 64 21.9 
 

  Mass Movement   1 1         1 1 1   5 20.0 
 

  Riparian                   5   5 100.0 
 

  Unknown                      0 0 N/A 
 

  
 

Grand Total 10 117 62 60 6 6 3 30 3 19 7 323 
  

  

 
Producer's 
Accuracy 

80.0 62.4 38.7 93.3 83.3 66.7 66.7 46.7 33.3 26.3 0.0 
   

   

  

TimeSync (Bryson) 

    

  

A
gr

ic
u

lt
u

ra
l 

A
n

n
u

a
l 

V
ar

ia
b

ili
ty

 

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
e

ve
lo

p
m

e
n

t 

Fi
re

 

Fo
re

st
 C

o
lla

p
se

 

Fo
re

st
 D

e
cl

in
e

 

M
as

s 

M
o

ve
m

e
n

t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

   

R
F 

M
o

d
el

 

Agricultural 0 
  

1 
       

1 0.0 

   
Annual Variability  

45 2 
    

7 
   

54 83.3 

   
Avalanche  

2 9 2 
       

13 15.4 

   Clearing  
23 

 
60 

   
12 

 
8 1 104 1.9 

   

Development    
7 2 

     
1 10 20.0 

 

Overall 
Accuracy 

59.84 

Fire      
4 

 
1 

  
1 6 66.7 

 

Kappa Statistic 0.47 

Forest Collapse      
1 

     
1 N/A 

   
Forest Decline  

19 1 2 
   

16 
   

38 42.1 

   
Mass Movement  

2 1 
     

2 
  

5 40.0 

   Riparian  
2 

  
1 

   
1 8 

 
12 66.7 

   Unknown           
0 0 N/A 

   

 
Grand Total  

93 13 72 3 5 0 36 3 16 3 244 
 

   

 

Producer's 
Accuracy  

48.4 15.4 2.8 66.7 80.0 N/A 44.4 66.7 50.0 0.0 
  

   



   
   

 63 

 

 

 

 

 

 

 

Appendix H 

Accuracy Matrices  

Project Lead 



   
   

 64 

  
Field (all students/project lead) 

  

   

  

A
n

n
u

a
l 

V
ar

ia
b

ili
ty

 

A
va

la
n

ch
e

 

C
le

ar
in

g 

D
e

ve
lo

p
m

e
n

t 

Fi
re

 

Fo
re

st
 

C
o

lla
p

se
 

Fo
re

st
 D

e
cl

in
e

 

M
as

s 

M
o

ve
m

e
n

t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

   

R
F 

M
o

d
el

 

Annual Variability 30           10 1   3 44 68.2    

Avalanche 2 10     1   16 3 1 4 37 27.0    

Clearing 1 5 29 1     2 1   1 40 72.5 
 Overall 

Accuracy 
72.17 

Development       0             0 N/A 
 Kappa 

Statistic 
59.38 

Fire   3     15   2       20 75.0    

Forest Collapse           0 1       1 0.0    

Forest Decline 3 2     9   144     8 166 86.7    

Mass Movement 3 1         1 5     10 50.0    

Riparian 2 1     2       3 1 9 33.3    

Unknown                   0 0 N/A    

 
Grand Total 41 22 29 1 27 0 176 10 4 17 327 

 

   

 

Producer's 
Accuracy 

73.2 45.5 100 0.0 55.6 N/A 81.8 50.0 75.0 0.0 

  

   

 

  
TimeSync (Project Lead) 

  

   

  

A
n

n
u

a
l 

V
ar

ia
b

ili
ty

 

A
va

la
n

ch
e

 

C
le

ar
in

g 

Fi
re

 

Fo
re

st
 

C
o

lla
p

se
 

Fo
re

st
 

D
e

cl
in

e
 

M
as

s 
M

o
ve

m
e

n
t 

R
ip

ar
ia

n
 

U
n

kn
o

w
n

 

G
ra

n
d

 T
o

ta
l 

U
se

r'
s 

A
cc

u
ra

cy
 

   

R
F 

M
o

d
el

 

Annual 
Variability 42 1       1       44 95.5 

   

