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1 Introduction

This report has been submitted to FEMA Region IX as a final project report for a project on developing
new methodologies for Probabilistic Tsunami Hazard Assessment (PTHA). We propose a methodology for
taking a large number of realizations of potential future earthquakes (with associated probabilities) and
producing good approximations to the resulting hazard curves and maps without doing a computationally-
expensive fine-grid tsunami simulation for each realization. The specific goals and an outline of the strategy
are summarized in Section 2.

We believe that this project illustrates the potential of the methodology we propose, but there is still
much work to be done to optimize it and to apply it to specific hazard assessment projects. In particular,
the input for this methodology is a large number of realizations/probabilities that are assumed to accurately
reflect the true probability distribution of future events. For the work in this report we generated a set of
400 realizations as test data but we know they are not a good reflection of reality, as discussed further in
Section 3. Generating a more realistic set was not the goal of this project.

On the methodology side there is also much that can be done to improve on the methods presented
below. We have learned a great deal from the work presented here and in retrospect would do many things
differently. We have listed several observations and ideas for improving the methodology in this report, and
will be using it as the basis for future work on this topic.

For the tsunami simulations presented in this report we have used the GeoClaw software [3, 18], from
Version 5.3.1 of the open source software Clawpack [6]. The techniques developed here are independent of
what software is used for the tsunami simulation, however.

This report contains a number of figures, but many more can be viewed online from
http://depts.washington.edu/ptha/FEMA/

All of the computer code used in this work has also been archived there, including the code to generate
the earthquake realizations, to run the tsunami simulations, to perform the filtering and clustering, and to
produce the hazard curves and maps, and to perform comparisons of different approaches.

1.1 Background on PTHA

In 2006, Geist and Parsons [11] first adapted the 1968 Cornell Probabilistic Seismic Hazard Analysis (PSHA)
methodology [7] to Probabilistic Tsunami Hazard Assessment (PTHA), primarily by substituting numerical
model computations of tsunami wave height for empirical seismic attenuation relationships to determine
ground motions. Since then, there has been a steady growth in research to improve the PTHA methodology
and to apply it to hazard assessments on the scale of individual communities (González, et.al. [13] in 2009;
Thio, et al. [28] in 2012; González et.al. [14] in 2014) and larger geographical regions (Annaka et al. [2] in
2007; Burbidge, et al. [5] in 2008; Heidarzadeh and Kijko [16] in 2011; Thio et al. [28] in 2012).

Seismic source specification is a fundamental input for both PSHA, to generate seismic waves that
induce ground motion, and PTHA, to generate tsunami waves that result in coastal inundation. Similarly,
specification of the wave propagation media is required for each methodology i.e., the distribution of the
earth’s density and elasticity for seismic waves, and the distribution of topography (water depth and land
height) for tsunamis. We here assume topography is adequately known, in the form of a digital elevation
model (DEM), and focus on the source specification problem in PTHA.

Most generally, for seismic tsunami generation, the temporospatial evolution of vertical and horizontal
crustal deformation are required as the initial and forcing conditions for tsunami modeling, at the appropriate
time and length scales. Okada [23] provides frequently-used closed expressions for seismic deformation due
to a point source, given the depth and the dip, strike and tensile components of the slip vector, s, and, in
the case of a finite rectangular fault plane, the additional parameters of length, L, and width, W. Then, for
extended finite sources such as those that might occur on the Cascadia Subduction Zone (CSZ) many such
point or relatively small fault plane sources must be distributed on the surface of a finite fault model, such as
the slab model in Blair, et.al, [4], or, more recently, the model of [9]. At this point, then, the seismic source

http://depts.washington.edu/ptha/FEMA/
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specification problem becomes that of assigning the temporospatial distribution of slip vectors, s, over the
model fault plane surface.

The temporal dependence of s does have an effect on the generation and evolution of a tsunami, but this
effect is typically small compared to spatial variations in s because the seismic rupture speed is substantially
larger than the tsunami propagation speed; Geist [10] provides a review of theoretical, numerical and exper-
imental investigations into this issue. Also see, in particular, the analysis of Keller [17] and the theoretical
and experimental work of Hammack [15]. For simplicity, therefore, we here ignore any time-dependency of
s and focus only on its spatial variations; i.e., we make the frequently adopted assumption of instantaneous
crustal deformation that produces an initial tsunami waveform that is an exact copy of the ocean bottom
displacement.

Suites of possible earthquake scenarios for a given region can be developed through expert geological and
seismological knowledge that takes account of field measurements that include geodetic data and paleoseismic
evidence, and geophysical constraints such as fault geometry and slip budgets; a logic tree is frequently
employed to organize and categorize earthquakes by recurrence interval, fault mechanism, magnitude, length,
width, and other seismic parameters. As an example, the National Seismic Hazard Mapping program of the
U.S. Geological Survey periodically updates and publishes PSHA products for the nation (Petersen, et al.
[25]; Petersen, et al. [26]). Similarly, in 2013 Witter, et al. [29] developed suites of earthquake scenarios that
provide the spatial resolution for the slip distributions required to conduct PTHA studies; these scenarios
were subsequently used to assess the impact of partial CSZ ruptures on the Washington and northern Oregon
coasts in 2014 by Priest et al. [27] and in the 2014 PTHA study of Crescent City by González et.al. [14]. For
the work presented here we generated random earthquake realizations using an approach described briefly
in Section 3 and in more detail in Appendix G.

1.2 Hazard curves and hazard maps

We assume that the general PTHA methodology of [14] will be used to construct hazard maps for a region of
interest by first construcing hazard curves at each point on a grid covering this spatial domain. The hazard
curve at each point shows a quantity of interest (such as the maximum depth of flooding) on the horizontal
axis and the probability of exceeding this value on the vertical axis (e.g. see Figure 10). In [14] these were
generated by running a fine-grid tsunami simulation for each possible realization and combining these using
their associated probabilities.

In that work we also incorporated tidal uncertainty by running simulations at different possible tide stages
and incorporating information about the tidal patterns at Crescent City, using methods we also published
in [1]. Here we ignore tidal uncertainty, although the methods we develop could easily be extended to that
case at the cost of additional simulations at different tide stages (which would make the efficiency of the
filtering techniques developed here even more important).

Once a hazard curve is available at each point on a spatial grid, it is then possible to produce a hazard
map showing the depth of flooding expected at each point for some particular fixed probability. (Or showing
the probabilities associated with a fixed flooding depth, an alternative product we advocate in [14] may be
useful.)

The goal of the current project is to efficiently compute good approximations to the hazard curves at
each spatial point.

1.3 The study region in Crescent City, CA

We chose a rectangular region of Crescent City, CA as our study region, the region enclosed by the blue
rectangle in Figure 1. We wanted a relatively small region containing an interesting variety of topography.
We specified an 88×78 grid of points at 2/3 arc-second resolution where the hazard curves will be computed.

Figure 1 also shows two transects (in yellow) and below we show some of the results along these transects.
The western transect was chosen to go through downtown Crescent City while the eastern transect goes up
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a narrow valley at the northen end. This valley is particularly interesting since the water depth may reach
high values in this valley when simulations are peformed on a fine grid, while the resolution of the coarser
grids used in this study do not resolve the valley at all.

Figure 1: The rectangular region of Crescent City, CA that was used for this study (blue box) and two
transects (yellow lines).
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2 Overview

Here we summarize the problem that was the primary focus of this study and the approaches we have taken
to solving this problem and to assessing and comparing different methods.

1. Problem:

(a) Given:

i. Some large number N of hypothetical earthquake events with associated probabilities (e.g
N = 400 in this study). We assume these probabilities sum to 1 (i.e. we consider conditional
probabilities on possible realizations of an event with unspecified return time).

ii. A specific region where hazard maps are needed. Here we use a portion of Crescent City, CA
as described above.

(b) Produce:

i. Hazard curves at each point on a grid of points covering the region of interest. A hazard curve
shows the probability of exceedance as a function of flooding depth, and can be constructed
from computational results showing the maximum depth of flooding at this spatial point for
each of the hypothetical events. (Note that these would be “conditional hazard” curves based
on assuming the events considered have probabilities summing to 1. These would have to be
weighted by the probability of the overall event, based on its return time, and combined with
similar curves obtained by considering other possible tsunami sources in order to obtain the
full hazard curves.)

ii. Hazard maps (e.g. the 500-year flood map, which shows the depth of flooding associated with
any fixed probability, or maps that show the probability of flooding for a fixed depth). These
can be produced from the hazard curves at each point using methods described elsewhere,
e.g. [14].

2. Brute force approach: Simulate all N events on a sufficiently fine computational grid (using e.g.
GeoClaw) in order to capture the maximum flooding depth at each point on the regional grid. We
assume this gives the “exact” hazard curve at each point but is too expensive.

3. Goal of this study: Develop a methodology to produce good approximations to the hazard curves
in a way that requires far fewer GeoClaw simulations (e.g. M = 20 rather than N = 400).

4. Strategy:

(a) Perform cheap computations for each event to obtain one or more proxy values that are correlated
with the severity/pattern of flooding. In particular we have explored:

i. Performing GeoClaw simulations for all N events but on a much coarser grid (e.g. 10 arc-
second rather than 2/3 arc-second) since coarse grid simulations can be run much more
quickly.

ii. Calculating proxies based only on the seafloor deformation of each earthquake event. This is
typically the way the events are described and so this is very cheap, but gives proxies that
are not as well correlated with the quantities of interest.

(b) Cluster the events into M � N clusters of “similar” events based on the proxy values.

(c) Run a single fine-grid simulation for one representative event from each cluster.

(d) Produce hazard curves based on these M fine grid simulations by either:

i. Assigning a probability to each of the M representative events by summing the probabilities
of all events in its cluster, or

ii. Using the fine grid solutions from the representative event to improve the coarse grid solutions
for other events in the cluster (giving pseudo-fine grid results) and then using all N events to
construct the hazard curve (based on the pseudo-fine grid results for events that do not have
fine-grid results).
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5. Testing and comparing strategies:

(a) We generated N = 400 “random” earthquake events on the southern portion of the Cascadia
Subduction Zone (CSZ) and assigned a probability to each, as described in Section 3.

(b) We used the brute force approach described above to compute the “exact” hazard curve at each
point on this grid, based on GeoClaw simulations of each event with full 2/3 arc-second resolution
(about 20 m) in the region around Crescent City (adaptive mesh refinement (AMR) is used, so the
grid is coarser elsewhere). This can then be used to assess the accuracy of various approximation
approaches.

(c) We also ran a coarse-grid GeoClaw simulation with a resolution of 10 arc-seconds (about 300 m)
around Crescent City for each of the N = 400 events.

(d) Although the coarse-grid results are lacking many details of the flow, we found that several proxy
quantities determined from these results are highly correlated with similar values from the fine-grid
runs. This is explored in Section 4.

(e) We developed and tested several strategies for clustering and for using the resulting small set of
fine-grid runs (and perhaps pseudo-fine runs) to construct hazard curves and maps. The “exact”
results were used to assess and compare the strategies.
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3 Earthquake realizations used in this study

The original terms of this contract specified that several hundred earthquake events would be provided to
us as a test suite, but those never materialized. Instead we have developed our own approach to generating
random earthquakes that has recently been published [19, 21]. We use a Karhunen-Loève (K-L) expansion
to generate a random slip pattern on a specified fault geometry, sampled from random fields with a specified
covariance structure. Using this K-L Expansion, we developed a methodology that provides a catalogue
of earthquake scenarios of desired magnitude along with the corresponding annual probabilities. For the
purposes of this study, we generated 400 realizations using the approach described briefly here and in more
detail in Appendix G.

Note: We do not claim that the 400 realizations we used in this study are sampled from the correct
probability distribution of possible future events, in fact we know they are not. The problem of tuning
the fault geometry and covariance functions used in the K-L expansion to produce a realistic probability
distribution is the subject of ongoing work. For the purposes of this study, however, it does not matter
whether the realizations or probabilities are realistic since we are studying a methodology for taking a set of
N samples with given probabilities and producing good approximations to the resulting hazard curves with
minimal work. The “exact” solution for the set of realizations used is known (as computed via N fine grid
simulations as described above), and we believe that our findings based on the set of realizations we used
should carry over to other sets of realizations.

With this in mind, we chose the realizations to give a broad range of impacts at Crescent City. We
generated slip on a southern portion of the Cascadia Subduction Zone (shown in Figure 50) in a way that
tended to give highly concentrated patches of slip, and we varied the magnitude from Mw 8.6 to 9.2. The
largest events are clearly non-physical, with concentrated patches of slip exceeding 180 m in some cases
(roughly 3 times more than observed in the extreme Tohoku event of 2011). However, since this slip is quite
concentrated the resulting tsunami is often no worse or in some cases much smaller than what is computed
with uniform slip at the same magnitude (but sometimes much worse). We consider the great variation in
computed results to be a good test of our methodology and expect that our methods would work better if
we assumed a more realistic variation in slip patterns.

