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Abstract. In many oligotrophic mountain lakes, anthropogenic atmospheric nitrogen (N) deposition has
increased concentrations of N, a key limiting nutrient, and thereby shifted phytoplankton biomass growth
from N limitation to P limitation. In the western United States, the critical load N deposition rate for these
shifts has not been quantified. We synthesized existing mountain lake chemistry, nutrient limitation bio-
assay, and N deposition data to estimate N critical loads for shifts from N to P limitation of phytoplankton
biomass growth. Data from bioassays in 47 mountain lakes were used to define biological (RR-N/RR-P = 1)
and chemical (NO3, DIN, DIN:TP) thresholds above which biomass P limitation is more likely than N limi-
tation. Logistic regression was used to calculate critical loads as the total N deposition rate with >50%
probability of exceeding biological or chemical thresholds, and thus where P limitation is more likely than
N limitation. Logistic regression models were developed with N deposition as the only predictor and with
both N deposition and watershed characteristics as predictors. Logistic model performance was evaluated
by comparing predicted and observed chemical threshold exceedances in 108 mountain lakes. Across mod-
els, estimated critical loads ranged from 2.8 to 5.2 kg total N�ha�1�yr�1. The best-performing model was a
univariate logistic model predicting NO3 threshold exceedance, with N deposition as the only predictor.
This model yielded a critical load of 4.1 kg total N�ha�1�yr�1 and accurately predicted NO3 threshold
exceedance in 69% of lakes. We applied this critical load to an independent sample of 385 mountain lakes
with NO3 data to estimate the frequency it would fail to predict a limitation shift—cases where the NO3

threshold for biomass shifts was exceeded, but the critical load was not. The false-negative rate was 13%
across the western United States, but was higher (22%) in the Sierras. Performance analyses suggest a
2.0 kg total N�ha�1�yr�1 critical load may avoid false negatives entirely. Critical loads presented here can
be used to assess N deposition impacts on western U.S. mountain lakes, and associated performance infor-
mation can be used to consider if presented critical loads are adequate for specific management
applications.
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INTRODUCTION

Human alteration of the global nitrogen (N)
cycle has increased atmospheric deposition of N,
a key limiting nutrient, and thereby stimulated
eutrophication effects in many ecosystems glob-
ally (Galloway et al. 2008, Erisman et al. 2013).
Remote mountain lakes are among the most sen-
sitive ecosystems to deposition-induced eutroph-
ication because they are naturally oligotrophic.
In the absence of significant anthropogenic N
deposition, many remote mountain lakes have
low NO3 concentrations that limit phytoplankton
growth (Bergstr€om and Jansson 2006, Elser et al.
2009a). Anthropogenic N deposition to a lake
and its watershed can increase lake NO3 (Baron
et al. 2011, Hessen 2013) and thereby stimulate
phytoplankton changes, including species com-
position changes, phytoplankton biomass
increases, and a shift from N to P limitation of
phytoplankton growth (Bergstr€om and Jansson
2006, Elser et al. 2009a, Baron et al. 2011).
Although phosphorus (P) is often assumed to
limit phytoplankton growth in lakes, P limitation
is prevalent in regions with elevated N deposi-
tion, whereas N limitation is prevalent in regions
with low N deposition (Bergstr€om and Jansson
2006, Elser et al. 2009a).

Mountain lakes are particularly sensitive to
deposition-induced N enrichment because their
watersheds typically have limited vegetation
cover, steep slopes, or other characteristics that
reduce watershed N uptake and promote efficient
flux of deposited N to lakes (Sickman et al. 2002,
Clow et al. 2010, Nanus et al. 2012). If N deposi-
tion increases lake N, many factors mediate the
occurrence and characteristics of phytoplankton
responses. Within a lake, N enrichment first stim-
ulates species-level responses, followed in some
cases by biomass growth responses and nutrient
limitation shifts (Hessen 2013). If lake N concen-
tration limits phytoplankton growth, species with
low N requirements, such as diatoms Asterionella
formosa, Fragilaria crotonensis, and Fragilaria tenera,
may increase their growth rates at N concentra-
tions as low as <10 lg/L (Fig. 1; Michel et al.
2006, Arnett et al. 2012, Williams et al. 2016) and
thereby increase in abundance relative to species
that require greater N concentrations. However,
the species observed to respond, and N chemical
thresholds for responses, can vary substantially

within and across regions because many factors
other than N mediate species responses. Addi-
tional mediating factors may include phosphorus
(P) concentrations or N:P ratios (Bergstr€om 2010),
phytoplankton community structure (Williams
et al. 2016), lake depth (Spaulding et al. 2015),
lake transparency (Williamson et al. 2010), tem-
perature (Bergstr€om et al. 2013), zooplankton
grazing (Vinebrooke et al. 2014), and dissolved
organic matter (Daggett et al. 2015). As lake N
concentration increases, some species may
decrease in relative abundance if nitrophilic spe-
cies outcompete other species. If the net result of
all species responses causes an increase in overall
phytoplankton biomass, an increase in chloro-
phyll a may be observed. In addition, the element
limiting phytoplankton biomass growth may shift
from N to P if N enrichment satisfies resource
requirements of multiple species driving biomass
responses. Lake N chemical thresholds are gener-
ally lower for phytoplankton species responses
than for phytoplankton biomass responses and

Fig. 1. Nitrogen chemical thresholds for phytoplank-
ton responses to N enrichment in western U.S. moun-
tain lakes. Species growth response thresholds are
Monod half-saturation constants from Michel et al.
(2006), Arnett et al. (2012), and Williams et al. (2016).
Biomass growth response thresholds are from Heard
and Sickman (2016) and Williams et al. (2016). Biomass
limitation shift thresholds are from this study (Table 2).
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limitation shifts, but across lakes there is also
large variability and substantial overlap of thresh-
olds within and across biological response levels
(Fig. 1). Thus, to assess or manage for deposition-
induced phytoplankton changes, one must con-
sider what type and magnitude of phytoplankton
response to address, and response variability.