Avalanche   20   1   15 1     37 54.1    

Clearing 1 7 30     1     1 40 75.0 
 Overall 

Accuracy 
81.04 

Fire   4   15   1       20 75.0 
 Kappa 

Statistic 
0.72 

Forest Collapse         0 1       1 0.0    

Forest Decline 5 3   4   150     4 166 90.4    

Mass 
Movement 1 4       2 3     10 30.0 

   

Riparian 1     2     1 5   9 55.6    

 

Unknown                 0 0 N/A    

 
Grand Total 50 39 30 22 0 171 5 5 5 327 

 

   

 

Producer's 
Accuracy 

84.0 51.3 100 68.2 N/A 87.7 60.0 100 0.0 
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Appendix I 

Developed Training Materials for TimeSync Interpretation 
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This guide is designed to help identify and label landscape disturbance types in the lab and in the 
field as part of the validation of disturbance type labels generated by the RF model. This 
appendix provides written descriptions of the disturbances, describes their typical position on the 
landscape and suggests tips to help reduce confusion when identifying various disturbance types. 
Figures in this appendix show examples of disturbances as seen on true color aerial photography 
and Landsat imagery that has undergone the Tasseled Cap transformation. The figures also 
provide examples of typical pixel spectral trajectories as seen in TimeSync software application. 
The colors used in the descriptions below refer to the hues of the Tasseled Cap imagery, which is 
used to visualize disturbances on Landsat scenes. For further guidance on interpreting the 
Tasseled Cap hues, the user should consult the first version of the protocol (Kennedy et al. 
2007).  

 

Figure I.1. Colors of typical land cover classes as seen on Landsat imagery that has undergone the 
tasseled cap (TC) transformation. Dark features such as shade, water or dark conifer canopy appear dark 
green or blue. Colors lighten as canopy structure decreases in complexity and canopy compositions shifts 
from evergreen to deciduous. Open:Dark are often shadowed areas with little vegetation. Open:bright is 
typically exposed rock or parking lots.  
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1. Agriculture 
This class is found predominately outside the park boundaries and is extensive in the NOCA 
study area, especially the Chilliwack Valley of British Columbia. This disturbance type is also 
found in the OLYM and MORA study areas, but to a lesser extent. Agricultural areas are 
dynamic landscapes, with fields undergoing cyclical planting, growth, harvesting and plowing. 
The specific changes in phases captured by LandTrendr within a given annual analysis will 
depend on the imagery dates. Fields are typically red or brown if recently plowed or left fallow 
and bright green or yellow if planted.  

Figure I.2 shows an example of a disturbance patch that would be placed in the ―Agriculture‖ 
class. Aerial photography shows the patch located within a matrix of agricultural land use. The 
2005 Landsat Tasseled Cap image shows the patch being planted with some kind of broadleaf 
crop (light green color). The 2006 Landsat image shows loss of greenness and transition to 
brown tones. This coloration usually corresponds to ground cover that has some vegetation and 
some bare earth components, suggesting that the field was recently planted. The TimeSync 
trajectory is typical for this type of disturbance, showing cyclical nature of agricultural activities 
and switching between bare earth and planted cover types. 

 

Figure I.2. Agriculture. The image on the left image shows LandTrendr disturbance polygons with 
associated dates overlaid on an aerial photograph. The images on the right show the same areas on the 
Tasseled Cap Landsat chips prior to and after the disturbance.  
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2. Annual Variability 
This category was created to be able to model and remove polygons detected by LandTrendr that 
do not capture change of interest to the NCCN. Usually, these changes are associated with 
variability in snow cover, clouds, terrain shadows, or vegetation phenology that is not removed 
in the image processing steps and is of great enough magnitude to pass through filtering. Annual 
variability polygons are generally only found in high elevations areas with limited vegetation, 
such as above the tree line. The interpreter must exercise care in determining a polygon of this 
class truly shows no change. The TimeSync trajectories of these disturbances usually show high 
degree of variability throughout the time period being examined and are dominated by red, 
brown and orange hues. Figure I.3 shows an example of a polygon that would be placed in the 
―Annual Variability‖ class. Landsat Tasseled Cap images from 2000 and 2006 are not 
significantly different, except for slight variation in hues most likely related to differences in soil 
moisture during the image acquisition dates. 