We created 100 slip patterns using the approach outlined in Appendix G. Each of these was then scaled
to 4 different magnitudes, Mw 8.6, 8.8, 9.0, and 9.2, using the fact that multiplying the slip on each subfault
(and hence the seafloor deformation) by approximately a factor of 2 increases the moment magnitude by 0.2.
In this manner we generated a total of N = 400 realizations, 100 realizations at each magnitude Mw 8.6, 8.8,
9.0, and 9.2. We could have generated an independent set of 100 realizations at each magnitude rather than
scaling up a smaller set, but since past work on PTHA (e.g. [14]) has used the “Bandon sources”, which
consist of only 3 slip patterns scaled up to 5 magnitudes each, we decided to follow a similar approach with
our much larger set of realizations.

Each of the 100 slip patterns had a probability between 0 and 1 assigned to it, with these probabilities
summing to 1. The method used to assign probabilities is also described in Appendix G. To assign probabil-
ities to the full set of 400 realizations, we weighted the probability of each slip pattern by weights of 0.3, 0.3,
0.3, and 0.1 for each of the 4 realizations that it generated (of magnitude 8.6, 8.8, 9.0, and 9.2, respectively).
The smaller weight for the largest class is loosely based on the relatively small weight assigned to the XXL
events in the collection of Bandon sources. Again we stress that these probabilities need not be realistic in
order to test different methodologies in the context of this study.

Some of the approaches we investigate work best if only a few of the realizations account for a large
fraction of the probability distribution (as an extreme example, if 20 realizations have probability summing
to 1 and the other 380 have probability 0, then clearly one only needs to do 20 fine grid simulations to
compute the exact hazard curves). So as another test of methods, we have also considered the same set
of realizations but with the probability set to 0.01 for each of the 100 original slip patterns. This uniform
distribution of probabilities gives a more difficult problem if one wants to estimate hazard curves accurately
from only M = 20 fine grid simulations.
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Figure 2 shows a few of the 400 realizations used in this study. A range of realizations has been chosen
to illustrate the variety. The full set of 400 can be viewed at http://depts.washington.edu/ptha/FEMA/.

http://depts.washington.edu/ptha/FEMA/
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Figure 2: Four sample realizations. The left column shows the slip distribution on the CSZ fault geometry,
the middle column shows the resulting sea floor deformation, and the right column is the maximum flooding
depth in Crescent City.
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4 Comparison of computed results for the 400 realizations

In this section we show some of the computed results from both fine-grid simulations and the coarse-grid
(cheaper) simulations that were used in this study in order to further illustrate the range of inundation
patterns that were observed, and the degree to which the coarse-grid simulations give a reasonable approxi-
mation.

4.1 Pseudo-color plots over the region

The bottom row in Figure 3 shows a comparison of the maximum inundation depth, as computed on the
fine grid and the coarse grid, for one sample realization (run 5, magnitude 8.6). The top row in the figure
gives the absolute value of the inundation (hmax) differences and the absolute value of the eta (η) differences.
This shows that the coarse grid alone is inadequate to represent the inundation, and illustrates the degree
of coarsening (a factor of 15 in each coordinate direction). Nonetheless we will see that information from
the coarse grid runs can be used to good advantage, after they have been cleaned as described in Section 7.3
and Appendix A.

Figure 3: Mw 8.6, run 5: The bottom row shows the coarse and the fine data. The top row gives the
differences of the hmax values and the eta (η) values of the coarse and fine data.

4.2 Transect plots

The pcolor plots shown in Figure 3 are difficult to compare across many realizations and also do not show
the elevation of the flood above sea level directly, since the color is based on flooding depth.

It is also useful to plot the maximum elevation of flooding along a transect. The plots in Figure 4 show
these plots for 50 of the events from each magnitude class (the other 50 are similar but the plots become
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unreadable with more lines).

What is actually plotted is the value of η at each point along the transect, where η = h+B with B the
topography and h the maximum flow depth recorded over the entire simulation.

Note that the earthquake generally causes uplift or subsidence at Crescent City, and these plots show η
relative to the initial topography.

Note the following from the transect plots:

• For each event the value of η varies along the transect but is much more nearly constant than the
flow depth h is. A long-wave tsunami moving in slowly tends to flood the entire flooded region to
roughly uniform elevation, and the depth at each point then depends on the topography. If η(x, y) = η0
everywhere for some event, then the depth would be simply h(x, y) = η0−B(x, y). This is an important
observation discussed further below.

• These plots show how coarse the coarse grid is relative to the fine grid (300 m vs. 20 m resolution).
The maximum flood depth is stored on a fine grid along the transect in either case, but this fine grid
cuts through coarse grid cells in the coarse grid calculation and so a step function is observed for the
topography on the coarse grid. (The length of each step is not 300 m because the transect cuts through
different lengths of each computational cell since it is at an angle to the rectangular computational
grid.)

• In spite of the coarseness of the coarse grid, there is a high degree of correlation between the results
on the two grids. This is explored more below and exploited in our methodology.

• Transect 2 shows much more discrepancy between fine and coarse results than is seen on Transect 1,
particularly at the north end. This transect was chosen to run up a narrow valley (see Figure 1) that
is well resolved on the fine grid but completely unresolved on the coarse grid.

• There is a great deal of variation within each magnitude class and if they were all plotted together on a
single plot they would be seen to overlap substantially. There is even a Mw 9.2 realization that exhibits
less flooding than most of the Mw 8.6 events (this particular realization had slip concentrated in such
a way that there was extreme uplift at Crescent City and much of the surface displacement occurred
onshore rather than generating a tsunami). This indicates that simply running a few realizations from
each magnitude class might not be the best approach to clustering.
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From the fine grid runs: From the coarse grid runs:

Figure 4: Maximum η for 50 realizations from each magnitude class along Transect 1. The left column
shows results computed on the fine 2/3 arc-second grid, the right column shows results from the same 50
realizations as computed on the coarse 10 arc-second grid. In each case the rows correspond to Mw 8.6, 8.8,
9.0, and 9.2.
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From the fine grid runs: From the coarse grid runs:

Figure 5: Maximum η for 50 realizations from each magnitude class along Transect 2. The left column
shows results computed on the fine 2/3 arc-second grid, the right column shows results from the same 50
realizations as computed on the coarse 10 arc-second grid. In each case the rows correspond to Mw 8.6, 8.8,
9.0, and 9.2.
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4.3 Quantities of Interest

Ultimately we are interested in building hazard curves that show the exceedance probability vs. depth at
each point on the grid covering the region of interest, and for this we need to take into account the maximum
flooding depth at each point from each event. The behavior of this maximum depth varies dramatically not
only between different events but also between different points. To get an overall comparison of events over
the full region of interest, it is useful to define some quantities associated with each event. These are used for
comparing fine and coarse grid simulations, for investigating correlations between different quantities, and
for performing clustering of realizations as needed for step 4(b) of the strategy outlined in Section 2. This
clustering is discussed in detail in Section 5 below.

The following quantities are based on GeoClaw simulations:

• EtaMax: ηmax for each realization is the maximum value of η over all on-shore locations where any
flooding occurs. We also use ηfmax and ηcmax to denote the values computed from the fine grid run and
the coarse grid run, respectively.

• EtaMean: ηmean for each realization is the mean value of η over all on-shore locations where any
flooding occurs. We also use ηfmean and ηcmean to denote the values computed from the fine grid run
and the coarse grid run, respectively.

• Onshore volume at Crescent City: Vcc for each realization is obtained by summing the maximum flow
depth at each point on the grid and multiplying by the area represented by each point. Since the
points are on a grid with 2/3 arc-second resolution, each point represents an area of approximately
20 × 14 = 280m2 at the latitude of Crescent City. This volume represents the total volume of water
that would cover the region of the grid shown in Figure 1 if all of the maximal flow depths occurred at
the same instant in time. In practice they do not, so the total mass of water varies with time and is
never this large. But this volume gives another good proxy for the severity of an event since it takes
into account both the area covered by the flood and the maximum depth observed at each point.

The following quantities can be determined very cheaply for each realization without any GeoClaw simulation:

• Uplift/Subsidence at Crescent City: ∆Bcc is the vertical displacement at the location of Crescent City
due to the sea floor deformation of a particular realization.

• EtaMax for initial sea surface: ηseamax is the maximum uplift of the sea floor (and hence of the sea
surface at the initial time in a GeoClaw simulation, where it is assumed that the water column is
instantaneously lifted as the sea floor moves).

• Potential Energy: Epot is the potential energy of the initial displacement of the sea surface.

• Displaced Volume: Vdisp is the total volume of water displaced by the initial displacement of the sea
surface.
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4.4 Scatter plots of fine vs. coarse results

In the plots shown in Figure 6, each dot represents a single realization and plots the value of some quantity
of interest from the fine grid run vs. the same quantity as computed on the coarse grid run (for the same
realization, i.e. using the same dtopo file in GeoClaw, which specifies the sea floor deformation). The points
are colored by the magnitude of the event.

Plots on the left show the full range of values observed, while plots on the right are zoomed in near the
origin to better show the relationship for the smaller magnitude events. The first row shows the quantity
ηmean, the second row ηmax, and the third row shows Vcc.

Note the following:

• In general larger values are observed in results from the fine grid run than from the coarse grid
simulation of the same realization (i.e. the points tend to lie above the 1:1 line). This is not surprising
since the fine grid topography better captures extremes.

• The quantity ηmean is better correlated between fine and coarse grid runs than is ηmax. This is also
not surprising since on the fine grid the maximum water depth often occurs in the narrow valley, for
example, which is not well resolved on the coarse grid. The mean value of η is less sensitive to these
points.

• The generally good agreement between fine and coarse grid values of ηmean shows that the coarse grid
simulation, although missing most of the details of the flow, is still capturing the general behavior
of the tsunami well. This gives hope that we can use the cheaper coarse grid simulations results for
clustering events as discussed in Section 5.
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Figure 6: Scatter plots of values obtained from the coarse grid run for each realization, vs. the value of
the same quantity obtained from the fine grid run for the same realization. The left column shows all 400
realizations, the right plot is zoomed near the origin to better show the smaller events. The top row shows
scatter plots for ηmean, the middle row for ηmax, and the bottom row for the displaced volume Vcc.
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5 Clustering techniques

In order to reduce the number of fine grid runs, we look for ways of clustering the realizations into some small
number of clusters, say M = 20 clusters, with each of the N = 400 realizations falling in one cluster. The
hope is that doing a fine grid run for one realization in each cluster will give results that are representative
of all realizations in that cluster.

Clustering by magnitude Mw alone is not sufficient since the 400 realizations are sampled from only
four magnitudes. Moreover it is clearly seen from the plots above that there is great variation within each
magnitude and a great deal of overlap of results from different magnitudes.

We consider two techniques for clustering, although there are many other possibilities and we consider
this a ripe area for future research. The first is based on the use of information obtained from coarse grid runs
of all N realizations, assuming the computing budget allows this. The scatter plots of Section 4.4 indicate
that even a grid that is 15 times coarser in each direction can provide a good indication of the severity of
the event, as judged by the proxy values considered there. This is described in Section 5.1.

The second approach is based only on proxy values that can be computed directly from the sea floor
deformation of each realization and so does not require any GeoClaw runs for the clustering, only the M
fine grid runs, one for each cluster. This is described in Section 5.2.

5.1 Eta mean / Eta max clustering

In this section we assume we have done all N = 400 coarse grid runs and can use proxy values obtained
from these runs to do the clustering. One simple approach would be to cluster based on ηmean alone, e.g.
order the events based on their ηmean value and then split them into clusters. However, we attempt to do a
better job of clustering by using information also about ηmax for each realization.

Figure 7 shows scatter plots of ηmean vs. ηmax for each realization. Unlike the scatter plots shown
above, in this case we are comparing these quantities for each realization with the same resolution grid (not
comparing fine results vs. coarse results). The plot on the left shows ηmean vs. ηmax computed on the fine
grid for each realization, while the plot on the right shows ηmean vs. ηmax computed on the coarse grid for
each realization. In each case it must be that ηmax ≥ ηmean and so all points lie on or above the 1:1 line
in these plots. The further above the line, the more discrepancy there is between the maximum η observed
over the entire grid and the mean value.