In the western United States, quantifying
threshold or critical load (Nilsson and Grennfelt
1988) N deposition rates for chemical and ecolog-
ical changes in mountain lakes is important for
protecting ecosystems from anthropogenic N
deposition (Burns et al. 2008). Critical loads for
chemical and phytoplankton species changes in
mountain lakes (1–1.5 kg wet inorganic
N�ha�1�yr�1; Saros et al. 2010, Baron et al. 2011,
Sheibley et al. 2014) are lower than those for
many other ecological receptors (Pardo et al.
2011). As a result, mountain lakes are an impor-
tant indicator for U.S. government agencies
charged with protecting ecosystems from air pol-
lution. For example, federal and state agencies
used a critical load for lake diatom changes to
develop a “target” deposition load of 1.5 kg wet
inorganic N�ha�1�yr�1 in an air quality agree-
ment intended to protect all types of ecological
resources in Rocky Mountain National Park from
N deposition (Porter and Johnson 2007). In addi-
tion, federal land management agencies compare
critical loads to ambient deposition rates to test
for critical load exceedances when assessing
impacts of proposed new nitrogen emissions
sources on Class I lands (USFS et al. 2011), and
when developing National Forest Management
plans (USFS 2017), among other applications.
The U.S. Environmental Protection Agency
(USEPA) also has considered critical load and
exceedance information, among other data, in
periodic reviews of the secondary National
Ambient Air Quality Standards for nitrogen
oxides and sulfur oxides (USEPA 2009). Among
federal agencies, there is a need to assess N depo-
sition effects on western U.S. mountain lakes at
the scale of the entire western United States. The
National Atmospheric Deposition Program Criti-
cal Loads of Atmospheric Deposition Science
committee has developed a National Critical
Loads Database (NCLD; http://nadp.sws.uiuc.ed
u/committees/clad/db/) that is used in regional-
and national-scale projects assessing deposition
effects (Blett et al. 2014). However, the NCLD

does not currently include critical loads for
eutrophication effects of N deposition in western
U.S. mountain lakes.
The objective of this study was to estimate crit-

ical load N deposition rates for phytoplankton
biomass nutrient limitation shifts in remote
mountain lakes in the western United States. Pre-
vious studies estimated N critical loads for west-
ern U.S. mountain lake NO3 increases (Baron
et al. 2011, Nanus et al. 2017), and increases in
the relative abundance of indicator diatom spe-
cies for specific regions (Baron 2006, Saros et al.
2010, Nanus et al. 2012, 2017, Sheibley et al.
2014). Although N deposition increases have
caused shifts from N limitation to P limitation of
phytoplankton growth in lakes throughout the
Northern Hemisphere (Bergstr€om and Jansson
2006, Elser et al. 2009a), N critical loads for nutri-
ent limitation shifts have not previously been
quantified for western U.S. lakes. Phytoplankton
N-to-P limitation shifts constitute a fundamental
change in factors controlling lake primary pro-
duction and therefore have the potential to alter
biogeochemical processes, trophic dynamics, and
species diversity in mountain lake ecosystems
(Baron et al. 2011, Hessen 2013).
Here, we use existing western U.S. mountain

lake nutrient chemistry data (Williams and
Labou 2017), and data from previously pub-
lished nutrient enrichment experiments from
lakes across the western United States (Elser
et al. 2009b, Slemmons and Saros 2012, Williams
et al. 2016) to calculate N critical loads for phyto-
plankton biomass nutrient limitation shifts. We
then discuss results, critical load performance,
and uncertainties in the context of how critical
loads are typically used in decision making by
federal agencies.

METHODS

Overview
Nitrogen critical loads for phytoplankton bio-

mass nutrient limitation shifts were developed
by applying a multi-step process to existing data.
An overview of each step is provided here, and a
detailed description is provided in subsequent
methods sections. First, we selected a biological
measure of nutrient limitation shifts and defined
a threshold value of this biological measure. Sec-
ond, we used logistic regression to define lake
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water chemical thresholds for nitrate, dissolved
inorganic nitrogen (DIN), and DIN-to-total phos-
phorus (TP) mass ratio DIN:TP associated with
50% and 70% probability of exceeding of the bio-
logical threshold. Third, logistic regression mod-
els were developed to describe the mathematical
relationship between nitrogen deposition and
exceedance of biological thresholds (an empirical
critical load) or chemical thresholds (a modeled
critical load). Critical loads were calculated as
the total (wet plus dry) N deposition rate at
which there is a 50% probability of exceeding the
biological threshold. The critical loads thus rep-
resent a break point; below the critical load, N
limitation is more likely than P limitation, and
above the critical load, P limitation is more likely
than N limitation. P limitation is prevalent in
regions with elevated deposition, whereas N lim-
itation is prevalent in regions with low deposi-
tion (Bergstr€om and Jansson 2006, Elser et al.
2009a). When this critical load is exceeded, the
probability of N limitation is <50%, and biomass
P limitation may become widespread as N depo-
sition increases further.

Critical loads were developed using N deposi-
tion as the only predictor variable (univariate
binary logistic regression), and using both N
deposition and watershed characteristics as pre-
dictor variables (multivariate binary logistic
regression) to assess whether considering water-
shed characteristics altered critical load esti-
mates. Regression methods are described in
detail below. Lake chemistry data independent
of that used to generate critical load estimates
were also used to quantify the performance of
developed logistic regression models, critical
loads, and spatial variability of performance. We
quantified the ability of logistic regression mod-
els to accurately identify lakes where chemical
thresholds are exceeded, and estimated the false-
negative rate of our critical load. We defined a

critical load false negative as cases where lake
chemistry measurements indicate the lake chemi-
cal threshold was exceeded, but modeled deposi-
tion rates were less than the critical load. In such
cases, a critical load may not be protective of
nutrient limitation shifts.
Biological measures and thresholds were

developed using data from previously published
nutrient enrichment bioassays conducted in
western U.S. mountain lakes (Michel et al. 2006,
Elser et al. 2009b, Slemmons and Saros 2012,
Arnett et al. 2012, Williams et al. 2016, Table 1).
Lake chemistry data used in analyses were
obtained from the Georeferenced Lake Nutrient
Chemistry (GLNC) database (Williams and
Labou 2017). The GLNC database contains lake
chemistry data collected by researchers and gov-
ernment agencies for 3602 lakes across the west-
ern United States. It includes chemistry data
from 25 data sources, including federal agencies
that regularly monitor mountain lakes (NPS,
USFS), relevant publicly available data sets (WQ
Portal, USEPA 2007 and 2012 National Lakes
Assessments, USEPA Western Lakes Survey),
and data contributed by academic researchers
(Williams and Labou 2017). Data in the GLNC
database are constrained to data that were not
flagged as rejected or invalid by the original data
source, where sample date and depth informa-
tion were available, and where the lake location
could be verified through GIS research; see Wil-
liams and Labou (2017) for a full description of
GLNC database development. All lake chemistry
data used for analyses originated within a feder-
ally protected land (national park, national for-
est, or wilderness), and at elevation >1200 m.
Lake chemistry data were constrained to samples
collected July–October during 2006–2015 that
were from the lake surface, epilimnion (if strati-
fied), or a mixed water column. The July–October
time window was selected to be consistent with

Table 1. Characteristics of bioassays used to define chemical thresholds and empirical critical loads.