 

Figure I.3. Annual Variability. The picture of the steep and partially vegetated upper valley wall shows no 
visibly detectable change between 2000 and 2006 Landsat chips, even though change was detected for 
2003. Note the impact of changes in soil moisture and phenology as the trajectory and imagery changes 
from orange to red to brown hues. 
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3. Avalanche  
Avalanches originate in snow receiving zones on ridges or high on the valley wall. They are 
typically long, linear polygons, although some events can be broken up into multiple smaller 
polygons depicting areas of greatest removal of vegetation. If the avalanche occurred in an 
existing avalanche chute, the TimeSync trajectory usually starts in bright greens and yellows, 
which are representative of low statured, mostly broadleaf vegetation – small conifers, deciduous 
shrubs and herbs (Fig. I.4). If swaths of forest were removed, the TimeSync trajectory will start 
as greenish blue, representative of mature conifer forest. As avalanches typically remove some 
but not all of the vegetation, the trajectory after the disturbance is typically shown in hues of red, 
brown and tan. Higher magnitude avalanches occasionally traverse the valley floor and leave a 
large pile of downed trees in their wake, which can usually be seen in the aerial photography. 

 

Figure I.4. Avalanche. The 2002 avalanche has removed patches of vegetation as it traveled down the 
existing avalanche chute.  
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4. Clearing 
The clearing category covers disturbances that mostly occur in areas outside the park boundaries 
that are under active forest management or are adjacent to development in rural areas. Clearing 
disturbances include a range of forest management practices, from ―clearcuts‖ in which nearly all 
the forest canopy is removed, to more patchy harvests such as select cuts, to thinning, to 
chemical treatment of broadleaf species. Typically, the clearing trajectory in TimeSync starts 
with greens and blues that indicate a mature conifer forest (Fig. I.5). The trajectory then shifts to 
bright reds, oranges or browns that indicate open ground and quickly transition to greens that 
darken as regrowth becomes more mature and transitions from broadleaf to conifer types. In the 
aerial photography the cleared ground looks very brown and occasionally looks burned or black. 
Following the clearing, the trajectory usually shows the recovering broadleaf vegetation in a 
bright green, which slowly transitions to darker greens and blues of the conifer forest.  

In the aerial photography the heights of the regrowing vegetation can be difficult to discern, but 
the regrowth is typically uniform and the polygon is typically an angular shape. Frequently, 
smaller linear polygons are detected a year or two prior to and adjacent to clearing polygons - 
these are logging roads that are built prior to clearing to access the logging site. These types of 
clearing will typically have a similar spectral trajectory, but might contain more blue and dark 
green hues if the road is surrounded by undisturbed conifer forest. 
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Figure I.5. Clearing. The aerial photo shows a 1993 clearcut that was preceded by a 1991 clearing for a 
road. Spectral values of the TimeSync trajectory and Landsat Tasseled Cap images from prior to and 
after the disturbance clearly show transition between blue and green hues representative of conifer forest 
to browns and oranges of bare ground. The spectral trajectory shows quick transition to vegetation 
following the disturbance. Disturbances associated with thinning or chemical treatment will usually show a 
small dip in the trajectory while the recovering vegetation is still mostly broadleaf. The recovery then 
continues and hues quickly change to darker green and blue representative of conifer forest. These 
trajectories will only be associated with clearings that happened prior to 1985 and do not show the 
original clearing (Fig. I.6, below).  
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Figure I.6. Clearing - thinning. A disturbance polygon depicting either chemical or mechanical treatment 
of a pre-1985 clearcut. The first part of the TimeSync trajectory shows broadleaf vegetation growth. After 
the treatment, the trajectory dips temporarily and resumes upward climb with hues that are more 
representative of conifer vegetation. 

The Clearing category also includes clearing that is associated with low density rural 
development. Interpreter should assess how much of the disturbance polygon is occupied by 
buildings after clearing has occurred. If buildings occupy the minority of the pixels within the 
polygon and the polygon clearly outlines the cleared area around the construction, the polygon 
should be labeled with ―Clearing‖ category. If buildings are large enough and occupy the 
majority of the disturbance polygon, the area should be labeled ―Development.‖ 

In very rare cases, in the forest lands adjacent to OLYM, it can be difficult to distinguish 
windthrow from clearing and, depending on the resolution of the aerial photo, it might be 
difficult to determine if trees remain on the ground. Interpreter should look for clues such as 
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logging roads, or distinctive fan pattern of skid areas due to high-line logging operations, before 
labeling the disturbance as ―Clearing.‖  

Clearing is found extensively around OLYM, on the west side of the MORA study area and west 
and north of NOCA. Some clearing polygons can also be detected within NOCA along the 
Seattle City Light power line corridors and in the Stehekin Valley. 