As expected, there is more discrepancy for larger tsunamis than for small ones, and also more discrepancy
seen on the fine grid simulations (that better represent the detailed topography) than on the coarse grids.
We also observe, however, that the coarse grid is reasonably effective at displaying the range of possibilities.
Finally, we observe that for fixed value of ηmean there are often many events with very similar ηmean but quite
different values of ηmax. We posit that these correspond to tsunamis that behave differently and perhaps
flood different parts of the region even though they give the same value of ηmean.

We cluster based on the location of the realizations in this ηmean – ηmax plane. Figure 8 shows an example
where we have specified 20 clusters on the top, or 40 clusters on the bottom. Now the colors indicate the
realizations that are grouped together into a single cluster. The + symbol in each cluster shows the centroid
and the circle that is larger than the other circles in each cluster shows the realization that has been chosen
to be representative of the cluster. (Note that we do not always choose the realization that is closest to the
centroid, instead we choose the one that is closest to a weighted average of the realizations, weighted by
their probabilities.)

The clustering is done using the standard procedure of k-means clustering, grouping the realizations into
the specified number of clusters so that each sum of the squares of the distances from all points to the center
of the clusters they belong to is minimized. The clustering is performed using the KMeans function from the
Python module sklearn.cluster1.

1http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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Figure 7: Scatter plots of ηmean on the horizontal axis vs. ηmax on the vertical. Each dot corresponds to
one of the 400 realizations. The plot on the left shows values obtained from the fine grid runs, while the plot
on the right shows results for the coarse grid runs.

In Appendix H.1 we show the maximum flooding for at most 5 realizations in each cluster, which gives
some indication that the clustering is working well by clustering together realizations that give similar levels of
flooding. All 400 realizations arranged by clusters can be viewed at http://depts.washington.edu/ptha/FEMA/.

http://depts.washington.edu/ptha/FEMA/


FEMA Project Final Report — March 19, 2017 21

Figure 8: Clustering of realizations based on their location in the ηmean – ηmax plane, as determined from
coarse grid simulations. In the top figure 20 clusters are indicated by different colors, in the bottom figure
there are 40 clusters. The larger dot in each cluster marks the realization for which a fine-grid simulation is
performed. The + marks the centroid of the cluster.
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5.2 Dtopo clustering

In the previous section we presented an approach to clustering based on proxy values computed from the
coarse grid simulations. We now consider the possibility of clustering using proxy values that are computed
directly from the sea floor deformations of the realizations. This requires no tsunami simulations and is very
cheap to perform. This approach would extend more easily to a situation where the number of realizations
N is much larger than 400. We call this “dtopo clustering” since in GeoClaw the files specifying the sea floor
deformation (the changes in topography) are called dtopo files.

In Section 4.3 we presented several possible proxy quantities. Here we consider just one possible clustering
strategy based on the quantities ∆Bcc (uplift or subsidence at Crescent City) and ηseamax, the maximum initial
surface elevation offshore. We experiemented with others as well, but this case worked reasonably well and
is sufficient to illustrate the potential of using cheap proxies.

Figure 9 shows 20 and 40 clusters obtained by clustering based on these quantities. Since clustering
is performed based on Euclidean distance in the plane, we scaled ηseamax by 3 so that the variations were
comparable in the two coordinate directions.

Note that with the fault geometry we assumed, many of the realizations give uplift (∆Bcc > 0) and quite
extreme values (±15 m) are observed due to the unphysically extreme Mw 9.2 realizations included in our
test set.

In Appendix H.2 we show the maximum flooding for at most 5 realizations in each cluster, which shows
that this clustering strategy does not work as well as the previous more expensive strategy of Section 5.1.
All 400 realizations arranged by clusters can be viewed at http://depts.washington.edu/ptha/FEMA/.

http://depts.washington.edu/ptha/FEMA/
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Figure 9: Clustering of realizations based on their location in the ∆Bcc – ηseamax plane. In the top figure 20
clusters are indicated by different colors, in the bottom figure there are 40 clusters. The larger dot in each
cluster marks the realization for which a fine-grid simulation is performed. The + marks the centroid of the
cluster.
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5.3 Comments and possible improvements

The two clustering approaches we have presented above were chosen to give simple illustrations of how
this general methodology might be applied, either based on results from coarse grid simulations of every
realization or using only information that is available before doing any simulations.

We show in the next few sections that even these simple clustering strategies can be very effective when
used to compute approximate hazard curves and maps using relatively few fine grid simulations, only one
per cluster.

But there are many improvements that could be made in this methodology and in the future we intend
to explore other approaches to clustering. In particular, working with the data and results presented here
has led to the following observations and ideas for future work.

1. With the wide range of severity of events used in this study, there is much more scatter in all of
the proxy values at the high end than at the low end. As a result, the majority of the clusters are
devoted to the extreme events and each of these clusters has few members (in some cases only 1 or
two realizations when 40 clusters were specified). In contrast the clusters at the lower end of severity
were very large, with dozens of realizations. So the variation that exists within the less severe events is
not as well sampled. In practice one might want to impose a maximum cluster size or use some other
mechanism to optimally spread out the given budget of clusters (determined by the budget of fine-grid
simulations possible).

2. We have illustrated clustering using only two proxy values to facilitate showing plots of these clusters
in the plane. One could cluster in a higher-dimensional space, e.g using ηmean, ηmax, Vcc in the case
of clustering based on coarse-grid runs, or using all 4 proxy values listed in Section 4.3 for dtopo. We
have not yet experimented with how best to do this, in particular each proxy would have to be scaled
appropriately for clustering based on Euclidean distance to make sense.

3. The clustering approach is a special case of the classification problem that has been extensively studied
in Statistics and more recently under the guise of machine learning. We have chosen a simple approach
to explore the potential of this methodology, but many more sophisticated methods have been developed
that should be explored in the future.

4. Our strategy requires choosing one realization from each cluster to use for the fine grid simulation.
In this study we chose the realization that is closest to the weighted mean of all realizations in the
cluster, weighted by the probability assigned to each realization. The rationale was that if there are
only two events in a cluster and one is much more likely than the other, then we should perform
the fine grid simulation on the more likely one (so that we are using the correct inundation for the
one that most affects the hazard curve). But for clusters that contain more than two events, the one
closest to the weighted centroid may still have very small probability compared to others in the cluster.
In retrospect, it may have been better to choose the event from each cluster that has the highest
probability rather than using centroid information at all (except perhaps if all events have equal or
very similar probabilities).
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6 Probability products for the fgmax grids

The study area in Crescent City is shown in Figure 1. We collect GeoClaw data on two fgmax grids called
Transect 1 and Transect 2 and on one fgmax rectangular grid. Transect 1 is the leftmost yellow line in Figure
1 and has 439 grid points. Transect 2 is the rightmost yellow line and also has 439 grid points. The third
fgmax grid is the blue rectangle and it has 88x78 grid points. All grid points are in longitude and latitude.

This study assumes a Cascadia earthquake occurs due to only one of the 400 sources, and the conditional
probability of each of the sources is given. These 400 conditional probabilities sum to 1. We consider two
different ways of assigning these probabilities. First, the generation of the 400 sources from the KL-expansion
gives a natural assignment of the probability of occurrence for each of the sources as described in Section
3. Second, for comparison, we consider a uniform distribution within each Mw category (still using the
probabilities 0.3, 0.3, 0.3, and 0.1 for Mw 8.6, 8.8, 9.0, and 9.2 realizations, respectively.) Hence each of
the 400 sources will have conditional probability 0.003 or 0.001 of occurrence when a Cascadia earthquake
occurs.

These 400 sources were used for 400 fine grid and 400 coarse grid GeoClaw runs to propagate the tsunami
into Crescent City where the maximum value of water depth, hmax, seen during the tsunami was recorded
on a 2/3 arc sec fgmax grid. This grid covered the blue rectangle shown in Figure 1. We also collected
hmax at locations lying on two different transects shown as the yellow lines in Figure 1. The fine grid runs
actually calculated hmax at this 2/3 arc sec resolution in Crescent City. The coarse grid runs calculated on a
much coarser grid (15 fine cells per coarse cell for the transects and 225 fine cells per coarse cell for the blue
rectangular region), but we recorded the results at the same 2/3 arc sec resolution using piecewise constant
interpolation with all points in the same coarse cell receiving the same hmax value.

From the hmax values and the conditional probabilities, various products can be calculated, including
hazard curves at individual locations, probability contours for exceeding fixed inundation levels, and contours
of the maximum inundation for a given probability. For the two transects in Figure 1, the contours reduce
to plots of probability for exceeding fixed inundation levels or plots of the maximum inundation for a given
probability versus latitude along the transect.

In particular, we find probability contours of exceeding 0.0 to 12.0 meters of water and ζ contours for
probability 0.1 to 0.9 in increments of 0.1, and for 0.95. We also consider another product called the weighted
difference in the ζ contours by weighting across all the considered probabilities. This is done by multiplying
the ζ difference for a given p by p, summing across all the p values and dividing by their sum (.1+.2 + ... +
.9 + .95 = 5.4) to get a weighted difference. Of course, other weightings could be considered, depending on
which values of p are of interest.

Examples of some of these products will be given in Section 7 when we describe our approximation
strategies and in Sections 8, 9, and 10 when we compare them. In particular, these sections use one hazard
curve at a fixed location, the probability contour for ζ exceeding 2 meters, the ζ contour for p = 0.1 and the
weighted difference ζ contour as described above.
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7 Approximation strategies

Below we outline strategies for approximating the results of the 400 fine grid runs. In Sections 7.1 - 7.5
we assume we have a budget of 20 fine grid runs that we are allowed to do and that we can afford to do
all 400 GeoClaw runs on a coarse grid. The remaining 380 fine grid runs were done just for the purpose
of evaluating our strategies – their results were not used in the development of the strategies. The SVD
strategy described in Section 7.6 uses a budget of 32 fine grid runs and a modification of the remaining 368
coarse grid runs, and we compare it to strategies that use a budget of 40 fine grid runs.

7.1 Highest 20 probability strategy

Since the conditional probabilities of all 400 sources are known a priori, we could choose the 20 that have
the highest probability of occurrence. This seems an obvious choice, and indeed it works quite well when
the distribution of the conditional probabilities is such that the highest 20 represent a large fraction of the
probability. For the KL probabilities the highest 20 represented 42.8% of all the probability. However, for
the uniform probabilities, most of the sources have the same probability, and depending on the sort routine
used to return the highest 20, the probability space will not be represented well. Also, all 9.2 Mw sources
would be left out of the top 20. The left plot in Figure 10 shows that the hazard curves of all 400 fine and the
highest 20 strategy for the location indicated by the red dot compares fairly well when the KL probabilities
are used, but the right plot shows it does not compare well when the uniform probabilities are used.

Figure 10: Comparison of the true hazard curves (blue) at one point with approximations obtained using
only 20 realizations, chosen as those with the largest probabilities. Left: Assuming the KL probabilities,
Right: Assuming uniform probabilities.

We use ζ to represent hmax for points on land (initial bathymetry B0 ≥ 0) and hmax + B0 for points
initially in the water (B0 < 0). Figure 11 shows the highest 20 strategy compares better to the 400 fine for
KL probabilities than it does for uniform probabilities. Since, this highest 20 probability strategy is sensitive
to the conditional probabilities used, we can not recommend it in general, though it can be very good when
the 20 used represent a large fraction of the conditional probability.
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Figure 11: Comparison of the true hazard maps (left) for p = 0.1 with those obtained using only 20
realizations (right), chosen as those with the largest probabilities. Top: Assuming the KL probabilities,
Bottom: Assuming uniform probabilities.
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7.2 All coarse grid strategy

An obvious question is how can information from the 400 coarse grid runs be used to approximate the 400
fine grid results. Without using our budget yet of 20 fine grid runs, we simply compared the 400 coarse
to the 400 fine. Results of this can be seen in Figures 12, 13, 14, and 15 by comparing the plots labeled
scenario all fine with those labeled scenario all coarse.

The conclusion is that the 400 coarse alone can not approximate well at all the 400 fine. However, this
comparison gave insight into what has to be done in order to use the 400 coarse to build a strategy. In
particular, the hmax value of a coarse grid run represents the amount of water above the coarse bathymetry,
whereas the hmax value of a fine grid run represents the amount of water above the fine bathymetry. Since
the two bathymetries can differ at the same physical location, it is imperative that we first “clean” the
coarse grid runs so the coarse hmax is modified to represent the amount of water from the coarse grid run
that was above the fine grid bathymetry. This is an easy post-processing step, and is the basis of the strategy
discussed in Section 7.3.