Study Lakes Region Type
Duration

(d)
Treatment
replicates

N addition
(lmol/L)

P addition
(lmol/L)

Time
period

Elser et al. (2009b) 32 Rockies Laboratory 4 4 7.5 0.5 2006
Slemmons and
Saros (2012)

6 Beartooth
Mountains

In situ 7 3 8 0.5 2010

Williams et al.
(2016)

9 Cascades,
Olympics

In situ 7–11 3 8 1 2013–2014
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the time window associated with bioassays.
Mean nitrate concentrations were calculated in
cases where multiple nitrate data points were
available across years. Detection limit values
were used in cases where results were below
detection limits.

For each lake used in analyses, N deposition
was estimated as 2006–2011 mean total N deposi-
tion (wet plus dry, all species), using output from
12-km grid bias-adjusted Community Multiscale
Air Quality (CMAQ) model simulations conducted
by the USEPA. This model was selected because
Williams et al. (2017) demonstrated it has the best
wet inorganic N deposition performance among
models available at the national scale required by
this study, including other CMAQ models with a
smaller grid size. It performed better than other
available national-scale models in mountain envi-
ronments, including at a 1654-m-elevation moni-
toring site on Mount Rainier (Williams et al. 2017).
The deposition data are described in the
Appendix S1 and in Williams et al. (2017). All
analyses were performed using the R statistical
software, version 3.2.1 (R Development Core

Team, 2017). Critical load calculations described
here are fully reproducible; data and R code neces-
sary to reproduce calculations, and associated
metadata are available on FigShare (https://doi.
org/10.6084/m9.figshare.4981832).
Logistic regression was used to develop critical

loads rather than linear regression for several
reasons. First, our goal was to develop chemical
thresholds and critical loads for nutrient limita-
tion shifts; nutrient limitation type is a categori-
cal response variable, and thus, assumptions of
linearity, homoscedasticity, and error normality
required by linear regression are violated. Sec-
ond, lake water NO3 responses to N deposition
typically show a dogleg rather than linear pat-
tern (Fig. 2; Baron et al. 2011), and some previ-
ous studies have not observed a significant linear
relationship between NO3 concentration in sur-
face waters and deposition across mountain
lakes (Clow et al. 2010, Nanus et al. 2012). Third,
logistic regression helps make variability in phy-
toplankton responses explicit. The data we pre-
sent (Fig. 1; Appendix S2: Figs. S1–S3) and
previous studies (Elser et al. 2009a) demonstrate

Fig. 2. Relationship between lake mean total N deposition and lake mean nitrate concentration among bioas-
say lakes (above), and an independent set of 385 lakes in the western United States. The western U.S. data set
used in the lower plot is 2006–2015 lake mean nitrate data from the Georeferenced Lake Nutrient Chemistry
database, a database of western U.S. mountain lake chemistry developed by Williams and Labou (2017).
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there is large variability across lakes in the N
concentration required to elicit phytoplankton
responses, including biomass nutrient limitation
shifts. This variability occurs because many
within-lake physical, chemical, and ecological
factors mediate phytoplankton responses to N
enrichment. By defining our critical load as the N
deposition rate where the probability of biomass
N limitation is <50%, we account for this variabil-
ity and make it explicit.

Biological measure and threshold for
phytoplankton biomass nutrient limitation shifts

A biological measure for phytoplankton bio-
mass nutrient limitation shifts and an associated
threshold value were defined using data from 50
previously published nutrient enrichment bioas-
says across 47 mountain lakes in the western
United States (Fig. 3, Table 1). Data were not
used if the lake location could not be verified
using GIS, or lake DIN:TP or chlorophyll a RR-
N/RR-P measurements were not available (see
definition below). In each bioassay, lake water
was divided among experimental containers to
create control, N addition, and P addition

treatments. Chlorophyll a responses to nutrient
additions were then measured after a 4- to 11-d
in situ or laboratory incubation period (Table 1).
The relative magnitude of biomass growth in
response to nitrogen addition (RR-N) and phos-
phorus addition (RR-P) in nutrient limitation
bioassays (RR-N/RR-P, where RR-X = mean
chlorophyll a treatment X/mean chlorophyll a
control) was selected as a biological measure of
nutrient limitation shifts, and RR-N/RR-P = 1
was selected as the biological threshold.
RR-N/RR-P indicates both the relative magni-

tude of N and P growth responses in bioassays
and the probability of nitrogen or phosphorus
limitation. Previous studies have demonstrated
its utility as an indicator of N deposition effects
(Bergstr€om and Jansson 2006, Elser et al. 2009a).
As RR-N/RR-P approaches infinity or zero, sin-
gle-element limitation by nitrogen or phosphorus
respectively is more likely. RR-N/RR-P was used
as a biological measure rather than the nutrient
limitation classifications assigned in the studies
because classifications depend on the statistical
approach used to define classifications and the
range of limitation categories considered, both of

Fig. 3. Location of mountain lakes used in analyses. Bioassay lakes (left, N = 47) are those where nutrient
enrichment bioassays have been conducted, and associated data were used to define biological thresholds and
chemical criteria for nutrient limitation shifts. Nitrate data lakes (right, N = 385) are mountain lakes where
nitrate data are available; these data were used to calculate phytoplankton species critical loads, to plot the rela-
tionship between deposition and nitrate (Fig. 2), and to quantify the critical load false-negative rate. Validation
lakes (right, N = 108) are mountain lakes, where watersheds were delineated and chemistry and watershed char-
acteristic data were used to evaluate performance of logistic regression models. Bioassay lakes are not included
with either the nitrate lakes or validation lakes.
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which varied across studies. A threshold of RR-
N/RR-P = 1 for limitation shifts is generally con-
sistent with classifications assigned in the studies
synthesized (Table 1). N-limitation classifications
were only reported where RR-N/RR-P > 1, and
P-limitation classifications were only reported
where RR-N/RR-P < 1. Other limitation classifi-
cations, such as co-limitation, antagonistic
growth, or no-limitation, were also assigned by
studies in some lakes where RR-N/RR-P > 1 or
RR-N/RR-P < 1. This diversity of classifications
reflects both variation in classification schemes
across studies and that bioassay growth
responses and nutrient limitation depend on
lake-specific factors such as phytoplankton com-
munity structure (Williams et al. 2016), lake
transparency (Williamson et al. 2010), tempera-
ture (Bergstr€om et al. 2013), and dissolved
organic matter (Daggett et al. 2015) in addition
to nitrogen and phosphorus.