5. Development 
Development areas show a complete removal of the vegetation and transformation to a built 
landscape, with driveways, houses, cars, and other evidence of urbanization. Development can 
range from a few house structures to entire parking lots. Development can sometimes be 
captured though several years, with the first years appearing as clearing, followed by road and 
then house construction. For the purposes of this protocol, development label should only be 
assigned to areas that have a significant portion of the area occupied by buildings and paved 
surfaces. An addition to building construction, the interpreter should look for trajectories that 
indicate that the patch remains open following the disturbance, rather than returning to the 
forested state characteristic of clearing and regrowth (Fig. I.7). 
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Figure I.7. Development. Landsat Tasseled Cap images show dramatic transition from vegetated to bare 
ground cover types between 1997 and 2001, captured by LandTrendr as a 1999 disturbance polygon. 
TimeSync trajectory transitions from green to bright red colors, indicating that the area remained clear of 
vegetation following the disturbance. The 1995-1998 portion of the trajectory indicates a regrowth pattern 
from a previous disturbance suggesting that the area was cleared prior to 1985 and then cleared again for 
development. 
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6. Fire 
Any fire of significant acreage will likely be corroborated from external sources. During the validation, the 
interpreter should overlay disturbance polygons with most recent fire perimeters from park databases. However, 
some fires outside park boundaries, or of either lower intensity and/or smaller size, may not be recorded. Fires 
tend to leave standing trees with no foliage, which can be seen in the aerial photography as thin shadows. Fire 
polygons are often large. Some lower intensity fires leave behind a mix of dead and singed trees. Sometimes 
active burning and smoke can been seen in the aerial photography, since the photos are usually taken in August. 
The trajectory in the TimeSync is similar to clearing- changing from blue and green of conifers to a mix of 
brighter colors where the vegetation has been completely burned, to orange for shrubby new growth (Fig. I.8).  

 

Figure I.8. Fire. Landsat Tasseled Cap images prior to and following a large 1997 fire show clear transition from mature 
conifer forest, represented by bluish green colors, to bare ground with minimal vegetation component, represented by 
browns and oranges. 

7. Forest Collapse 
The forest collapse category primarily includes forest areas where the trees have been both broken off and 
toppled to the ground in major wind events. This category is rare at NOCA and MORA. It is more common at 
OLYM, especially in the Quinault, Hoh, and Queets River valleys on the west side of the park and also in the 
northeast corner of the park. This category also includes areas where the forest collapse is due to root rot - the 
structural outcome is similar and the agent is typically hard to determine just from the imagery. Large Forest 
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Collapse disturbances can build on themselves, with subsequent events occurring in the vicinity of the original 
polygon. TimeSync trajectory of these events often shows some green vegetation remaining after the 
disturbance, either because some of the trees are still standing or the foliage of the downed trees is not 
completely dead (Fig. I.9). On the aerial photograph the interpreter should look for downed tree trunks. 
Windthrow events usually occur in areas on the landscape that are exposed to wind, either on top of ridges and 
knolls or along rivers. 

 

Figure I.9. Forest Collapse. A 2006 windthrow event at Olympic National Park. Tasseled Cap Landsat image from 2005 
shows darker blue and green pixels of a mature conifer forest transitioning to brown and orange pixels of mixed bare earth 
and vegetation in 2007 following the 2006 event. TimeSync trajectory shows distinct reduction in wetness that is not as 
dramatic as would be expected from a total removal of vegetation. 

8. Forest Decline 
This category is usually assigned to disturbance areas where forest cover still remains, but has undergone slow 
changes in spectral values that represent a loss of greenness and wetness. Interpreting the color change in 
TimeSync is therefore more challenging. The interpreter will see a very slight dip in the trajectory with decrease 
in blueness and greenness. However, the decrease is not big enough to suggest change from conifer to broadleaf 
vegetation or bare earth (Fig. I.10).  

