Supplemental Information

Phytoplankton Responses to Nitrogen Enrichment in Pacific Northwest Mountain Lakes Jason J. Williams, Marc Beutel, Andrea Nurse, Barry Moore, Stephanie E. Hampton, Jasmine Saros

jason.williams2@wsu.edu

Section 1 – Phytoplankton Community Responses to Nutrient Addition

Methods

Phytoplankton community changes in response to N and P enrichment were visualized with nonmetric multidimensional scaling (NMDS) plots and tested for statistical significance using permutation multivariate analysis of variance (PERMANOVA) (Anderson, 2001a, 2001b). NMDS and PERMANOVA analyses were applied to the control, N-only, P-only, and N+P treatments. The metaMDS function from the Vegan package in R was used to construct a similarity matrix of pairwise Bray-Curtis distances after log10(x+1) transformation of taxa cell densities. Data were then visualized using 2-dimensional NMS. NMDS plots were constructed for each lake, and again after combining data across lakes. Significance of phytoplankton community changes were tested statistically using PERMANOVA (Anderson, 2001a, 2001b). Within each lake, a two-way PERMANOVA was used to test for main effects of N and P, and NxP interactions. A nested two-way PERMANOVA was also applied to limitation treatment data from all lakes with lake as the nesting factor to test for significant effects of N and P addition across lakes. PERMANOVA analyses used 999 permutations and were performed on Bray-Curtis similarity matrices constructed after log10(x+1) transformation of cell densities, were applied at the taxa level (the level at which taxa were identified and enumerated), and were performed using Adonis from the vegan package (version 2.2-1) in R (Oksanen et al., 2015).

Results

NMDS plots developed using control, N-only, P-only, and N+P treatments (Figure S1) qualitatively indicated changes in phytoplankton community structure in all lakes except Copper Lake (NOCA). Plots indicate community composition changes due to N+P addition, and distinct effects of N and N+P addition (Figure S1). NMDS plots suggest community structure was generally similar in control and P-only treatments, which is consistent with patterns in Figure S2. Qualitative patterns in NMDS plots were consistent with PERMANOVA results. In two-way PERMANOVA analyses applied to each lake, there were significant (< 0.05) N and P main effects and NxP interactions in all lakes except Copper (NOCA) and Heather (OLYM). In Copper Lake, there were no significant main effects of interactions. In Heather Lake, there was a significant main effect of N, but no significant effect of P or NxP interaction. There was also a significant main effect and interaction in a nested two-way PERMANOVA applied to data from all lakes with lake as the nesting factor. Clustering of lakes in NMDS plots indicated phytoplankton community differences between lakes were larger than differences in phytoplankton community composition within lakes across treatments in some cases (Figure S1).

Figure S1. Nonmetric multidimensional scaling (NMDS) of phytoplankton community responses in control, N only, P only, and N+P treatments when for lakes plotted together (top) and for individual lakes (bottom). Distances between shapes reflect community similarity, with greater distances indicating larger differences.

Figure S2. Relative proportions of common phytoplankton groups in each lake.

Section 2 – Taxa Responses to Nutrient Enrichment

Table S1. Relative responses (RR), nutrient limitation classification, and Monod parameters for abundant taxa (> 1% lake total cell density). Monod parameters are provided if taxa growth was N-limited or co-limited and a Monod curve could be constructed.