Chemical thresholds for phytoplankton biomass
nutrient limitation shifts

Univariate binary logistic regression was used
to calculate threshold concentrations of water
NO3–N, DIN, and a DIN:TP mass ratio associ-
ated with RR-N/RR-P = 1 across bioassays. A
separate logistic regression model was devel-
oped for each parameter, with chemical parame-
ter concentration prior to experimental nutrient
addition as the predictor variable, and a binary
value (1 or 0) indicating whether lake mean
RR-N/RR-P > 1 as the response variable. Predic-
tor variables were natural-log-transformed. The
chemical threshold was defined as the parameter
value at which there was a 50% probability of
RR-N/RR-P > 1 (Table 2). Thresholds for 70%
probability of RR-N/RR-P > 1 were also calcu-
lated for use in modeled critical load calculations
(see Modeled critical loads for phytoplankton biomass
nutrient limitation shifts; Table 2).

Empirical critical loads for phytoplankton biomass
nutrient limitation shifts
Empirical critical loads are calculated by relat-

ing deposition rates directly to ecological res-
ponses and are typically developed using spatial
gradients of deposition, field experiments, or
long-term observations (Pardo et al. 2011, de
Vries et al. 2015). Empirical critical loads were
calculated here based on a N deposition spatial
gradient using two approaches. First, a univari-
ate binary logistic regression model was devel-
oped with N deposition as the predictor and a
binary value (1 or 0) indicating whether or not
lake RR-N/RR-P > 1 as the response variable. A
critical load was defined as the deposition rate
where there was a 50% probability of RR-N/RR-
P > 1, and thus represents the deposition rate
above which P limitation is more likely than N
limitation.
Second, a multivariate logistic regression

model was developed with N deposition and
lake watershed characteristics as predictor vari-
ables, and a binary value (1 or 0) indicating
whether lake RR-N/RR-P > 1 was the response
variable. Multivariate analyses were performed
to assess whether considering watershed charac-
teristics drastically changed critical load esti-
mates. Lake watersheds were delineated using
the 30-m digital elevation model and flow
direction grids from the National Hydrography
Dataset (NHDPlus version 2; Horizon Systems,
2012). Watershed characteristic information eval-
uated included vegetation cover, hypsometry,
bedrock geology, soils, and nitrogen deposition
(Appendix S1: Table S1). Data sources and meth-
ods for watershed characteristics are described in
detail in Appendix S1.
To develop a multivariate logistic regression

model, a univariate binary logistic regression
model was first developed for each potential
explanatory variable. Potential explanatory

Table 2. Results of logistic regressions used to define chemical thresholds.

Predictor B0 (SE) B1 (SE) AIC R2
N

Classification
score

Chemical criteria

50% 70%

ln(DIN:TP) 4.1 (1.3) �1.7 (0.5) 36.3 0.69 43/49 11.4 6.9
ln(NO3-N) 5.0 (1.7) �1.4 (0.4) 38.2 0.66 42/49 39.8 lg N/L 21.3
ln(DIN) 7.0 (2.1) �1.8 (0.5) 37.7 0.67 43/49 52.3 lg N/L 32.4

Notes: Criteria are indicated for 50% and 70% probability of RR-N/RR-P > 1. AIC, Akaike information criterion.
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variables used include lake water chemistry, N
deposition, and watershed characteristics (App-
endix S1). Although including water chemistry
variables as predictors limits the applicability of
the models to lakes with necessary chemistry
data, chemistry variables were included because
the chemical threshold analysis in this study and
numerous previous studies (Morris and Lewis
1988, Bergstr€om 2010, Williams et al. 2016)
demonstrate the importance of lake nutrient
chemistry to predicting phytoplankton biomass
nutrient limitation. Variables with univariate
P < 0.1 were used to build a multivariable
model (full model). Among water chemistry
variables NO3, NH4, DIN, TP, and DIN:TP, only
DIN:TP was used to build the full model,
because its univariate regression was most sig-
nificant among these, and it integrates the other
chemical variables. Similarly, univariate regres-
sions were significant for both wet inorganic and
total N deposition, but only total N deposition
was used in the full model. The full model was
used to develop two additional candidate multi-
variate models. The manual purposeful model-
building approach of Hosmer et al. (2013) was
used to develop a reduced candidate model
retaining only predictor variables with P < 0.1.
In addition, a stepwise candidate model was
developed using automated forward and back-
wards stepwise regression in R using the step()
function, which recalculates variances at each
step after addition of a variable to the model and
uses Akaike information criterion (AIC) values
to determine which variables to retain in the
model. The assumption of a linear relationship
between each variable and the logit of the
response was assessed as described in Field
et al. (2012). Variance inflation factor (VIF) val-
ues were used to test for multicollinearity. Vari-
ables with VIF > 10 were assumed to indicate
multicollinearity (Midi et al. 2010) and were
excluded.

The full, reduced, and stepwise candidate
models were then compared using several mea-
sures of model fit. Nagelkerke’s R2 (R2

N;
Nagelkerke 1991) was used to quantify
observed variation explained by the model. The
concordance statistic (c statistic) was used to
summarize model discrimination ability. The c
statistic ranges from 0.5 (no discrimination abil-
ity) to 1 (perfect discrimination ability) and

indicates the probability that for a random pair
of observations (Y = 1, Y = 0), the model cor-
rectly predicts that an affirmative (Y = 1) obser-
vation has a higher probability of Y = 1
compared to the Y = 0 observation (Austin and
Steyerberg 2012). The c statistic is equivalent to
the area under the curve of a receiver operating
characteristic curve (Steyerberg et al. 2010).
Model calibration, defined as agreement
between observed and predicted outcomes
(Steyerberg et al. 2010), was summarized using
the Hosmer–Lemeshow (HL) goodness-of-fit
test (Hosmer et al. 1997), comparing observa-
tions and predictions by decile of predicted
probability. A small P value resulting from the
HL test suggests one should reject the null
hypothesis that the model fits. Finally, a model
classification score was calculated to describe
the proportion of bioassays correctly classified
by each model as RR-N/RR-P > 1. A model was
considered to correctly classify RR-N/RR-P
within a lake if observed RR-N/RR-P > 1, and
the logistic regression model yielded >50%
probability of RR-N/RR-P > 1 at the mean depo-
sition rate for the bioassay lake. The best-fit
model was selected based on the above mea-
sures and model parsimony, and is presented in
the Results section (Table 3). In cases where N
deposition was a predictor variable in the best-
fit model, a multivariate empirical critical load
was calculated as the deposition rate where
there was a 50% probability of RR-N/RR-P > 1.