The decreasing greenness of the forest can be difficult to discern in the aerial photography. In some stands the 
decline is due to LandTrendr detecting individual trees which have completely died. These dead trees appear in 
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the aerial photos as bright red or yellow. In some stands the decline is due to the tip and top limbs of a 
significant proportion of the trees succumbing to some pathogen. This type of decline shows up as a subtle 
greying of the canopy in the aerial photos and can be hard to discern if the color balance of the photos is poor. 
In addition, disturbance polygons in this category can have both types of declining trees. In general, the 
interpreter should place in this category any disturbance polygon where forest canopy has not been removed or 
thinned in any way. Forest decline can in some cases be corroborated with polygons from the Forest Service‘s 
Forest Health Monitoring program (FHM). One should be cautioned, however, that the FHM polygons are not 
spatially accurate and should not be used as a definitive outline or location of the disturbance.  

Although Forest Decline can be found at any elevation, it is most prevalent at higher elevations especially on the 
east sides of study areas of MORA, NOCA and OLYM, which are drier. 

 

Figure I.10. Forest decline. Landsat Tasseled Cap images from prior to and after the 2006 disturbance show no 
significant change in pixel coloration suggesting no transition in cover type. The spectral trajectory, however, shows a 
slight dip in wetness, indicative of reduction in vegetation vigor. 

9. Mass Movement 
This category includes a variety of vegetation-removing disturbances that expose rock or bare ground. Larger 
events are typically called landslides, and are found on valley walls away from streams or creeks. Most 
landslides totally remove vegetation and are often persistent. Some rare events, however, are better described as 
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―soil creeps‖ or ―slumps‖ and are characterized by only partial removal of vegetation. Debris flows are mass 
movements associated with water discharge, such as streams. Mass movements are distinguished from the 
riparian category in that they occur on valley walls, perpendicular to the valley floor. Riparian category is 
associated with disturbances found on the valley floor, along low gradient rivers. Mass movements are 
distinguished from avalanches by the magnitude of the disturbance: mass movement leaves little to no 
vegetation; and by shape and context. The interpreter should look for persistent red and orange colors in the 
TimeSync trajectory following the disturbance (Fig. I.11).  

 

Figure I.11. Mass Movement. In 2004 debris flow at North Cascades National Park, bright green colors characteristic of 
broadleaf vegetation are replaced by bright reds and browns following total vegetation removal. Note that the wetness 
component of the trajectory has not dropped significantly, suggesting presence of moisture in the soil. 

10. Riparian 
Riparian polygons are restricted to the valley floor where the gradient is much lower and the valley floor is 
wider. Typical riparian polygons show areas where either conifer or broadleaf vegetation previously existed and 
have been converted to either active river channel, with water, or river bank, with gravel and sediment. The 
spectral trajectories of these disturbances show either sudden increase in wetness or brightness, depending on 
the resulting cover type. These disturbances are usually easily identified on aerial photos (Fig. I.12).  
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Figure I.12. Riparian. This 1996 disturbance can easily be categorized as “Riparian” by its location in the large river 
channel. Dramatic and persistent decrease in greenness is evident in both the tasseled cap Landsat imagery and the 
TimeSync trajectory. Note the presence of blue tones following the disturbance that are indicative of some water pixels 
present within the disturbance polygon. 

The riparian category also includes forested and mixed-forested polygons in the riparian floodplain that have 
been inundated either temporarily or permanently. It is difficult to verify the change in these areas as often the 
forest canopy looks the same in the aerial photography. It is possible that these areas are undergoing some 
hydrologic change which has either increased soil moisture past the current species‘ tolerance, or which has 
brought alluvial material that has buried roots past species‘ tolerance. It is also possible that the decline is due to 
root rot, or some other pathogen and LandTrendr has detected the canopy death that precedes eventual collapse. 
The interpreter should place these disturbances in the riparian category even if there is no evidence of tree 
collapse, but there is a clear increase of wetness signal in the trajectory (Fig. I.13). 
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Figure I.13. Riparian - innundation. This disturbance polygon located close to a river shows spectral and visual signs of 
inundation. Both the Landsat imagery and TimeSync trajectory indicate an increase in wetness. 
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