Lake	Phylum ^a	Taxa	RR-	RR-	RR-	RR-	Limitation	$\mu_{\max}(d^{-1}) \pm$	$K_s (\mu g N L^{-1})$
Common	DAC	A 1	enci	N ⁿ	P		Type	SE	± SE
Copper	DAC	Autacosetra alpigena	0.8	0.8	1.0	1.0	none		
Usether	BAC	Autacosetra alpigena	1.0	2.0	0.8	2.0	none		
Heather	BAC	Autacosetra alpigena	0.8	0.0	1.0	1.0	none	0.40 + 0.05*	27.17 + ((4 *
LHIS	BAC	Aulacoseira alpigena	4.1	4.2	1.6	4.8	N	$0.49 \pm 0.05^{*}$	2/.1/±6.64 *
Heather	BAC	Aulacoseira nivalis	1.0	1.0	1.0	1.9	none	0.07.000*	1.00 . 0.50*
Heather	BAC	Aulacoseira pusilla	0.3	2.3	1.1	6.3	S. co-lim.	$-0.07 \pm 0.02*$	$-1.82 \pm 0.53^*$
Hoh	BAC	<i>Aulacoseira pusilla</i> < 5 μm	0.6	0.7	0.3	0.3	constrained		
Allen	BAC	<i>Aulacoseira pusilla</i> 6 μm	1.2	1.1	1.4	2.6	S. co-lim.	$0.12 \pm 0.02*$	3.90 ± 3.31
Crazy	BAC	Aulacoseira pusilla 6 µm	0.9	3.1	0.6	128	serial N		
LH15	BAC	Aulacoseira pusilla 6 µm	1.4	4.0	1.2	7.5	serial N		
Crazy	BAC	Cyclotella < 7 µm cf distinguenda	0.8	10.0	0.7	186	serial N		
Doubtful	BAC	Cyclotella < 7 µm cf distinguenda	1.0	1.2	1.0	8.6	S. co-lim.		
LH15	BAC	Cyclotella < 7 µm cf distinguenda	0.9	3.3	0.7	6.0	serial N		
Heather	BAC	Discostella glomerata	0.9	6.7	1.4	14.8	N		
Crazy	BAC	Discostella glomerata 7-8 μm	0.9	3.8	2.0	3.1	N	0.06 ± 0.03	9.46 ± 5.76
LH15	BAC	Discostella glomerata 7-8 μm	2.1	10.1	1.8	22.8	I. co-lim.	3.73 ± 3.22	782 ± 761
Doubtful	BAC	Discostella stelligera	1.2	2.0	1.1	11.9	serial N		
Crazy	BAC	Fragilaria capucina	28.4	1.0	0.6	10.0	S. co-lim.	$0.51 \pm 0.01*$	$1.50 \pm 0.21*$
Hidden	BAC	Fragilaria capucina var. parminuta	0.6	2.9	1.3	2.6	N	0.01 ± 0.01	$-0.11 \pm 0.04*$
Allen	BAC	Fragilaria crotonensis	2.0	1.0	2.0	18.2	S. co-lim.	$0.63 \pm 0.10*$	32.1 ± 13.5*
Crazy	BAC	Fragilaria crotonensis	2.3	3.2	1.0	12.0	serial N	$0.30 \pm 0.01*$	$6.25 \pm 0.83*$
Hidden	BAC	Fragilaria crotonensis	1.0	1.2	0.6	4.6	S. co-lim.		
Crazy	BAC	<i>Fragilaria crotonensis</i> type 2	1.6	1.0	3.5	74.0	serial P		
Crazv	BAC	Fragilaria tenera	1.3	3.7	0.8	19.0	serial N	$0.34 \pm 0.02*$	$24.7 \pm 4.76*$
Hidden	BAC	Fragilaria tenera	0.5	2.1	0.7	4.7	serial N		
Hoh	BAC	Fragilaria tenera	3.6	1.1	0.7	6.3	S. co-lim.	$0.42 \pm 0.04*$	$14.5 \pm 3.61*$
Hidden	BAC	<i>Fragilaria</i> undiff 25- 30 µm	1.3	4.5	0.4	2.4	none		
Heather	BAC	Small <i>Fragilaria</i> undiff.	0.8	3.2	1.6	2.5	none		

NOTE: * indicates a statistically significant Monod parameter (p < 0.05)

^a: BAC = Bacilliarophyta, CHL = Chlorophyta, CHR = Chrysophyta, CRYP = Cryptophyta, CYA = Cyanophyta, PYR = Pyrrhophyta, UND = Undetermined

^b: RR-encl = (control mean density / initial mean density); RR-N = (N-only treatment mean density / control mean density);); RR-P = (P-only treatment mean density / control mean density);); RR-NP = (N+P treatment mean density / control mean density); RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);];

^c: 'S. co-lim.' = simultaneous co-limitation; 'I-co-lim.' = independent co-limitation