Modeled critical loads for phytoplankton biomass
nutrient limitation shifts
Modeled critical loads are calculated by relat-

ing N deposition to a chemical indicator of a
specified deposition-induced ecological change
(Pardo et al. 2011, de Vries et al. 2015). Here,
DIN:TP, DIN, and NO3–N were used as chemi-
cal indicators of a biological measure for shifts
from N to P limitation of biomass growth
(RR-N/RR-P = 1). For each chemical indicator, a
critical load was calculated using a univariate
and multivariate logistic regression approach
for comparison. In the univariate approach, a
logistic regression model was developed with N
deposition as the only predictor, and the chemi-
cal indicator concentration as the response. In
the multivariate approach, a best-fit model
was developed as described above, with the
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chemical indicator concentration as the response
variable. In both cases, a critical load was
defined as the deposition rate at a >49% proba-
bility of exceeding the biological threshold (RR-
N/RR-P = 1). The critical load was calculated
using the deposition rate for a 70% probability
of exceeding the chemical threshold, and the
chemical concentration for a 70% probability of
RR-N/RR-P > 1 (70% 9 70% = 49%). Model
selection details for multivariate models are
described in Appendix S3.

Modeled critical load performance
The GLNC database was used to select 108

lakes to use in performance analysis of logistic
regression models (Table 3). If logistic regressions
used to calculate modeled critical loads can cor-
rectly predict when N concentrations exceed
chemical thresholds (Table 2) in a larger indepen-
dent sample of lakes, this would increase confi-
dence that modeled CL equations could be
applied to similar mountain lakes without chem-
istry or bioassay data and yield reliable results.

Table 3. Logistic regression models and associated critical loads.

Model Response variable Coefficients
Estimate

(SE) P
Model
R2

N

Classification
score (%)

CL
(kg N�ha�1�yr�1)

1. Empirical (U) RR-N/RR-P > 1 0.29 34/50 (68)† 4.1
Intercept 5.7 (2.0) 0.004

ln (N deposition) �4.0 (1.4) 0.004
2. Empirical (M) RR-N/RR-P > 1 0.58 40/50 (80)† . . .

Intercept 2.6 (1.3) 0.05
DIN:TP �0.1 (0.03) 0.01
PHNSV 0.04 (0.03) 0.1

Permeability �0.2 (0.1) 0.1
Temperate forest 0.04 (0.02) 0.1

3. Modeled (U) DIN:TP > 6.8 0.60 36/49 (73)‡ 4.1
Intercept �8.2 (2.6) 0.001

N deposition 2.2 (0.7) <0.001
4. Modeled (U) DIN > 32.4 0.60 36/49 (73)‡ 4.1

Intercept �8.2 (2.6) 0.001
N deposition 2.3 (0.7) <0.001 66/108 (61)§

5. Modeled (U) NO3–N > 21.3 0.60 39/49 (80)‡ 4.1
Intercept �8.2 (2.6) 0.002

N deposition 2.3 (0.7) <0.001 74/108 (69)§
6. Modeled (M) DIN:TP > 6.8 0.73 41/49 (84)‡ 2.8–5.0

Intercept 1.7 (5.0) 0.7
N deposition 3.2 (1.7) 0.05

Temperate forest �0.09 (0.04) 0.04
Lake elevation �0.003 (0.002) 0.1
Open Water �0.3 (0.15) 0.04

7. Modeled (M) DIN > 32.4 0.73 40/49 (82)‡ 2.9–5.2
Intercept 0.7 (4.7) 0.8

N deposition 2.7 (1.4) 0.05
Temperate forest �0.07 (0.04) 0.04
Lake elevation �0.002 (0.002) 0.2 67/108 (62)§
Open water �0.3 (0.2) 0.03

8. Modeled (M) NO3–N > 21.3 0.68 43/49 (87)‡ . . .

Intercept 4.1 (1.1) <0.001
Temperate forest �0.08 (0.3) 0.001

Open water �0.50 (0.2) 0.002

Notes: U, univariate binary logistic regression; M, multivariate binary logistic regression. An ellipsis (. . .) indicates a CL
could not be calculated because N deposition was not among the predictor variables in a multivariate model; PHNSV, polar
and high-montane nonvascular and sparse vegetation.

† Classification score calculated as proportion of bioassays correctly classified as RR-N/RR-P > 1.
‡ Classification score calculated as proportion of bioassays where chemical threshold exceedance was correctly predicted.
§ Classification score calculated as proportion of lakes where chemical threshold exceedance was correctly predicted in 108

independent lakes (validation lakes; Fig. 3).
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Lakes were filtered from the GLNC database
using the same location and sampling criteria
applied above, with the additional requirements
that lakes have NH4 data in addition to NO3 data,
and the criteria that we were able to delineate the
lake watershed, given project scope constraints
and challenges of accurately delineating lakes with
very small watersheds in complex terrain. Loca-
tions of these 108 lakes are displayed in Fig. 3 (val-
idation lakes). For each lake, the watershed was
delineated, and watershed characteristics were
quantified as described above to enable evaluation
of both univariate and multivariate modeled CLs.
The number and percentage of lakes where chemi-
cal concentrations were correctly predicted to be
above or below thresholds was calculated and
used to compare performance among models.

RESULTS

Chemical thresholds for phytoplankton biomass
nutrient limitation shifts
Across bioassays, lake NO3–N was positively

related to N deposition, a pattern consistent with
mountain lakes throughout the western United
States (Fig. 2). Lake NO3–N was a primary driver
of relative responses in bioassays; the magnitude
of biomass growth responses to N addition was
negatively related to lake NO3–N prior to nutrient
addition (Fig. 4). Lake NO3–N, DIN, and DIN:TP
were all statistically significant predictors of
RR-N/RR-P response category, and explained sim-
ilar amounts of variation in response outcomes
(R2

N = 0.66–0.68; Table 2). There was a 50%
probability of RR-N/RR-P > 1 (N limitation) at

Fig. 4. Relationship between chlorophyll a relative responses to experimental nutrient additions (RR-X = chl a
treatment X/chl a control) and lake nutrient chemistry prior to additions. The dashed horizontal line indicates
RR = 1 (top, middle) or RR-N/RR-P = 1 (bottom).

 ❖ www.esajournals.org 10 October 2017 ❖ Volume 8(10) ❖ Article e01955

WILLIAMS ET AL.



39.8 lg NO3–N/L, 52.3 lg DIN/L, and 11.4 DIN:
TP, and a 70% probability of RR-N/RR-P > 1 at
21.3 lg NO3–N/L, 32.4 lg DIN/L, and 6.9 DIN:
TP (Table 2). The probability of biological thresh-
old exceedance is plotted against concentration
for each parameter in Appendix S2: Figs. S1–S3.

Empirical critical loads for phytoplankton biomass
nutrient limitation shifts

The univariate binary logistic regression model
with N deposition as the only predictor was sta-
tistically significant, and yielded an empirical
critical load value of 4.1 kg total N�ha�1�yr�1 for
a 50% probability of RR-N/RR-P > 1 (Table 3,
model 1). A multivariate empirical CL could not
be calculated because N deposition was not
among the variables that best predicted RR-N/
RR-P > 1 (Table 3, model 2).