7.3 Modified coarse grid strategy

This strategy uses all 400 coarse runs that have been modified to measure hmax at each of the points in the
88x78 rectangular grid or on either of the two transects of Figure 1 above the fine grid bathymetry rather
than the coarse grid bathymetry. To describe how we make this modification, it is first necessary to introduce
some notation.

We let Bf and Bc denote the original bathymetry on the fine and coarse grids at the fine grid point
locations, respectively. Recall that Bc is the same length as Bf since we use piecewise constant interpolation
to fill in all the fine points within a coarse cell. The difference DB of these values will be DB = Bf − Bc.
We note that if subsidence or uplift of the original bathymetry happened, then Bf and Bc would change by
the same amount, and DB would be unaffected; hence, we can use the original bathymetry for our purposes.

We desire to create a modified coarse grid value for each of the given coarse grid values. Recall, that
the coarse grid values have been recorded at all fine grid locations using piecewise constant interpolation.
At most locations, we would like the resulting value of eta for the modified value (ηm) to be the same as
the ηc of the coarse grid value, so we change only the hmax value and not the surface of the water. We
denote the hmax coarse grid and modified coarse values as hc and hm, respectively. Then ηc = hc +Bc and
ηm = hm +Bf . Setting these η values equal means in most cases we should choose the modified coarse grid
value as

hm = hc −DB .

There are a few special cases where we can not use the equation above to set hm. Clearly, if DB > hc, we
can not allow hm to become negative (the water reaches the coarse bathymetry level, but not the fine level),
so hm is set to 0. Another special case is when hc = 0. In this case, water may or may not reach the fine
bathymetry level. To determine if it does, we define an η threshold value, called ηT . Over the region of
interest and on land (B0 ≥ 0), we define ηT as the maximum ηc value where hc > 0; that is, the threshold
where it is possible to see flooding. Then we set ηm = ηT (hm = ηT − Bf ) or ηm = ηc (hm = Bc − Bf )
depending on whether ηT ≤ Bc or ηT > Bc, respectively. With these definitions, hm will be set as,

hm =


hc −DB if 0 ≤ DB < hc
0.0 if 0 < hc ≤ DB

hc −DB if DB < 0.0 < hc
ηT −Bf if hc = 0.0 and Bf < ηT ≤ Bc

Bc −Bf if hc = 0.0 and Bf < Bc < ηT

.

Two examples are given in Appendix A that show how the modified coarse data compares to both the
original coarse data and the fine data. The first example is an 9.2 Mw event, called run 20. The second
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is an 8.6 Mw event, called run 5. Both examples verify that the modified coarse data better approximates
the fine data than does the original coarse data. This gives hope that the modified coarse grid strategy will
approximate the fine grid probability products better than the coarse grid strategy did.

7.4 Pseudo fine grid strategy

This strategy begins by clustering the 400 modified coarse grid runs into 20 non-overlapping clusters. The
clusters may contain different numbers of runs. Each cluster will have one run designated as its centroid.
We use two different ways of clustering described in Sections 5.1 and 5.2.

Let cj represent the hmax for a modified coarse grid run that has been assigned to a cluster. Let c and f
represent the hmax of the modified coarse grid run and fine grid run, respectively, of the cluster’s centroid.
Recall that cj , c, and f are vectors of the length of the fine grid (for example 88x78 for the 2D rectangular
fine grid). Then, the pseudo fine grid strategy turns cj into a pseudo-fine value, pj , by the simple assignment

pj = cj + (f − c) .

Note, if cj was for the cluster centroid (cj = c), then the pseudo fine value is the same as the fine value
(pj = f). So, the 20 centroids become our budget of allowed fine grid runs. These are supplemented by the
380 non-centroid pseudo fine grid runs with hmax values defined by the pj ’s.

Two examples are given in Appendix B that show how the pseudo fine data produced with both the
etamean-etamax and the dtopo clustering techniques compares to the fine data. The first example is an 8.6
Mw event, called run 5. The second is an 9.2 Mw event, called run 20. Both examples verify that the pseudo
fine data from both of the clustering techniques compares fairly well with the fine data. This gives hope that
the pseudo fine strategies will also approximate the fine grid probability products fairly well.

7.5 Centroid strategies

We will see in Section 8 that the pseudo fine grid strategy described in Section 7.4 works quite well to
approximate the 400 fine grid results when the cluster centroids used to make this strategy were from either
of the two clustering techniques. In some cases, the eta mean - eta max clustering was best, and in others
the dtopo clustering was best.

Here, we investigate whether just the 20 fine grid runs for the centroids are enough to approximate the
400 fine grid runs. Note that the pseudo fine and fine runs are identical at these 20 centroids. So, the
question is whether the remaining 380 pseudo-fine runs are necessary to add to a strategy.

The probabilities used for these 20 centroids are simply the sum of all the probabilities of the runs within
the cluster of the centroid. So, either the sum of the KL probabilities within the cluster or the sum of the
uniform probabilities within the cluster are assigned to the centroid of the cluster.

In Section 9, we compare two centroid strategies, one based on eta mean - eta max clustering and another
based on dtopo clustering to the pseudo fine strategy of Section 7.4.

7.6 SVD strategy

In this strategy we exploit the high similarity between the singular modes of the fine-grid runs and those of
the coarse-grid runs. The strategy is inspired by existing multi-level or multi-fidelity strategies; see recent
works [22, 8], as well as [12, 24]. Complete details are given in Appendix C.

First, we take the hmax + B0 values over the rectangular fgmax grid for all the coarse runs with a fixed
magnitude, and reshape the 88 × 78 grid data to 6864 × 1 vector data. Then we stack 100 such vectors as
columns in a matrix Ac of dimensions 6864× 100, then compute its singular value decomposition (SVD),

Ac = UcΣcV
T
c = UcYc where Yc = ΣcV

T
c . (1)
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If we take the first 4 left singular modes (the first 4 columns of Uc) and look at the corresponding first 4
rows of Yc, we obtain the coordinates of each coarse-grid run in terms of the 4 left singular modes. That is,
we obtain a 4-dimensional coordinate for each of the 100 runs, organized in the 4× 100 matrix Ȳc.

Using Ȳc, we select the fine-grid runs to perform, by determining which runs have the largest relative
component in the 4-coordinate system in the singular directions. Here we select 2 such runs for each of the
4 singular modes. Each of these 8 runs form a cluster for this strategy, in a sense.

Taking these 8 fine-grid hmax + B0 values, we again reshape and stack them as column vectors to form
the matrix Bf , then compute its SVD,

Bf = Ūf Σ̄f V̄
T
f = Ūf Ȳf where Ȳf = Σ̄f V̄

T
f . (2)

Next, we compute a matrix T that transforms Ȳc to match the first four rows of Ȳf as much as possible, by
solving a least squares problem.

We denote the first four columns of Ūf as Ûf . Finally, we multiply Ûf with T Ȳc to compute the

approximation Âf of all the fine runs. That is, we compute

Âf = ÛfT Ȳc. (3)

Since we used 8 true fine-grid runs, we then set these particular columns of Âf to be those of Af . From each

of these 100 columns of Âf we subtract off B0 over the onshore points to obtain the 100 ζ vectors.

This approximation is done for each of the magnitudes (8.6, 8.8, 9.0, and 9.2). Since we used 8 fine-grid
runs for each magnitude, we have used 32 fine-grid runs total, within the computational budget of 40 runs.

In Section 10, we compare this strategy to the 400 all-fine and a strategy of using only 40 fine grid runs
(the 10 highest KL probability runs from each of the magnitude categories), and an all-pseudo strategy that
used 40 clusters determined from the modified coarse grid runs.
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8 Comparisons of coarse, modified coarse, and pseudo strategies

This section compares the 400 coarse, the 400 modified coarse, and the 400 pseudo-fine strategies with
the 400 fine results all using the KL probabilities. Figure 12 is a hazard curve comparison at the location
indicated by the red dot. This location is in the valley with steep bathymetry on either side. This comparison
is typical of other locations across the region of interest, and shows the pseudo-fine strategy to be a good
approximation. For this particular hazard curve the weighted difference in ζ values (as define in Section
6) was 1.37m for scenario-all-coarse, 0.36m for scenario-all-pseudo, 1.62m for scenario-all-coarse-mod, and
0.37m for scenario-all-pseudo-dtopo.

The zeta (ζ) contours in Figure 13, the differences of these ζ contours in Figure 14, the weighted differences
of these ζ contours in Figure 15, as well as the probability contours of ζ exceeding 2 meters in Figure 16
and the differences of these probability contours in Figure 17 show that the modified coarse is generally
an improvement over the coarse strategy, but still not sufficient to approximate the 400 fine results. These
figures, like the hazard curve in Figure 12, show the pseudo strategies using the KL probabilities are quite
good. In Section 9, we also consider the pseudo strategies with both the KL and uniform probabilities and
compare with the centroid strategies.

Figure 12: Hazard curves comparison of coarse and pseudo strategies using KL probabilities. The dark
blue curve is the “true” hazard curve, as computed from the 400 fine grid simulations.
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Figure 13: Zeta-contours comparison of coarse and pseudo strategies using KL probabilities
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Figure 14: Zeta difference contours of coarse and pseudo strategies using KL probabilities
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The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 15 were
(5.03,0.62) for scenario-all-coarse, (1.24,0.16) for scenario-all-pseudo, (2.46,0.39) for scenario-all-coarse-mod,
and (1.71,0.24) for scenario-all-pseudo-dtopo. Notice also the colorbar has changed slightly from Figure 14
to reflect these lower values.

Figure 15: Weighted zeta difference contours of coarse and pseudo strategies using KL probabilities
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Figure 16: p-contours (2m.) for coarse, modified coarse, pseudo strategies using KL probabilities
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Figure 17: p-contours (2m.) differences for coarse, modified coarse, pseudo strategies using KL probabilities
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9 Comparisons of centroid and pseudo strategies

Figure 18 compares the 20-centroid and pseudo strategies. The top plot in the figure is for the KL prob-
abilities and the bottom plot is for the uniform probabilities. For the top hazard curve, the weighted
difference in ζ values was 0.36m for scenario-all-pseudo, 0.34 for scenario-dzCC-dtopo-etamax-20cls, 0.37
for scenario-coarse-eta-20cls, and 0.37m for scenario-all-pseudo-dtopo. For the bottom hazard curve, the
weighted difference in ζ values was 0.18m for scenario-all-pseudo-uniform, 0.53 for scenario-dzCC-dtopo-
20cls-uniform, 0.30 for scenario-c-eta-20cls-uniform, and 0.22m for scenario-all-pseudo-dtopo-uniform. The
20-centroid plots clearly show the discrete steps in the hazard curve due to only 20 events. This is the nature
of hazard curves – these steps only smooth out as more events are added. For this reason alone, the pseudo
strategies which use all 400 events are more representative of the hazard.

Figure 18: Hazard curves comparison of centroid and pseudo strategies. Top: KL probabilities, Bottom:
uniform probabilities. The dark blue curve is the “true” hazard curve, as computed from the 400 fine grid
simulations.
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Figures 19, 20, and 21 compare the zeta (ζ) contours for p = 0.1, their differences, and their weighted
differences to the 400 fine for the 20 centroid and pseudo strategies when the KL probabilities are used. Plots
in the first column of Figure 20 clearly show that adding in all the 380 pseudo-fine runs to the 20 centroids
improves the approximation dramatically when dtopo clustering is used. The plots in the second column
also shows some improvement when the 380 are added when eta mean - eta max clustering is used.

Figure 19: Zeta-contours comparison of centroid and pseudo strategies using KL probabilities
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Figure 20: Zeta difference contours of centroid and pseudo strategies using KL probabilities
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The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 21
were (1.24,0.16) for scenario-all-pseudo, (2.43,0.46) for scenario-dzCC-dtopo-etamax-20cls, (1.34,0.27) for
scenario-coarse-eta-20cls, and (1.71,0.24) for scenario-all-pseudo-dtopo. Notice also the colorbar has changed
slightly from Figure 20 to reflect these lower values.

Figure 21: Weighted zeta difference contours of centroid and pseudo strategies using KL probabilities
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Figures 22, 23, and 24 compare the zeta (ζ) contours for p = 0.1, their differences, and their weighted
differences to the 400 fine for the 20 centroid and pseudo strategies when the uniform probabilities are used.
Plots in the first column of Figure 23 clearly show that adding in all the 380 pseudo-fine runs to the 20
centroids improves the approximation dramatically when dtopo clustering is used. The plots in the second
column also shows some improvement when the 380 are added when eta mean - eta max clustering is used.