Lake	Phylum ^a	Taxa	RR-	RR-	RR-	RR-	Limitation	$\mu_{\max} \left(\mathbf{d}^{-1} \right) \pm$	$K_s (\mu g N L^{-1})$
Allon	CIII	Aubiatus dogue ag an		N 1.6	P 15	NP 24.2	Type S ag lim	SE 0.64 + 0.54	\pm SE 77.6 \pm 129
Coppor		Chlorophysica sp.	0.4	1.0	1.3	1.0	S. CO-IIII.	0.04 ± 0.04	//.0 ± 128
Doubtful		Chlorophycede sp.	1.1	0.0	0.7	1.9	S ao lim		
Doubtiui		Chiorophycede sp.	0.7	1.0	1.0	2.9	S. co-mm.	$0.51 \pm 0.04*$	0.05 ± 0.05
Allell			1/.4	2.7	1.0	3.7	IN N	$0.31 \pm 0.04^{\circ}$	0.03 ± 0.03
LHIS	CHL	5 μm	1.4	2.3	1.5	3.2	IN	$0.28 \pm 0.04^{+1}$	9.95 ± 5.87
Copper	CHL	Gloeomonas sp.	1.0	1.3	0.8	1.2	none		
Hidden	CHL	Gloeomonas sp.	0.7	1.8	1.3	0.4	none		
Rainbow	CHL	Gloeomonas sp.	0.6	1.1	1.2	1.1	none		
Rainbow	CHL	Gonium colony	1.0	2.1	1.3	151	S. co-lim.		
Hidden	CHL	Gonium sp.	0.1	29.3	2.3	326	serial N	$0.45 \pm 0.15*$	10.2 ± 12.4
Heather	CHL	Nonmotile unicellular	0.9	1.4	1.3	5.6	S. co-lim.	$0.21 \pm 0.04*$	13.49 ± 6.62
		green algae sp.							
Rainbow	CHL	Oocystis sp.	0.5	1.3	0.4	0.4	none		
Allen	CHL	Schroederia sp.	1.1	0.9	0.9	3.4	S. co-lim.	$0.17 \pm 0.06*$	16.4 ± 18.8
LH15	CHL	Schroederia sp.	2.3	2.7	0.9	3.9	N	$0.40 \pm 0.06*$	$56.9 \pm 17.4*$
Doubtful	CHL	Tetraspora sp.	0.9	2.4	1.1	105	S. co-lim.		
LH15	CHL	Tetraspora sp.	0.8	1.6	0.3	2.7	S. co-lim.	$0.02 \pm 0.07*$	0.57 ± 16.5
Rainbow	CHL	Tetraspora sp.	1.0	1.8	0.3	0.5	none		
Allen	CHR	Chrysolepidomonas	3.9	2.1	2.1	1.8	I. co-lim.	$0.25 \pm 0.02*$	0.02 ± 0.04
Crazy	CHR	Chrysolepidomonas	5.0	0.9	0.7	0.2	constrained		
		sp.							
Hidden	CHR	Chrysolepidomonas sp.	15.4	0.8	1.0	0.8	none		
LH15	CHR	Chrysolepidomonas	36.1	15	1.6	8.7	S. co-lim.	$0.82 \pm 0.12*$	$27.4 \pm 9.95*$
		sp.							
Heather	CHR	Mallomonas sp.	0.4	2.6	1.3	0.9	none		
Allen	CHR	Small golden w/o	1.8	1.2	0.5	1.0	constrained		
Crazy	CHR	Small golden w/o	4.3	1.6	1.0	0.4	serial N	-0.05 ± 0.04	-0.09 ± 2.97
		flagella							
Heather	CHR	Unknown unicellular Chrysophyta 5-7 µm	0.3	8.2	2.1	13.5	N		
Hidden	CHR	Small golden w/o flagella	0.4	0.9	0.3	0.0	constrained		
LH15	CHR	Unknown unicellular	1.7	2.9	1.7	1.5	Ν	$0.15 \pm 0.04*$	36.7 ± 24.0
		Chrysophyta 5-7 µm							
Allen	CHR	Unknown unicellular Chrysophyta 10 µm	6.5	1.8	1.5	4.9	serial N	$0.40 \pm 0.03*$	$0.06 \pm 0.05*$
Hoh	CHR	Synura colony	8.2	1.1	0.7	1.9	S. co-lim.		

Table S1 (page 2). Relative responses (RR), nutrient limitation classification, and Monod parameters for abundant taxa (> 1% lake total cell density). Monod parameters are provided if taxa growth was N-limited or co-limited and a Monod curve could be constructed.