Modeled critical loads for phytoplankton nutrient
limitation shifts

Univariate regressions predicting DIN:TP,
DIN, and NO3–N response category all yielded a
modeled critical load of 4.1 total kg total
N�ha�1�yr�1 and had similar model fit (Table 3,
models 3–5). Best-fit multivariate regression
models had greater R2

N values and classification
scores (calculated using the same bioassay lakes
used to construct the model) than corresponding
best-fit univariate models (Table 3). In best-fit
multivariate regression models predicting DIN
(Table 3, model 7) and DIN:TP (Table 3, model 6)
response categories, N deposition was among
variables that best predicted response category,
and a modeled critical load could be calculated.
Across the bioassay lakes, modeled critical loads
averaged 3.8 kg total N�ha�1�yr�1 (range 2.8–
5.0 kg total N�ha�1�yr�1) when based on DIN:TP
response category, and 3.8 kg total N�ha�1�yr�1

(range: 2.9–5.2 kg total N�ha�1�yr�1) when based
on DIN response category. For NO3–N, N depo-
sition was not among predictor variables in the
model with the best classification score (43/49;
Table 3, model 8); the full, reduced, and stepwise
models all had similar R2

N, c statistic, and H–L
value, so the best-fit model was identified based
on classification score and parsimony. Variables
in the best-fit model included percent watershed
cover of temperate forest and open water
(Table 3, model 8). N deposition was among pre-
dictor variables in a model predicting NO3–N

response category that had a slightly lower clas-
sification score (42/49), but two additional vari-
ables, and so was not selected as the final model
based on parsimony and is not shown in Table 3.
This model included N deposition, percent
watershed temperate forest cover, lake elevation,
and percent watershed open water as predictors.
When applied across bioassays to calculate criti-
cal loads, this model estimated a mean critical
load of 3.7 kg total N�ha�1�yr�1 (range: 2.7–5.2).

Modeled critical load performance
When applied to an independent sample of

108 lakes, logistic regression equations used to
calculate modeled critical loads correctly pre-
dicted whether or not chemical thresholds were
exceeded in 61% of lakes using the DIN univari-
ate model (model 4; Table 3), 62% of lakes using
the DIN multivariate model (model 7; Table 3),
and 69% of lakes using the NO3-N univariate
model (model 5; Table 3). Prediction accuracy
was positively related to lake mean N deposition
rate (Fig. 5). A performance evaluation was not
conducted for models predicting DIN:TP excee-
dance because of a limited number of lakes with
DIN:TP data, and because relative response plots
(Fig. 4) and thresholds (Table 2) suggest lake N
was the primary driver of RR-N/RR-P > 1.
The univariate binary regression model predict-

ing lake NO3 threshold exceedance (Table 3,
model 5; 4.1 kg total N�ha�1�yr�1) had the best
performance and was the most parsimonious
model among those from which a critical load
could be calculated, so we evaluated this critical
load’s regional false-negative rate. We defined a
critical load false negative as cases where the lake
chemistry threshold for 50% probability of RR-N/
RR-P = 1 (39.8 lg NO3–N/L) was exceeded, but
the critical load was not. In such cases, exceedance
of the chemical threshold, and thus potentially
also a biomass nutrient limitation shift, occurs
when the deposition rate is lower than the critical
load, and thus, the critical load may not be
protective. This analysis assumes this chemical
threshold is representative of mountain lakes
throughout the western United States. To estimate
the false-negative rate, we identified 385 moun-
tain lakes with nitrate data from the GLNC data-
base that met data criteria described in the
Methods section (nitrate lakes; Fig. 3). Among the
385 lakes, there were a total of 49 false negatives
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Fig. 5. Ability of logistic regression equations used to develop modeled critical loads (Table 3) to predict
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(13%), where the NO3 threshold was exceeded,
but the critical load was not. No false negatives
were observed in the Cascades or Olympics, and
multiple false negatives were observed in the
Rockies and Sierra Nevada (Fig. 6). False-negative
rates were 10% (17/175) in the Rockies and 22%
(32/146) in the Sierras. Among lakes where the
NO3 threshold was exceeded, 35% (17/48) in the
Rockies and 100% (32/32) in the Sierra Nevada
had lake mean deposition rates below 4.1 kg total
N�ha�1�yr�1. These false-negative rates would be
reduced to near zero at a critical load of 2.0 kg to-
tal N�ha�1�yr�1 (Fig. 6).

DISCUSSION

Many remote mountain lakes in the western
United States are located within federally pro-
tected lands, such as National Parks, National
Forests, or Wilderness Areas, where federal laws
and policies of federal land management agen-
cies require ecosystems to be protected from
adverse effects of pollution, including atmo-
spheric N deposition (Porter et al. 2005, USFS

et al. 2011, Cummings et al. 2014). This study
estimated chemical thresholds and critical loads
for phytoplankton biomass nutrient limitation
shifts resource managers could use to help assess
or prevent eutrophication effects of N deposition.
This was the first study to estimate critical loads
for biomass nutrient limitation shifts in the west-
ern United States, and the first to estimate moun-
tain lake phytoplankton critical loads at the scale
of the western United States.
Resource managers in the western United

States typically use critical loads to test for critical
load exceedances through a deterministic
approach. A Eulerian atmospheric model is typi-
cally used to estimate N deposition rates over a
region of interest, and then, a critical load value is
subtracted from modeled deposition rates within
each deposition model grid cell, assuming no
uncertainty in either the deposition value or criti-
cal load value (Williams et al. 2017). An excee-
dance occurs if ambient deposition is greater than
a critical load. Each exceedance calculation may
have a different objective, depending on the spa-
tial scale, relevant legal mandates for resource

chemical threshold exceedance when applied to an independent data set of 108 mountain lakes. Solid horizontal
lines indicate chemical thresholds (Table 2). Dashed vertical lines or shaded area indicates critical loads predicted
based on bioassay lakes data (Table 3). Open and closed circles indicate lakes where exceedance category (i.e.,
above or below threshold) was predicted incorrectly and correctly, respectively.