Figure 22: Zeta-contours comparison of centroid and pseudo strategies using uniform probabilities
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Figure 23: Zeta difference contours of centroid and pseudo strategies using uniform probabilities
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The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 24 were
(0.90,0.12) for scenario-all-pseudo-uniform, (2.83,0.55) for scenario-dzCC-dtopo-20cls-uniform, (0.91,0.21) for
scenario-c-eta-20cls-uniform, and (1.71,0.23) for scenario-all-pseudo-dtopo-uniform. Notice also the colorbar
has changed slightly from Figure 23 to reflect these lower values.

Figure 24: Zeta difference contours of centroid and pseudo strategies using uniform probabilities
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Figures 25 and 26 compare the p-contours for exceeding ζ = 2 meters and their differences to the 400
fine for the 20 centroid and pseudo strategies when the KL probabilities are used. Plots in the first column
of Figure 26 clearly show that adding in all the 380 pseudo-fine runs to the 20 centroids improves the
approximation dramatically when dtopo clustering is used. The plots in the second column also show an
overall improvement when the 380 are added and eta mean - eta max clustering is used.

Figure 25: p-contours (2m.) for centroid and pseudo strategies using KL probabilities
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Figure 26: p-contours (2m.) differences for centroid and pseudo strategies using KL probabilities
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Figures 27 and 28 compare the p-contours for exceeding ζ = 2 meters and their differences to the 400
fine for the 20 centroid and pseudo strategies when the uniform probabilities are used. Plots in the first
column of Figure 28 show that adding in all the 380 pseudo-fine runs to the 20 centroids improves the
approximation dramatically when dtopo clustering is used. The plots in the second column also show a
dramatic improvement when the 380 are added and eta mean - eta max clustering is used.

Figure 27: p-contours (2m.) for centroid and pseudo strategies using uniform probabilities
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Figure 28: p-contours (2m.) differences for centroid and pseudo strategies using uniform probabilities

In this section, we have shown how the centroid and pseudo strategies compare by selecting a few
probability products: a hazard curve at one location, the zeta-contour for p = 0.1, a weighted contour of
ζ differences across specific probabilities (p = 0.1 to p = 0.9 in increments of 0.1, and p = 0.95), and the
p-contour for exceeding ζ = 2.0 meters. In Appendix D, we give the mean and maximum differences of the
centroid and pseudo strategies to the fine grid results for the p-contours for exceeding zeta=0, 1, 2, 3, 4, 5,
6, 8, 10, and 12 meters, and for the zeta-contours for p=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95
when the KL probabilities are used. Another strategy called highest10-each was also compared to the fine
grid results for the KL probabilities. This strategy used a budget of 40 fine grid runs (rather than 20) and
these were chosen as the 10 highest probabilities from each of the 4 Mw categories (Mw=8.6, 8.8, 9.0, and
9.2). This strategy is included to show as our budget of fine grid runs increases, we can expect the results
to improve. In Appendix E, we give the weighted ζ differences of the centroid and pseudo strategies to the
fine grid results for the KL probabilities. For comparison, we also include the coarse-mod strategy and some
pseudo and centroid strategies that use 40 clusters and give the ζ difference plots for all these strategies.
Indeed, using 40 clusters improves the results seen for 20 clusters. In Appendix F, we give the mean and
maximum differences for the centroid and pseudo strategies when the uniform probabilities and 20 clusters
are used. Transect plot and contour plots for all these cases comparing the centroid and pseudo strategies
can be found at http://depts.washington.edu/ptha/FEMA/.

http://depts.washington.edu/ptha/FEMA/
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10 Comparisons of highest-10-each, all-pseudoCM-40 and all-SVD-
40 strategies

Figure 29 compares the hazard curves for the highest-10-each, all-pseudoCM-40, and all-SVD-40 strategies
when the KL probabilities are used. The all-pseudoCM-40 is a pseudo strategy that did the clustering based
on the modified coarse runs and used 40 clusters. The all-SVD-40 strategy used 32 fine grid runs (8 from
each magnitude category), and since 32 is closer to 40 than to 20, we compare it to our best strategies that
use a budget of 40 fine grid runs. The weighted difference in ζ values was 0.22m for scenario-highest-10-each,
0.24m for scenario-all-pseudoCM-40, and 0.56m for scenario-all-SVD-40.

Figure 29: Hazard curves comparison of highest-10-each, all-pseudoCM-40, and all-SVD-40 strategies using
KL probabilites
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Figures 30, 31, and 32 compare the zeta (ζ) contours for p = 0.1, their differences, and their weighted
differences to the 400 fine for the highest-10-each, all-pseudoCM-40 and all-SVD-40 strategies when the KL
probabilities are used.

Figure 30: Zeta-contours comparison of the highest-10-each, all-pseudoCM-40 and all-SVD-40 strategies
using KL probabilities
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Figure 31: Zeta difference contours of the highest-10-each, all-pseudoCM-40 and all-SVD-40 strategies using
KL probabilities
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The (maximum, mean) of the weighted ζ differences across the fixed grid in Figure 32 were (0.38,0.11) for
scenario-highest-10-each, (0.65,0.14) for scenario-all-pseudoCM-40, and (2.49,0.23) for scenario-all-SVD-40.
Notice also the colorbar has changed slightly from Figure 31 to reflect these lower values.

Figure 32: Weighted zeta difference contours of the highest-10-each, all-pseudoCM-40 and all-SVD-40
strategies using KL probabilities
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Figures 33 and 34 compare the p-contours for exceeding ζ = 2 meters and their differences to the 400
fine for the highest-10-each, all-pseudoCM-40 and the all-SVD-40 strategies when the KL probabilities are
used.

Figure 33: p-contours (2m.) for the highest-10-each, all-pseudoCM-40 and the all-SVD-40 strategies using
KL probabilities
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Figure 34: p-contours (2m.) differences for the highest-10-each, all-pseudoCM-40 and the all-SVD-40
strategies using KL probabilities
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In this section, we have shown how the highest-10-each, all-pseudoCM-40 and all-SVD-40 strategies
compare to all 400 fine when the KL probabilities are used by comparing a few probability products: a
hazard curve at one location, the zeta-contour for p = 0.1, a weighted contour of ζ differences across specific
probabilities (p = 0.1 to p = 0.9 in increments of 0.1, and p = 0.95), and the p-contour for exceeding ζ = 2.0
meters. In Appendix D, we give the mean and maximum differences of these strategies to the fine grid results
for the p-contours for exceeding zeta=0, 1, 2, 3, 4, 5, 6, 8, 10, and 12 meters, and for the zeta-contours for
p=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 when the KL probabilities are used. In Appendix E,
we give the weighted ζ differences of these strategies to the fine grid results for the KL probabilities. For
comparison, we also include the coarse-mod strategy and some pseudo and centroid strategies that use 20
and 40 clusters and give the ζ difference plots for all these strategies. Transect plot and contour plots for
these strategies can also be found at http://depts.washington.edu/ptha/FEMA/.

http://depts.washington.edu/ptha/FEMA/
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11 Conclusions and Recommendations

We have implemented the approach summarized in Section 2 and compared several approaches to imple-
menting the steps outlined in the general algorithm presented there.

We conclude with some additional remarks on our findings, the best strategies among those tested, and
some additional areas for future research. We have provided additional comments in the sections above; see
in particular the notes on clustering strategies found in Section 5.3.

1. The dtopo-clustering of Section H.2 can be done without doing any coarse grid runs. The expense of
the centroid strategy that uses this clustering is just the cost of the budget of 20 fine grid runs. A
rough approximation can be gotten quite cheaply with this technique, but we recommend it not be
depended on as a standalone strategy. Instead, this cheap clustering technique can be used to produce
the pseudo-fine runs for the pseudo-dtopo strategy.

2. The etamean-etamax clustering of Section H.1 requires all 400 coarse grid runs be done first. For some
probability products, it is better than the dtopo-clustering, and for others it is not. Due to the expense
of the 400 coarse grid runs, we do not incur much more cost to produce the remaining 380 pseudo-fine
runs for use with a pseudo strategy for better results. Hence, we can not recommend the 20 centroids
from this clustering as a standalone strategy.

3. It is possible to improve the coarse grid results to make them more similar to the results that would
be obtained by running on a fine grid. This modification procedure is described in Section 7.3.

4. The pseudo strategies from either the dtopo or etamean-etamax clustering require all 400 coarse grid
runs be done first. These strategies are considered to give better comparisons to the 400 fine grid
results than the centroid only strategies. Sometimes the dtopo clustering works best and sometimes
the etamean-etamax clustering works best to make a pseudo strategy. It is interesting that there is
very little overlap of the 20 fine grid runs that each clustering strategy yields.

5. When the ζ differences of our strategies (that used a fine grid budget of 20) with the 400 fine grid
results were weighted to reflect their conditional probabilities, we found the maximum difference in the
ζ values to be around 1.24 (0.91) meters and the mean difference to be very small, around 0.16 (0.12)
meters for the pseudo-strategy when the KL (uniform) conditional probabilities were used.

6. A recommendation is to slightly increase the budget of fine grid runs allowed to 10% of the 400, for a
total of 40. We did several experiments along these lines. First, we used the KL probabilities and the
highest 10 probability runs from each of the four Mw categories (8.6Mw, 8.8Mw, 9.0Mw, and 9.2Mw)
for a budget of 40 fine grid runs. The results were extremely good and outperformed the strategies
we reported here that used a budget of only 20 fine grid runs as seen in Appendix D. A picture of the
zeta-contour for p = 0.2 for this strategy can be seen on the cover page of this report. Second, we ran
several clustering and pseudo-strategies with this higher budget of 40. Indeed, the results are better
than those for the budget of 20, as seen in Appendix E where we give weighted ζ comparisons and
plots.

7. For the KL probabilities, Appendix E shows the strategy of using the highest 10 from each of the four
Mw categories gave the smallest ζ weighted differences to the fine results with the maximum difference
across the rectangular fixed grid being only 0.38 meters and the mean difference being only 0.11 meters.
A close second was the pseudo strategy that used the etamean-etamax clustering of the modified coarse
grid runs to produce 40 clusters. This strategy gave a maximum difference of 0.65 meters and a mean
difference of 0.13 meters. This is interesting, as a strategy using only 40 fine runs was better than any
of the pseudo strategies that used 40 fine runs and 360 pseudo runs. This suggests we should consider
the probability of each run when we make the clustering. Also, any improvements in the creation of
the pseudo-runs would improve the results. These are topics for future work.
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8. Section 10 showed that an SVD strategy that used 32 fine grid runs (staying under a budget of 40)
gave reasonable results. It is not clear whether increasing the number of fine grid runs to 40 would
improve these results. This increase could happen in two ways. First, the number of left singular
vectors used could increase from 4 to 5, and still using 2 fine runs per singular vector would yield 10
for each magnitude category, for a total of 40. This might not be successful as the coarse and fine grid
runs were not so correlated beyond the first 4 singular vectors. Second, 4 singular vectors could still
be used with 3, 3, 2, 2 fine runs associated with them for a total of 10 per magnitude category. More
work is needed to see the limitations of this strategy.

9. Another recommended topic for future work is to investigate what budget size is necessary for a cheap
clustering strategy that does not require even coarse grid runs (e.g. the dtopo-clustering strategy) to
give acceptable results using only the fine grid runs at the centroids. This would have to be compared
with the cost of the pseudo-strategies which might give acceptable results with a smaller budget size,
but with the additional requirement of the 400 coarse grid runs.

10. This report contains a number of figures, but many more can be viewed online from
http://depts.washington.edu/ptha/FEMA/

All of the computer code used in this work has also been archived there, including the code to generate
the earthquake realizations, to run the tsunami simulations, to perform the filtering and clustering,
and to produce the hazard curves and maps, and to perform comparisons of different approaches.

http://depts.washington.edu/ptha/FEMA/
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APPENDICES

A Cleaning coarse grid runs

Example results of cleaning coarse grid data to produce the modified coarse grid data are given below. Figure
35 is for the magnitude 9.2 event called run 20. The bottom row shows the coarse data and the modified
coarse data. The top row gives the differences of the hmax values and the eta (η) values of the coarse and
modified coarse data. Notice that hmax is changed in significant places, while eta (η) is not changed at all.

Figure 36 shows how this modified coarse data compares to the corresponding fine data. The bottom row
shows the fine data and the modified coarse data. The top row gives the differences of the hmax values and
the eta (η) values of the fine and modified coarse data. Since the same fine bathymetry is used to produce
the modified coarse η and the fine η, the differences of the η values will be the same as the differences of their
hmax values as seen in the top row. Together, Figures 35 and 36 show the modified coarse data approximates
the fine data much better than the coarse data does.