NOTE: * indicates a statistically significant Monod parameter (p < 0.05)

^a: BAC = Bacilliarophyta, CHL = Chlorophyta, CHR = Chrysophyta, CRYP = Cryptophyta, CYA = Cyanophyta, PYR = Pyrrhophyta, UND = Undetermined

^b: RR-encl = (control mean density / initial mean density); RR-N = (N-only treatment mean density / control mean density);); RR-P = (P-only treatment mean density / control mean density);); RR-NP = (N+P treatment mean density / control mean density); RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density / control mean density);]; RR-NP = (N+P treatment mean density / co

^c: 'S. co-lim.' = simultaneous co-limitation; 'I-co-lim.' = independent co-limitation

Table S1 (page 3). Relative responses (RR), nutrient limitation classification, and Monod parameters for abundant taxa (> 1% lake total cell density). Monod parameters are provided if taxa growth was N-limited or co-limited and a Monod curve could be constructed.

Lake	Phylum ^a	Taxa	RR-	RR-	RR-	RR-	Limitation	μ_{max} (d ⁻¹) ±	K _s (µg N L ⁻¹)
			encl ^b	N^{b}	P ^b	NP ^b	Type ^c	SE	± SE
Allen	CRYP	Cryptomonad 15-30	0.5	1.8	0.6	9.0	S. co-lim.		
		μm							
Rainbow	CRYP	Cryptomonad 7-15 µm	0.9	0.2	1.0	2.0	none		
Allen	CRYP	Rhodomonas sp.	0.0	6.1	1.1	4.6	Ν	$-0.40 \pm 0.06*$	$-0.40 \pm 0.04*$
Allen	CYA	Coccoid cyanobacteria	0.4	5.3	2.3	14.0	S. co-lim.	0.26 ± 0.10	18.3 ± 22.7
LH15	CYA	Cyanotetras	0.7	1.1	1.3	2.0	none		
Allen	CYA	Microcystis colony	2.9	1.4	2.5	1.2	Р		
Crazy	CYA	Microcystis colony	0.8	6.4	1.4	2.9	Ν	0.41 ± 0.31	129 ± 162
Heather	CYA	Microcystis colony	0.0	20	8.6	28	I. co-lim.	$-0.10 \pm 0.03*$	$-14.5 \pm 1.76*$
Heather	CYA	Synechocystis sp.	0.1	5.2	1.1	13.8	serial N		
Hoh	CYA	Synechocystis sp.	1.6	2.4	1.5	9.0	serial N	$0.38 \pm 0.03*$	$14.13 \pm 2.51*$
Heather	PYR	Peridinium sp.	1.2	2.5	1.2	2.5	none		
Rainbow	UND	Chrysolepidomonas/C	29.4	0.6	0.2	0.1	constrained		
		hlorophyceae							
Heather	UND	Large yellow balls	0.4	2.6	1.2	3.2	S. co-lim.		
		w/or flagella							
Allen	UND	Large yellow	7.7	0.8	0.6	1.2	none		
		synurophyte							
Rainbow	UND	Round, ciliated 3-pack	0.1	2.2	11.9	3.1	none		

NOTE: * indicates a statistically significant Monod parameter (p < 0.05)

^a: BAC = Bacilliarophyta, CHL = Chlorophyta, CHR = Chrysophyta, CRYP = Cryptophyta, CYA = Cyanophyta, PYR = Pyrrhophyta, UND = Undetermined

^b: RR-encl = (control mean density / initial mean density); RR-N = (N-only treatment mean density / control mean density);); RR-P = (P-only treatment mean density / control mean density);); RR-NP = (N+P treatment mean density / control mean density); RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);]; RR-NP = (N+P treatment mean density / control mean density);];

^c: 'S. co-lim.' = simultaneous co-limitation; 'I-co-lim.' = independent co-limitation

Section 3 – Monod Growth Curves for N-responsive Taxa. See manuscript Table 4 for corresponding Monod parameters.

Figure S3. Monod curves for N-responsive taxa in Lake Allen (MORA).

Figure S4. Monod curve for N-responsive taxa in Hidden Lake (MORA).

Figure S5. Monod curves for N-responsive taxa in Lake LH15 (MORA).

Figure S6. Monod curves for N-responsive taxa in Crazy Lake (OLYM)

Figure S7. Monod curves for N-responsive taxa in Hoh Lake (OLYM).

Works Cited

Anderson, M. J., 2001a. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

Anderson, M. J., 2001b. Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences 58: 626–639.

Oksanen, J., Blanchet, F.G., Kind, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens. M.H.H., Wagner, H. 2015. Vegan community ecology package version 2.2-1. https://cran.r-project.org/web/packages/vegan/index.html