(Fig. 5. Continued)

Fig. 6. Distribution of N deposition rates for all lakes among 385 western U.S. mountain lakes with 2006–2015
NO3 data (gray bars), and for lakes where the NO3 threshold for 50% probability of RR-N/RR-P = 1 is exceeded
(blue bars). The dashed horizontal line is the critical load (4.1 kg N�ha�1�yr�1). Blue bars with deposition rates
less than the critical load represent lakes where the NO3 threshold is exceeded, but the critical load is not (a false
negative).
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protection, and decisions calculations are
intended to inform. For our recommended critical
load for biomass nutrient limitation shifts
(4.1 kg total N�ha�1�yr�1; Table 3, model 5), we
estimate from our performance analyses that in
13% of western U.S. mountain lakes, and a higher
percentage of Rockies and Sierras lakes (Fig. 6),
this critical load may not be fully protective of
nutrient limitation shifts, because our estimated
chemical threshold for limitation shifts will be
exceeded, but the critical load will not be
exceeded. If a resource manager seeks to prevent
false negatives entirely, our performance analyses
suggest a critical load of 2.0 kg total N�ha�1�yr�1

would be needed to be fully protective of lake
chemical threshold exceedances, and thus nutrient
limitation shifts (Fig. 6).

Three major sources of uncertainty affect our
critical load estimates. First, bias (modeled–
observed) of N deposition models can be large
relative to, or even exceed 100% of critical load
values for sensitive receptors such as phyto-
plankton (Williams et al. 2017). We minimized
this source of uncertainty by using published
wet inorganic N deposition bias (modeled–ob-
served) values (Williams et al. 2017) to select the
best-performing model among those available at
the national scale needed for this study. Our
selected model had a mean bias of 0.05 kg wet
inorganic N�ha�1�yr�1 (range: �1.1 to 1.4) across
National Trends Network monitoring sites in the
Pacific Northwest, and a mean bias of �0.48 kg
wet inorganic N�ha�1�yr�1 (range: �2.2 to 0.16)
at a high-elevation monitoring site on Mount
Rainier (Williams et al. 2017). These wet inor-
ganic N deposition bias values range from �53%
to 34% of our 4.1 kg total N�ha�1�yr�1 critical
load, but only represent one component of depo-
sition model bias; dry deposition bias may also
be large relative to critical loads, but is currently
not easily quantifiable due to limitations of avail-
able measurement data. While bias of available
deposition models is potentially large relative
our critical values and those published for other
sensitive receptors, by selecting a model for
which wet inorganic N deposition bias has been
quantified, we made the potential magnitude of
this bias explicit to critical load users.

Second, our critical load estimates may be
affected by GIS layers used here to quantify water-
shed characteristics. The land cover (1:100,000),

soil (1:250,000), and geology (1:500,000) GIS layers
used here are relatively coarse, because fine-scale
maps are not available for the entire western Uni-
ted States. Multivariate models in Table 3, which
include watershed characteristics as predictors,
had greater R2

N and classification scores than cor-
responding univariate models with N deposition
as the only predictor variable. However, when
models were applied to an independent data set of
108 lakes, the classification score of the multivari-
ate DIN model (62%) was only slightly better than
that of the univariate DIN model (61%). Our uni-
variate model with N deposition as the only pre-
dictor performed best when applied to an
independent data set (69%), but a multivariate
model including watershed characteristics may
have performed better if finer-resolution GIS lay-
ers were available at the national scale. Nanus
et al. (2012) developed linear regression models
predicting lake NO3 in the Rockies using several
of the same coarse GIS layers used here and found
that watershed mean slope, percent barren area,
and N deposition best predicted lake NO3. In con-
trast, using fine-scale layers available only for
Rocky Mountain National Park yielded different
predictor variables and higher predicted NO3 con-
centrations compared to the model developed
using coarser-scale GIS layers (Nanus et al. 2012).
Thus, it is possible using finer-scale GIS layers for
watershed characteristics would have yielded dif-
ferent multivariate models with better perfor-
mance and perhaps lower critical load values.
The third and perhaps largest source of uncer-

tainty is variability in the lake N concentration
required to elicit a nutrient limitation shift across
lakes. Our critical loads are defined as the total
(wet plus dry) N deposition rate at which there is
a 50% probability of phytoplankton biomass P
limitation. While P limitation of biomass growth
is more prevalent in lakes with elevated N
concentrations and N deposition rates, previous
syntheses of nutrient enrichment bioassays con-
ducted across the Northern Hemisphere (Elser
et al. 2009a), as well as bioassay data used here
(Appendix S2: Figs S1–S3), demonstrate P limita-
tion may occur at a wide range of lake N concen-
trations, because many other within-lake
physical, chemical, and ecological factors medi-
ate phytoplankton responses to lake N enrich-
ment. We used logistic rather than linear
regression because logistic regression is a
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probabilistic approach that accounts for this
uncertainty and makes it explicit. Previous stud-
ies highlighted the disproportionate effect of
chemical threshold values on phytoplankton
critical load estimates. Nanus et al. (2012) used
multivariate linear regression to calculate critical
load for growth responses of the indicator dia-
tom A. formosa in the Rockies and reported that
their critical load values were highly sensitive to
chemical threshold values and that uncertainty
in critical loads and exceedances attributable to
chemical thresholds “may be much larger than
that attributable to other sources of error, such as
MLR [multiple linear regression] modeling (p.
133).” Fig. 1 highlights that published species-
level chemical thresholds are highly variable. We
believe our chemical thresholds for biomass
nutrient limitation shifts are relatively well con-
strained because they are based on data from 47
mountain lakes across the western United States.
However, chemical thresholds for phytoplankton
responses to N enrichment need to be quantified
in additional western U.S. mountain lakes to
verify thresholds estimated here and reduce
uncertainty in critical loads for phytoplankton
responses.

Chemical thresholds
Lake N chemical thresholds defined here for

biomass nutrient limitation shifts overlap with
those previously defined in western U.S. moun-
tain lakes for different phytoplankton responses
(Fig. 1). Thresholds for stimulation of phyto-
plankton biomass growth in Pacific Northwest
mountain lakes (13–25 lg DIN/L; Williams et al.
2016) and in Sierra Nevada mountain lakes (0.3–
4 lmol N/L, 5–56 lg N/L; Heard and Sickman
2016) overlap with nutrient limitation shift
thresholds defined here (21–53 lg N/L; Table 2).
Monod Ks values for the most sensitive species
are an order of magnitude or more lower for than
our thresholds for limitation shifts (Fig. 1).
However, there can be large variability in Monod
constants across lakes and regions for some indi-
cator diatoms such as Fragilaria species, and
some less-sensitive species have a Ks comparable
to biomass limitation shift thresholds defined
here (Williams et al. 2016). While published
threshold concentrations are generally lowest at
the species level and are higher for stimulation of
phytoplankton biomass growth and nutrient

limitation shifts, the variability and overlap of
thresholds within and across studies (Fig. 1)
highlight that phytoplankton community com-
position and other within-lake variables can
strongly affect chemical thresholds and lake sen-
sitivity to N deposition.
Bergstr€om (2010) previously estimated lake