Figure 35: Mw 9.2, run 20: The bottom row shows the coarse data and the modified coarse data. The top
row gives the differences of the hmax values and the eta (η) values of the coarse and modified coarse data.
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Figure 36: Mw 9.2, run 20: The bottom row shows the fine data and the modified coarse data. The top
row gives the differences of the hmax values and the eta (η) values of the fine and modified coarse data.

Figure 37 is for the magnitude 8.6 event called run 5. The bottom row shows the coarse data and the
modified coarse data. The top row gives the differences of the hmax values and the eta (η) values of the
coarse and modified coarse data. Notice that for this lower magnitude event, both hmax and η have changed
in significant places. It is easy to see that the coarse data had hmax = 0 in places because the coarse
bathymetry was much higher than the fine bathymetry and no inundation occurred. For these places η was
not preserved, nor should it have been. The threshold η value allowed inundation at these places in the
modified coarse data.

Figure 38 shows how this modified coarse data compares to the corresponding fine data. The bottom row
shows the fine data and the modified coarse data. The top row gives the differences of the hmax values and
the eta (η) values of the fine and modified coarse data. Since the same fine bathymetry is used to produce
the modified coarse η and the fine η, the differences of the η values will be the same as the differences of their
hmax values as seen in the top row. Together, Figures 37 and 38 show the modified coarse data approximates
the fine data much better than the coarse data does.



FEMA Project Final Report — March 19, 2017 61

Figure 37: Mw 8.6, run 5: The bottom row shows the coarse data and the modified coarse data. The top
row gives the differences of the hmax values and the eta (η) values of the coarse and modified coarse data.



62 Probabilistic Source Selection for the Cascadia Subduction Zone

Figure 38: Mw 8.6, run 5: The bottom row shows the fine data and the modified coarse data. The top row
gives the differences of the hmax values and the eta (η) values of the fine and modified coarse data.



FEMA Project Final Report — March 19, 2017 63

B Pseudo fine grid runs

Example results comparing the pseudo fine grid data to the fine grid data is given in Figure 39 for the
magnitude 8.6 event called run 5 when the etamean-etamax clustering strategy was used. The bottom
row shows the fine data and its pseudo fine approximation. The top row gives the differences of the hmax

values and the eta (η) values of the fine and pseudo fine data. These differences are the same since the fine
bathymetry is used to define η in both cases.

Figure 40 shows the same information, but when the dtopo clustering strategy is used. Together, Figures
39 and 40 show both clustering strategies yield pseudo fine data that approximates the fine data fairly well.

Figure 39: Mw 8.6, run 5: The bottom row shows the fine data and its pseudo fine approximation when
etamean-etamax clustering is used. The top row gives the differences of the hmax values and the eta (η)
values of the fine and pseudo fine data.
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Figure 40: Mw 8.6, run 5: The bottom row shows the fine data and its pseudo fine approximation when
dtopo clustering is used. The top row gives the differences of the hmax values and the eta (η) values of the
fine and pseudo fine data.

Figure 41 is for the magnitude 9.2 event called run 20 when the etamean-etamax clustering is used. The
bottom row shows the fine data and its pseudo fine approximation. The top row gives the differences of
the hmax values and the eta (η) values of the fine and pseudo fine data. For this event, the pseudo fine
approximation is perfect because this event was one of the centroids of the etamean-etamax clustering.

Figure 42 shows the same information, but when the dtopo clustering strategy is used. This event was
not a centroid of the dtopo clustering. Together, Figures 41 and 42 show both clustering strategies yield
pseudo fine data that approximates the fine data fairly well.
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Figure 41: Mw 9.2, run 20: The bottom row shows the fine data and its pseudo fine approximation when
etamean-etamax clustering is used. The top row gives the differences of the hmax values and the eta (η)
values of the fine and pseudo fine data.
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Figure 42: Mw 9.2, run 20: The bottom row shows the fine data and its pseudo fine approximation when
dtopo clustering is used. The top row gives the differences of the hmax values and the eta (η) values of the
fine and pseudo fine data.
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C SVD strategy in detail

Here we outline the complete details of the SVD strategy shown in Section 7.6. This strategy is carried out
separately for each of the four magnitudes represented in the study, recalling there are 100 fine-grid runs
and 100 coarse-grid runs for each magnitude.

For each of the rectangular fgmax data, let us flatten the 88 × 78 grid data of hmax + B0 values into
column vectors, then stack them into a 6864 × 100 matrix. Let us denote by Af such a matrix formed for
the 100 fine-grid runs and by Ac a corresponding matrix for the 100 coarse-grid runs. We compute the SVD
of these two matrices,

Ac = UcΣcV
T
c = UcYc where Yc = ΣcV

T
c ,

Af = UfΣfV
T
f = UfYf where Yf = ΣfV

T
f .

(4)

This strategy relies on the fact that first columns of Uc and those of Uf are similar, as well as the first
rows of Yc and those of Yf . The similarity between Uc and Uf , for example, are shown in Figure 43.

Figure 43: High similarity between coarse and fine singular modes, for the first 6 modes taken from magnitude
9.0 events. Similarity is measured by the cosine of the angle between the two unit vectors.

The values on the diagonal of UT
c Uf have absolute values close to 1, indicating a strong similarity. The

similarity begins to break down after the 4th to 5th mode, so we use the first 4 modes to construct an
approximation to Af .

In our study, computing Af would require conducting all the fine-grid runs. Therefore, in order to

compute an approximation to Af , which we denote by Âf , we attempt to construct an approximation to the
first four columns of Uf and the first four rows of Yf using minimal amount of information from the fine-grid
runs. Since the coarse and fine runs are similar for the first four modes, we can conclude that the coarse
runs that have large components (values in the first 4 rows of Yc) in the first four left singular directions can
be used to build an approximation to the first 4 columns of Uf which we call Ûf . Since we are given Yc, we
sort the columns (indexed by i) of its first four rows 4 ways for j = 1, 2, 3, 4, largest to smallest by the value

|Yc,ji|√√√√ ∑
k 6=j

k∈{1,2,3,4}

|Yc,ki|2
. (5)
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In this study, the largest 2 columns for each of j = 1, 2, 3, 4 were chosen, so that we arrive at 8 column
indices of the coarse grid runs. These indices will be the fine-grid runs we will perform, and we will denote
the set of these indices by I.

Taking the fine-grid rectangular fgmax hmax + B0 values from the runs indexed by I, we again flatten
the grid data and form a 6864× 8 matrix, which we denote by Bf . The SVD of Bf is

Bf = Ūf Σ̄f V̄
T
f = Ūf Ȳf where Ȳf = Σ̄f V̄

T
f . (6)

We can now use the first four columns of Ūf as our value for Ûf .

Now, we turn to the approximation of the first four rows of Yf . While the first four rows of Yc and Yf
are similar, we can not simply equate them. We could use the known information in the first four rows of Ȳf
(called Ỹf ) to find a linear map T that can transform the first four rows of Yc (called Ȳc) into its fine-grid

counterpart (Ỹf ) in the least-squares sense, by solving the minimization problem

minimize‖T Ȳc,i − Ỹf,i‖2 for i ∈ I. (7)

The components of the computed T shown in Figure 44 reveal that it is roughly a diagonal map, indicating
that there is also a strong similarity between the columns of Ȳc and Ỹf represented in I.

Figure 44: Components of T in the minimization problem of (7).

Finally, we choose Âf = ÛfT Ȳc to be the approximation to Af .
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D Strategy differences for KL probabilities

Mean and max differences to all 400 fine for the following:

Truth: scenario_all_fine (finding differences to this one)

Strategy: scenario_all_pseudo (etamean-etamax clustering)

Strategy: scenario_dzCC_dtopo_etamax_20cls (dtopo clustering)

Strategy: scenario_coarse_eta_20cls (etamean-etamax clustering)

Strategy: scenario_all_pseudo_dtopo (dtopo clustering)

Strategy: scenario_all_SVD_40 (SVD, 32 fine, 8 each magnitude)

Strategy: scenario_highest10_each (** budget of 40 fine runs)

p-contour differences for zeta= 0.00

mean and max for scenario_all_pseudo was 0.03325 0.27991

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.04130 0.35018

mean and max for scenario_coarse_eta_20cls was 0.03921 0.21411

mean and max for scenario_all_pseudo_dtopo was 0.04903 0.34712

mean and max for scenario_all_SVD_40 was 0.06869 0.41052

mean and max for scenario_highest10_each was 0.01353 0.05596

p-contour differences for zeta= 1.00

mean and max for scenario_all_pseudo was 0.02581 0.19460

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.04826 0.34889

mean and max for scenario_coarse_eta_20cls was 0.03355 0.18312

mean and max for scenario_all_pseudo_dtopo was 0.03998 0.34330

mean and max for scenario_all_SVD_40 was 0.03921 0.20712

mean and max for scenario_highest10_each was 0.01635 0.05676

p-contour differences for zeta= 2.00

mean and max for scenario_all_pseudo was 0.01837 0.15492

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.05147 0.35724

mean and max for scenario_coarse_eta_20cls was 0.03209 0.18889

mean and max for scenario_all_pseudo_dtopo was 0.02564 0.33681

mean and max for scenario_all_SVD_40 was 0.01883 0.39885

mean and max for scenario_highest10_each was 0.01750 0.05785

p-contour differences for zeta= 3.00

mean and max for scenario_all_pseudo was 0.02053 0.13470

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.05592 0.33386

mean and max for scenario_coarse_eta_20cls was 0.03504 0.17133

mean and max for scenario_all_pseudo_dtopo was 0.02525 0.27915

mean and max for scenario_all_SVD_40 was 0.02028 0.39522

mean and max for scenario_highest10_each was 0.01784 0.05800

p-contour differences for zeta= 4.00

mean and max for scenario_all_pseudo was 0.01920 0.15859

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.05796 0.32510

mean and max for scenario_coarse_eta_20cls was 0.03486 0.15254

mean and max for scenario_all_pseudo_dtopo was 0.02844 0.22041

mean and max for scenario_all_SVD_40 was 0.03302 0.34902

mean and max for scenario_highest10_each was 0.01871 0.06474
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p-contour differences for zeta= 6.00

mean and max for scenario_all_pseudo was 0.01581 0.12986

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.06601 0.42750

mean and max for scenario_coarse_eta_20cls was 0.03096 0.21138

mean and max for scenario_all_pseudo_dtopo was 0.02145 0.15163

mean and max for scenario_all_SVD_40 was 0.02715 0.23510

mean and max for scenario_highest10_each was 0.01328 0.05597

p-contour differences for zeta= 8.00

mean and max for scenario_all_pseudo was 0.01781 0.14164

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.04400 0.31759

mean and max for scenario_coarse_eta_20cls was 0.02520 0.14631

mean and max for scenario_all_pseudo_dtopo was 0.01326 0.10691

mean and max for scenario_all_SVD_40 was 0.02369 0.19362

mean and max for scenario_highest10_each was 0.01379 0.04740

p-contour differences for zeta= 10.00

mean and max for scenario_all_pseudo was 0.01053 0.14561

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.03086 0.16069

mean and max for scenario_coarse_eta_20cls was 0.01451 0.14145

mean and max for scenario_all_pseudo_dtopo was 0.01031 0.09573

mean and max for scenario_all_SVD_40 was 0.01735 0.17246

mean and max for scenario_highest10_each was 0.01361 0.05465

p-contour differences for zeta= 12.00

mean and max for scenario_all_pseudo was 0.00742 0.14041

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.02969 0.20001

mean and max for scenario_coarse_eta_20cls was 0.01430 0.14243

mean and max for scenario_all_pseudo_dtopo was 0.00736 0.10113

mean and max for scenario_all_SVD_40 was 0.01483 0.16029

mean and max for scenario_highest10_each was 0.01053 0.04759

zeta-contour differences for p=0.1

mean and max for scenario_all_pseudo was 0.65543 4.79177

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.86499 3.85224

mean and max for scenario_coarse_eta_20cls was 0.73280 5.52382

mean and max for scenario_all_pseudo_dtopo was 0.36183 1.89197

mean and max for scenario_all_SVD_40 was 0.80124 2.93863

mean and max for scenario_highest10_each was 1.04443 2.89255

zeta-contour differences for p=0.2

mean and max for scenario_all_pseudo was 0.50798 3.47264

mean and max for scenario_dzCC_dtopo_etamax_20cls was 1.08555 3.40863

mean and max for scenario_coarse_eta_20cls was 1.09745 3.81849

mean and max for scenario_all_pseudo_dtopo was 0.67635 3.44487

mean and max for scenario_all_SVD_40 was 0.57404 2.89988

mean and max for scenario_highest10_each was 0.24138 1.67055
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zeta-contour differences for p=0.3

mean and max for scenario_all_pseudo was 0.35866 1.85071

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.61153 2.88502

mean and max for scenario_coarse_eta_20cls was 0.61011 2.62107

mean and max for scenario_all_pseudo_dtopo was 0.46467 2.87974

mean and max for scenario_all_SVD_40 was 0.44390 2.77637

mean and max for scenario_highest10_each was 0.81164 2.70336

zeta-contour differences for p=0.4

mean and max for scenario_all_pseudo was 0.71101 3.21702

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.97569 4.06048

mean and max for scenario_coarse_eta_20cls was 1.35825 3.82501

mean and max for scenario_all_pseudo_dtopo was 0.45732 2.84070

mean and max for scenario_all_SVD_40 was 0.52500 2.68276

mean and max for scenario_highest10_each was 0.05384 0.84205

zeta-contour differences for p=0.5

mean and max for scenario_all_pseudo was 0.46703 2.67963

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.20411 1.39488

mean and max for scenario_coarse_eta_20cls was 0.54395 2.75662

mean and max for scenario_all_pseudo_dtopo was 0.26784 1.91235

mean and max for scenario_all_SVD_40 was 0.38765 2.48476

mean and max for scenario_highest10_each was 0.19839 1.04073

zeta-contour differences for p=0.6

mean and max for scenario_all_pseudo was 0.36037 1.95435

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.79710 1.83306

mean and max for scenario_coarse_eta_20cls was 0.57318 2.18430

mean and max for scenario_all_pseudo_dtopo was 0.28055 1.75859

mean and max for scenario_all_SVD_40 was 0.56798 2.83285

mean and max for scenario_highest10_each was 0.20575 1.66151

zeta-contour differences for p=0.7

mean and max for scenario_all_pseudo was 0.21960 0.93398

mean and max for scenario_dzCC_dtopo_etamax_20cls was 1.10822 2.83315

mean and max for scenario_coarse_eta_20cls was 0.27746 1.27390

mean and max for scenario_all_pseudo_dtopo was 0.45553 2.74874

mean and max for scenario_all_SVD_40 was 0.61447 2.76804

mean and max for scenario_highest10_each was 0.06244 0.52286

zeta-contour differences for p=0.8

mean and max for scenario_all_pseudo was 0.23294 1.55166

mean and max for scenario_dzCC_dtopo_etamax_20cls was 1.22250 3.43998

mean and max for scenario_coarse_eta_20cls was 0.31104 1.65237

mean and max for scenario_all_pseudo_dtopo was 0.59925 3.51161

mean and max for scenario_all_SVD_40 was 0.40445 2.70863

mean and max for scenario_highest10_each was 0.12507 0.62055
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zeta-contour differences for p=0.9

mean and max for scenario_all_pseudo was 0.15953 1.53221

mean and max for scenario_dzCC_dtopo_etamax_20cls was 1.14875 3.05149

mean and max for scenario_coarse_eta_20cls was 0.63211 2.13293

mean and max for scenario_all_pseudo_dtopo was 0.70728 3.06078

mean and max for scenario_all_SVD_40 was 0.29474 2.28850

mean and max for scenario_highest10_each was 0.25633 0.93414

zeta-contour differences for p=0.95

mean and max for scenario_all_pseudo was 0.37055 4.47455

mean and max for scenario_dzCC_dtopo_etamax_20cls was 1.62199 6.70065

mean and max for scenario_coarse_eta_20cls was 0.98401 4.47455

mean and max for scenario_all_pseudo_dtopo was 1.46288 8.05844

mean and max for scenario_all_SVD_40 was 0.25358 2.28354

mean and max for scenario_highest10_each was 0.07442 0.34842
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E Strategy weighted zeta differences for KL probabilities

Mean and max zeta-contour differences to all 400 fine for the following:

Truth: scenario_all_fine (finding differences to this one)

Strategy: scenario_all_coarse_mod (the 400 coarse_mod)

20-Centroid Strategies

Strategy: scenario_dzCC_PE_20cls (dtopo-pe clustering of coarse_mod runs)

Strategy: scenario_coarse_eta_20cls (etamean-etamax clustering of coarse_runs)

Strategy: scenario_coarse_etaCM_20cls (etamean-etamax clustering of coarse_mod runs)

Strategy: scenario_dzCC_dtopo_etamax_20cls (dtopo clustering of coarse_runs)

Pseudo-Strategies using 20 fine

Strategy: scenario_all_pseudo (etamean-etamax clustering of coarse_runs)

Strategy: scenario_all_pseudoCM (etamean-etamax clustering of coarse_mod runs)

Strategy: scenario_all_pseudo_dtopo (dtopo clustering of coarse_runs)

Strategy: scenario_all_pseudoCM_dzCC_PE (dtopo-pe clustering of coarse_mod runs)

40-Centroid Strategies

Strategy: scenario_highest10_each (** budget of 40 fine runs)

Strategy: scenario_coarse_eta_40cls (etamean-etamax clustering of coarse_runs)

Strategy: scenario_coarse_etaCM_40cls (etamean-etamax clustering of coarse_mod runs)

Strategy: scenario_dtopo_40cls (dtopo clustering of coarse_runs)

Strategy: scenario_all_pseudoCM_dzCC_PE_40 (dtopo-pe clustering of coarse_mod runs)

Pseudo-Strategies using 40 fine

Strategy: scenario_all_pseudo_40 (etamean-etamax clustering of coarse_runs)

Strategy: scenario_all_pseudoCM_40 (etamean-etamax clustering of coarse_mod runs)

Strategy: scenario_all_pseudo_dtopo_40 (dtopo clustering of coarse_runs)

Strategy: scenario_all_pseudoCM_dzCC_PE_40 (dtopo-pe clustering of coarse_mod runs)

Strategy: scenario_all_SVD_40 (SVDs on coarse, used 32 fine runs, 8 each magnitude)

mean and max for scenario_all_coarse_mod was 0.38581 2.46464

mean and max for scenario_dzCC_PE_20cls was 0.30763 1.21847

mean and max for scenario_coarse_eta_20cls was 0.26644 1.34041

mean and max for scenario_coarse_etaCM_20cls was 0.26651 1.20747

mean and max for scenario_dzCC_dtopo_etamax_20cls was 0.45621 2.43414

mean and max for scenario_all_pseudo was 0.16243 1.23804

mean and max for scenario_all_pseudoCM was 0.16729 1.16061

mean and max for scenario_all_pseudo_dtopo was 0.24442 1.70556

mean and max for scenario_all_pseudoCM_dzCC_PE was 0.18586 0.82847

mean and max for scenario_highest10_each was 0.10635 0.37572

mean and max for scenario_dzCC_PE_40cls was 0.36488 1.94609

mean and max for scenario_coarse_eta_40cls was 0.19975 1.21092

mean and max for scenario_coarse_etaCM_40cls was 0.21045 0.98994

mean and max for scenario_dtopo_40cls was 0.29449 1.19787

mean and max for scenario_all_pseudo_40 was 0.13494 0.88091

mean and max for scenario_all_pseudoCM_40 was 0.13557 0.65425

mean and max for scenario_all_pseudo_dtopo_40 was 0.14392 1.01533

mean and max for scenario_all_pseudoCM_dzCC_PE_40 was 0.22660 1.59411

mean and max for scenario_all_SVD_40 was 0.22602 2.48940
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The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 45
were (2.46,0.39) for scenario-all-coarse-mod, (1.22,0.31) for scenario-dzCC-PE-20cls, (2.43,0.46) for scenario-
dzCC-dtopo-etamax-20cls, (1.34,0.27) for scenario-coarse-eta-20cls, and (1.21,0.27) for scenario-coarse-etaCM-
20cls.

Figure 45: Weighted zeta difference contours of coarse-mod and centroid strategies using 20 clusters and
KL probabilities



FEMA Project Final Report — March 19, 2017 75

The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 46
were (2.46,0.39) for scenario-all-coarse-mod, (1.24,0.16) for scenario-all-pseudo, (1.16,0.17) for scenario-all-
pseudoCM, (1.71,0.24) for scenario-all-pseudo-dtopo, and (0.83,0.19) for scenario-all-pseudoCM-dzCC-PE.

Figure 46: Weighted zeta difference contours of coarse-mod and pseudo strategies using 20 clusters and KL
probabilities
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The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 47
were (0.38,0.11) for scenario-highest10-each, (1.21,0.20) for scenario-coarse-eta-40cls, (1.20,0.29) for scenario-
dtopo-40cls, (0.88,0.13) for scenario-all-pseudo-40, and (1.02,0.14) for scenario-all-pseudo-dtopo-40.

Figure 47: Weighted zeta difference contours of centroid and pseudo strategies using 40 clusters and KL
probabilities
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The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 48 were
(0.38,0.11) for scenario-highest10-each, (0.99,0.21) for scenario-coarse-etaCM-40cls, (1.95,0.36) for scenario-
dzCC-PE-40cls, (0.65,0.13) for scenario-all-pseudoCM-40, and (1.59,0.23) for scenario-all-pseudoCM-dzCC-
PE-40.

Figure 48: Weighted zeta difference contours of centroid and pseudo strategies using 40 clusters and KL
probabilities
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The (maximum, mean) of the weighted value of the ζ differences across the fixed grid in Figure 49
were (0.38,0.11) for scenario-highest10-each, (0.65,0.13) for scenario-all-pseudoCM-40, and (2.49,0.23) for
scenario-all-SVD-40.

Figure 49: Weighted zeta difference contours for scenario-highest10-each, scenario-all-pseudoCM-40 and
scenario-all-SVD-40 using KL probabilities
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F Strategy differences for uniform probabilities

Mean and max differences to all 400 fine for the following:

Truth: scenario_all_fine_uniform (finding differences to this one)

Strategy: scenario_all_pseudo_uniform (etamean-etamax clustering)

Strategy: scenario_dzCC_dtopo_20cls_uniform (dtopo clustering)

Strategy: scenario_c_eta_20cls_uniform (etamean-etamax clustering)

Strategy: scenario_all_pseudo_dtopo_uniform (dtopo clustering)

p-contour differences for zeta= 0.00

mean and max for scenario_all_pseudo_uniform was 0.02645 0.21000

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.04627 0.36500

mean and max for scenario_c_eta_20cls_uniform was 0.02992 0.22200

mean and max for scenario_all_pseudo_dtopo_uniform was 0.05302 0.35300

p-contour differences for zeta= 1.00

mean and max for scenario_all_pseudo_uniform was 0.02012 0.14500

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.04608 0.35300

mean and max for scenario_c_eta_20cls_uniform was 0.03043 0.18200

mean and max for scenario_all_pseudo_dtopo_uniform was 0.03523 0.34800

p-contour differences for zeta= 2.00

mean and max for scenario_all_pseudo_uniform was 0.01702 0.14200

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.05268 0.36700

mean and max for scenario_c_eta_20cls_uniform was 0.03337 0.18500

mean and max for scenario_all_pseudo_dtopo_uniform was 0.02379 0.33700

p-contour differences for zeta= 3.00

mean and max for scenario_all_pseudo_uniform was 0.01731 0.14900

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.05761 0.33100

mean and max for scenario_c_eta_20cls_uniform was 0.03464 0.18100

mean and max for scenario_all_pseudo_dtopo_uniform was 0.02392 0.32000

p-contour differences for zeta= 4.00

mean and max for scenario_all_pseudo_uniform was 0.01478 0.17000

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.05846 0.31900

mean and max for scenario_c_eta_20cls_uniform was 0.03315 0.16700

mean and max for scenario_all_pseudo_dtopo_uniform was 0.02553 0.21500

p-contour differences for zeta= 6.00

mean and max for scenario_all_pseudo_uniform was 0.01273 0.12500

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.06300 0.41200

mean and max for scenario_c_eta_20cls_uniform was 0.02656 0.16000

mean and max for scenario_all_pseudo_dtopo_uniform was 0.01964 0.15800

p-contour differences for zeta= 8.00

mean and max for scenario_all_pseudo_uniform was 0.01682 0.12500

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.03869 0.34500

mean and max for scenario_c_eta_20cls_uniform was 0.02332 0.15200

mean and max for scenario_all_pseudo_dtopo_uniform was 0.01079 0.06900
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p-contour differences for zeta= 10.00