DIN:TP mass ratio thresholds for a 50% (2.2) and
70% probability (3.4) of biomass P limitation
using an independent data set. Our correspond-
ing DIN:TP thresholds for 50% (11.4) and 75%
probability of P limitation (21.6, based on 25%
probability of N limitation, RR-N/RR-P > 1) are
higher. Although both studies used binary logis-
tic regression to estimate thresholds, our analy-
ses predicted RR-N/RR-P = 1 as a biological
threshold, whereas Bergstr€om (2010) used nutri-
ent limitation categories reported by bioassay
studies. Our thresholds are also specific to west-
ern U.S. mountain lakes, whereas Bergstr€om
(2010) used bioassay data from a few mountain
lakes in the Colorado Rocky Mountains and a
large number of European lakes. The binary
logistic regression model developed in this study
explained a similar amount of variance in our
western U.S. mountain lake population (R2

N =
0.68) as that reported by Bergstr€om (2010; R2

N =
0.72). Compared to the lake population used by
Bergstr€om (2010), the population used here had
lower N deposition rates, but similar DIN and
DIN:TP. Other within-lake factors discussed
above can also modify phytoplankton responses
to nutrient enrichment and may also contribute
to interregional differences.

Critical loads
To our knowledge, only one previous study

estimated a N critical load for phytoplankton
biomass nutrient limitation shifts. Bergstr€om and
Jansson (2006) compiled chlorophyll a, nutrient
chemistry, and N deposition data for lakes
throughout the Northern Hemisphere. They plot-
ted response of regional average chlorophyll a:
TP ratio to regional average wet inorganic
N deposition, which revealed that the increase in
lake chlorophyll a per unit TP leveled off as N
deposition increased (Bergstr€om and Jansson
2006). Based on this plot, the authors estimated
N limitation in regions with less than 2.5 kg
wet inorganic N�ha�1�yr�1, and P limitation in
regions with greater than 5 kg wet inorganic

 ❖ www.esajournals.org 15 October 2017 ❖ Volume 8(10) ❖ Article e01955

WILLIAMS ET AL.



N�ha�1�yr�1 (Bergstr€om and Jansson 2006). In
this study, critical loads were defined using total
(wet plus dry) N deposition estimates, so our
estimated critical load of 4.1 kg total N�ha�1�yr�1

for a shift to P limitation is lower.
Several previous studies estimated a critical

load for NO3 increases in high-elevation lakes by
plotting lake NO3 across a spatial gradient of N
deposition, as in Fig. 2, and inferring a critical
load as the deposition rate where elevated lake
NO3 first appears (Baron et al. 2011, Nanus et al.
2017). Using this approach, a critical load of
2.0 kg total N�ha�1�yr�1 could be inferred from
Fig. 2, which is the same as our minimum critical
load necessary to prevent false negatives and is
similar to lake NO3 critical loads estimated by
Baron et al. (2011) for the Rockies (3.0 kg total
N�ha�1�yr�1) and Sierras (2.0 kg total N�ha�1�
yr�1) and by Nanus et al. (2017) for the Greater
Yellowstone Area (3.0 kg total N�ha�1�yr�1).
Considering these independent estimates are
similar and are similar to critical loads for phyto-
plankton responses quantified here, 2–3 kg total
N�ha�1�yr�1 may be a robust critical load esti-
mate for the onset of deposition-induced lake
nitrate increases in the most sensitive western
U.S. mountain lakes. However, as noted above,
such critical loads may be prone to type I error
because deposition model bias may be large rela-
tive to these critical load values.

Many studies have estimated critical loads for
growth stimulation of indicator diatom species,
with critical load estimates ranging from 1.0 to
>10 kg wet inorganic N�ha�1�yr�1 (Baron 2006,
Saros et al. 2010, Nanus et al. 2012, Sheibley et al.
2014) and <1.5 to >4.0 kg total N�ha�1�yr�1

(Nanus et al. 2017). Considering dry deposition
ranges from 30% to 90% of total deposition across
mountainous regions of the western United States
(NADP 2017), our 4.1 kg total N ha�1 yr�1 over-
laps with critical loads previously estimated for
indicator diatoms. To compare diatom and bio-
mass nutrient limitation critical loads, we also
calculated a range of potential critical loads for
A. formosa growth responses. We calculated the
range of modeled total N deposition rates
observed among 385 lakes with nitrate data
(nitrate lakes; Fig. 3) where measured lake nitrate
exceeds the lowest published A. formosa Monod
half-saturation constant (Ks; 2.5 lg N/L; Arnett
et al. 2012). This analysis is described in detail in

Appendix S4. Total N deposition rates in lakes
with NO3–N >2.5 lg N/L ranged from 1.4 to
6.0 kg total N�ha�1�yr�1 (mean = 3.3, median =
3.2). Ranges were 1.8–3.3 kg total N�ha�1�yr�1

in the Cascades (mean = 2.5), 1.9–6.0 kg total
N�ha�1�yr�1 in the Rockies (mean = 3.6), and
2.1–5.6 kg total N�ha�1�yr�1 in the Sierras
(mean = 2.8). Considering that our biomass nutri-
ent limitation shift critical load of 4.1 kg total
N�ha�1�yr�1 falls within the range of diatom criti-
cal load values estimated through this analysis
and in previously published studies and that
chemical thresholds of phytoplankton species are
highly variable (Fig. 1), our biomass nutrient limi-
tation shift critical load may also be protective of
indicator diatom changes in some lakes.

CONCLUSIONS

This was the first study to estimate critical
loads for phytoplankton biomass nutrient limita-
tion shifts in the western United States, and the
first to estimate mountain lake phytoplankton
critical loads at the scale of the western United
States. We estimated N critical loads for phyto-
plankton biomass nutrient limitation shifts
(4.1 kg total N�ha�1�yr�1, range: 2.8–5.2 kg total
N�ha�1�yr�1) in mountain lakes across the west-
ern United States. Performance analyses pre-
dicted that using a critical load of 4.1 kg total N
ha�1 yr�1 in critical load exceedance calculations
may yield false-negative prediction of nutrient
limitation shifts in 13% of western U.S. mountain
lakes. A critical load of 2.0 kg total N ha�1 yr�1

would likely reduce the occurrence of false posi-
tives to near zero, but may be more prone to type
I error because deposition model bias is typically
large relative to low critical load values. Pre-
sented critical loads overlap with those estimated
for mountain lakes in previous studies, but also
have substantial uncertainties related to accuracy
of N deposition models and GIS data sources
used, and variability across lakes in the N con-
centration required to elicit a nutrient limitation
shift that critical load users should consider.
Results provide critical load values managers can
use to assess N deposition impacts on western
U.S. mountain lakes, and associated performance
information managers can use to consider if pre-
sented critical loads are adequate for specific
management applications.
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