mean and max for scenario_all_pseudo_uniform was 0.00718 0.08200

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.02840 0.16400

mean and max for scenario_c_eta_20cls_uniform was 0.01332 0.09800

mean and max for scenario_all_pseudo_dtopo_uniform was 0.00903 0.07000

p-contour differences for zeta= 12.00

mean and max for scenario_all_pseudo_uniform was 0.00716 0.08000

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.02768 0.17300

mean and max for scenario_c_eta_20cls_uniform was 0.01347 0.09800

mean and max for scenario_all_pseudo_dtopo_uniform was 0.00568 0.04800

zeta-contour differences for p=0.1

mean and max for scenario_all_pseudo_uniform was 0.74908 5.40000

mean and max for scenario_dzCC_dtopo_20cls_uniform was 1.42215 3.35880

mean and max for scenario_c_eta_20cls_uniform was 1.02259 5.99672

mean and max for scenario_all_pseudo_dtopo_uniform was 0.37461 2.53000

zeta-contour differences for p=0.2

mean and max for scenario_all_pseudo_uniform was 0.33113 1.75667

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.94272 2.41488

mean and max for scenario_c_eta_20cls_uniform was 0.73354 2.17523

mean and max for scenario_all_pseudo_dtopo_uniform was 0.38990 2.14000

zeta-contour differences for p=0.3

mean and max for scenario_all_pseudo_uniform was 0.34151 2.12667

mean and max for scenario_dzCC_dtopo_20cls_uniform was 1.59296 3.31657

mean and max for scenario_c_eta_20cls_uniform was 0.59284 2.81619

mean and max for scenario_all_pseudo_dtopo_uniform was 0.32019 1.87000

zeta-contour differences for p=0.4

mean and max for scenario_all_pseudo_uniform was 0.24029 2.00667

mean and max for scenario_dzCC_dtopo_20cls_uniform was 1.07266 4.56467

mean and max for scenario_c_eta_20cls_uniform was 0.64133 2.18188

mean and max for scenario_all_pseudo_dtopo_uniform was 0.49245 3.87045

zeta-contour differences for p=0.5

mean and max for scenario_all_pseudo_uniform was 0.33919 2.06362

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.41259 1.58086

mean and max for scenario_c_eta_20cls_uniform was 0.29292 1.61868

mean and max for scenario_all_pseudo_dtopo_uniform was 0.27056 1.76000

zeta-contour differences for p=0.6

mean and max for scenario_all_pseudo_uniform was 0.24477 1.33333

mean and max for scenario_dzCC_dtopo_20cls_uniform was 0.88467 1.65984

mean and max for scenario_c_eta_20cls_uniform was 0.46042 1.55212

mean and max for scenario_all_pseudo_dtopo_uniform was 0.32231 1.89000
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zeta-contour differences for p=0.7

mean and max for scenario_all_pseudo_uniform was 0.18283 0.98333

mean and max for scenario_dzCC_dtopo_20cls_uniform was 1.13806 3.26836

mean and max for scenario_c_eta_20cls_uniform was 0.48335 1.38626

mean and max for scenario_all_pseudo_dtopo_uniform was 0.51376 3.25149

zeta-contour differences for p=0.8

mean and max for scenario_all_pseudo_uniform was 0.19893 1.04000

mean and max for scenario_dzCC_dtopo_20cls_uniform was 1.25523 3.92343

mean and max for scenario_c_eta_20cls_uniform was 0.33307 0.94725

mean and max for scenario_all_pseudo_dtopo_uniform was 0.68502 3.51135

zeta-contour differences for p=0.9

mean and max for scenario_all_pseudo_uniform was 0.20132 1.25167

mean and max for scenario_dzCC_dtopo_20cls_uniform was 1.41365 3.63170

mean and max for scenario_c_eta_20cls_uniform was 0.42855 1.32959

mean and max for scenario_all_pseudo_dtopo_uniform was 0.80430 2.99532

zeta-contour differences for p=0.95

mean and max for scenario_all_pseudo_uniform was 0.38230 1.51333

mean and max for scenario_dzCC_dtopo_20cls_uniform was 1.80327 4.24163

mean and max for scenario_c_eta_20cls_uniform was 0.42427 0.95634

mean and max for scenario_all_pseudo_dtopo_uniform was 0.83514 2.92024
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G Generating earthquake realizations

We use a Karhunen-Loève (K-L) expansion to generate a random slip pattern on a specified fault geometry,
sampled from random fields with a specified covariance structure. The general approach we use is described
in more detail in [19].

For the fault geometry, we used a subset of the Cascadia Subduction Zone, taking only the southern-most
8 fault segments as illustrated in Figure 50. The same geometry was used in [19] and is discussed further
there.

Figure 50: Southern portion of the CSZ fault showing location of Crescent City, CA and the 8 subfaults
that are further subdivided into 540 subfaults. The first 7 eigenmodes vj of the resulting covariance matrix
are also shown.

These are subdivided into 540 smaller fault planes for the purposes of defining the slip. The slip distribution
will be represented by a vector of 540 entries, denoted by s. The slip on each subfault was assumed to
follow a joint lognormal distribution. To define the 540 × 540 correlation matrix, we first computed the
pairwise distance between subfault i and subfault j. We can compute the Euclidean distance, but for this
fault geometry we expect a longer correlation length in the strike direction than down-dip, so we define

Cij = exp(−(dstrike(i, j)/rstrike)− (ddip(i, j)/rdip)) (8)

where dstrike(i, j) and ddip(i, j) are estimates of the distance between subfaults i and j in the strike and
dip direction, respectively, and rstrike, rdip are the correlation lengths in each direction. We define ddip(i, j)
using the difference in depth between the two subfaults and the dip angle δ as ddip(i, j) = ddepth/ sin(δ),

setting dstrike(i, j) =
√
d2ij − ddip(i, j)2. We take the correlation lengths to be 40% of the fault length and
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Figure 51: The taper (10) applied to the slip distribution.

width respectively, rstrike = 130 km and rdip = 40 km. Since the lognormal variables are not linear, we
perform the K-L expansion on the transformed Gaussian variables, log s, with corresponding correlation Cg

ij .
The slip s is now written as,

s = exp

 ∞∑
j=0

zj
√
λjvj

 where zj ∼ N (0, 1), (9)

and where λj and vj are eigenpairs of the covariance matrix for the Gaussian variables. A slip realization is
generated by drawing samples from the normal distribution N (0, 1), then computing s in the series above.
In this work, the series was truncated after the term 20. Once a slip is generated from the series, we apply
a tapering at the down-dip edge, given by

τ(d) = 1− exp(−20(d− dmax)/dmax) with dmax = 20000m. (10)

The plot of this taper is given in Figure 51. We then scale the slip to obtain the desired seismic moment,
for example Mw = 8.6.

Over the course of this project we experimented with several sets of realizations. In this report we only
present results from the set that we found most challenging due to the wide range of magnitudes and flooding
behavior in Crescent City.

We generated 100 events of magnitude Mw = 8.6 using the K-L expansion with a correlation length of
130 km in the strike direction and 40 km in the dip direction. In order to generate extreme events, these were
sampled by first choosing the zj coefficients each from a Gaussian with standard deviation 1. We draw 20,000
quasi Monte Carlo samples from a Halton sequence, to ensure that the samples are spread out and cover the
probability space well. These samples are shown in Figure 52. Then we dilate them by multiplying by 4,
with the result that the majority of the events are far out in the tail of the distribution. After exponentiating
the Gaussian K-L expansion, this dilation appears in the expression (9) as

s ∼ exp

 20∑
j=0

4zj
√
λjvj

 =

exp

 20∑
j=0

zj
√
λjvj

4

. (11)

Taking the power of 4 of the slips above has the effect of generating events that tend to have highly concen-
trated regions of high slip. That is, the resulting tsunami varies dramatically depending on where the high
slip region is located, in part because there can be large values of uplift or subsidence along the coast.
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Figure 52: The 20,000 quasi Monte Carlo samples, projected on to z1-z2 plane (left), and 100 cluster centers
obtained through k-means clustering (right).

Each of these sample points correspond to a potential earthquake scenario, therefore we have so far
obtained a catalogue of 20,000 potential earthquake scenarios (corresponding annual probabilities have not
yet been assigned.) Since we are constrained by the computational budget, we must reduce the number of
scenarios to N = 100. To this end, we apply the k-means clustering to the large number of scenarios, and
obtain 100 clusters Ck. There are various clustering algorithms that could accomplish this, for example, the
well-known Lloyd’s algorithm [20]. The cluster centers will each represent an earthquake scenario which will
be used for the tsunami simulation. An example of cluster centers is shown in Figure 52.

The remaining task is to assign the annual probability to each of the earthquake scenarios. Relative
probabilities were assigned to these 100 events by assuming that each event is representative of some region
of parameter space (a high-dimensional space whose dimension is equal to the number of terms used in the
K-L expansion, 20 for this work). A Voronoi tessellation of this 20-dimensional space was constructed in
performing the k-means clustering above, subdividing the space into disjoint regions Rk, each corresponding
to the cluster Ck. This region was formed for each event determined by coefficients z(j) ∈ lR20 and consists
of all points z that are closer to z(j) than to any other z(i). Then 1,000,000 Monte Carlo samples of the
z values were generated from the joint normal distribution and the fraction of these points falling in each
region Rk was used for the probability pk. These samples will be indexed by z`. Let us denote the indicator
function that returns 1 if a sample z lies in the region by Ik : lR20 → {0, 1} for sample z by Ik(z) and the
k-th cluster by Rk,

Ik(z) =

{
1 if z ∈ Rk,

0 otherwise.
(12)

Then the probability weights are computed by

pk ≡
1

M

M∑
`=1

Ik(z`) (13)

Since the higher-order terms in the K-L expansion do not significantly affect the tsunami resulting from the
earthquake, we computed the probability weights based on the 7-dimensional N (0, I), for computational
efficiency.
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From this set of 100 realizations we created 300 more by scaling them up to a larger magnitude by
multiplying the slip on each subfault (and hence the seafloor deformation) by approximately a factor of
2, which increases the moment magnitude by 0.2. In this manner we generated 100 realizations at each
magnitude Mw 8.6, 8.8, 9.0, and 9.2.

The probabilities computed for each of he original 100 realizations using the Voronoi diagram ap-
proach described above was then apportioned between the 4 different magnitude events using weights of
(0.3, 0.3, 0.3, 0.1), with equal weighting given to the smaller three magnitudes and less weight to the
extreme Mw 9.2 events.

We note again that these realizations are not meant to be a realistic representation of actual events or
probabilities associated with the CSZ. In particular, as noted in Section 3, this approach gave realizations
with highly concentrated slip patches where the slip exceeded 180 m for some of the Mw 9.2 events, which
is not realistic although it generates interesting test data.

In retrospect, it is also not clear that the approach used here to assign probabilities is correct, even if
we were sampling the correct probability density to begin with, due to the high dimension of the space we
are attempting to sample. Further work is required to generate a large number of realizations with realistic
probabilities attached, which is beyond the scope of the current project.
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H Clustered realizations

On the next 4 pages we show at most 5 realizations from each of the 20 clusters generated using the algorithm
of Section 5.1. The cluster numbers are arbitrary, but they are arranged in order of increasing ηmean values.

The 4 pages after that show at most 5 realizations from each of the 20 clusters generated using the
algorithm of Section 5.2. The cluster numbers are arbitrary, and they are not arranged in order of increasing
ηmean values.
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H.1 Etamean-Etamax clusters

Cluster 1 (5 realizations)

Cluster 2 (41 realizations)

Cluster 3 (49 realizations)

Cluster 4 (51 realizations)

Cluster 5 (50 realizations)
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Cluster 6 (16 realizations)

Cluster 7 (23 realizations)

Cluster 8 (18 realizations)

Cluster 9 (11 realizations)

Cluster 10 (24 realizations)
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Cluster 11 (18 realizations)

Cluster 12 (17 realizations)

Cluster 13 (16 realizations)

Cluster 14 (5 realizations)

Cluster 15 (16 realizations)
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Cluster 16 (15 realizations)

Cluster 17 (7 realizations)

Cluster 18 (7 realizations)

Cluster 19 (4 realizations)

Cluster 20 (7 realizations)
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H.2 dtopo clusters

Cluster 1 (6 realizations)

Cluster 2 (3 realizations)

Cluster 3 (8 realizations)

Cluster 4 (15 realizations)

Cluster 5 (2 realizations)
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Cluster 6 (15 realizations)

Cluster 7 (22 realizations)

Cluster 8 (10 realizations)

Cluster 9 (24 realizations)

Cluster 10 (49 realizations)
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Cluster 11 (16 realizations)

Cluster 12 (106 realizations)

Cluster 13 (50 realizations)

Cluster 14 (37 realizations)

Cluster 15 (17 realizations)
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Cluster 16 (3 realizations)

Cluster 17 (4 realizations)

Cluster 18 (8 realizations)

Cluster 19 (3 realizations)

Cluster 20 (2 realizations)
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