NATIONAL RESEARCH CENTER FOR INTEGRATED DISASTER RISK MANAGEMENT

CIGIDEN

GABRIEL GONZALEZ- Deputy Director CIGIDEN

Professor

Departamento de Ciencias Geológicas

Universidad Católica del Norte

www.cigiden.cl

Each year at least 4 destructive events impact the country

Annual economic losses by disasters are equivalent to 1,2 % GDP (277 Billions of USDS)

CHILE IS VERY EXPOSED TO NATURAL EVENTS

59 years of Natural Events Record

- 8 destructive earthquakes (Mw 7.7-9.4)
- 4 Great volcanic eruptions
- 5 Massive floods
- 3 High impact Forest fires

CHILE IS VERY EXPOSED TO NATURAL EVENTS

CONICYT/FONDAP Call for Proposals in 2011. CIGIDEN BIRTH

Facts

Massive systemic failure caused by the 2010
Earthquake/tsunami. Alert Failure, Crisis Response, People behavior, large number of victims (530) and 30 billion of dollars in losses

CONICYT asked for creating:

- An Excellence Research Centers in Disaster Risk Reduction.
- Scientific basis to contribute in the **definition of EWS**, efficient **mitigation strategies**, and **emergency response**
- Research aimed to understand and improve **social resiliency**
- Coordination with national institutions and collaboration with international research institutions

Right after the 2010 Maule Earthquake

MAIN OUTCOMES WITH NATIONAL IMPACTS

A NEW TSUNAMI EWS Operating by SHOA

FLOODING EWS Prototip

PRESIDENCIAL TASK FORCE Srategy definition for science-technology in DRD

EARTHQUAKE SCENARIOS, EVACUATION AND RISK MODELS

CIGIDEN 2017-2022

THE SIZE OF CIGIDEN

PEOPLE	INDICATORS	
	Indicator	2018
8 Principal researchers.	Article WoS	62
16 Associated researchers.	Impact factor	2,6
26 Invited researchers.	Number of article in Top 10	11
14 postdocs.		
12 Professionals.		
3 Administrative personals.		

CIGIDEN RESEARCH

NATURAL SYSTEMS AND PROCESSES			SOCIAL PRACTICES				RISK AND RESILIENCE ANALYSIS				
L1 Solid earth processes and associated hazards		L2 Surface water processes and associated hazards		L4 Disaster cultures and risk governance		L6 Information, communication and technologies for disaster risk management		L3 Risk and resilience of complex systems and networks		L5 Socio-economic assessment of disasters an mitigation strategies for resilient critical infrastructure systems	
Spatio- temporal processes in earthquake phenomena.	Coa proces haz	astal sses and ards.	Hydroclimatic hazards in a context of global change.	Disaster cultures and risk.	Disaster behavioral health.		Mediated communicatio n and emerging technologies.	Risk and resilience of complex networks.	Prese future risks in sett	ent and disaster n urban tings.	Socioeconomic assessment of disaster consequences.
() OUTREACH TO SOCIETY Institutional improvements · Citizen engagement in disaster risk reduction processes · Risk and resilience research platforms											

MAIN RESEARCHERS

SOCIAL PRACTICES

RL4 DISASTER CULTURES AND RISK GOVERNANCE

Manuel Tironi Sociology & Anthropology

Paula Repetto Disaster Behavioral Health

RL6 COMMUNICATION, AND EMERGING TECHNOLOGIES FOR DISASTER RISK REDUCTION

Gonzalo Bacigalupe Psychology & Public Health

NATURAL SYSTEMS AND PROCESSES

RL1 SOLID EARTH PROCESSES AND ASSOCIATED HAZARDS

RL2 SURFACE WATER PROCESSES AND ASSOCIATED HAZARDS

Gabriel González – Deputy Director Earth Science & Natural Hazards

Rodrigo Cienfuegos – Director Earth Sciences & Civil Engineering

RISK AND RESILIENCE ANALYSIS

RL3 RISK AND RESILIENCE OF COMPLEX SYSTEMS AND NETWORKS

Juan Carlos De la Llera Civil Engineering/Risk Resilience of Physical Systems **RL5** SOCIO-ECONOMIC OF DISASTERS AND MITIGATION STRATEGIES FOR RESILIENT CRITICAL INFRAESTRUCTURE SYSTEMS

Nicolás Bronfman Risk Perception and Socio-Economic Assessment

Alondra Chamorro Civil Engineering & Infrastructure Management

OUR STUDY IS FOCUSSED IN CENTRAL CHILE

STRATEGIC PROGRAMS 2017-2022

OUR STUDY IS FOCUSSED IN CENTRAL CHILE

Earthquake generation, coseismic and postseismic slip and mechanical propiertes of the plate interface

Lay, (2015)

2014 Mw 8.2 PISAGUA EARTHQUAKE

Coseismic

2 years of postseismic

Mahesh Shrivastava, Gabriel González, et al. (2019). (Scientific reports)

2015 Mw 8.3 ILLAPEL EARTHQUAKE

Coseismic

2 years of postseismic

Mahesh Shrivastava, Gabriel González, et al. (2016). (GRL)

Metois et al. (2012)

Social and physical interactions Hazard Assessment

Guidelines Evacuation Structural Vulnerability Education and Outreach

Formal Commitments to Funding Agency (5Yr) aka Work Plan

Coastal Processes and Hazards at Multiple Spatio-Temporal Scales

Activity Result	Y	r6	¥7
Development of a methodology to incorporate single-scenario uncertainty	2	х	X
A methodology for single-scenario uncertainty			Х
Development of catalog and database of relevant sources to establish earthquake recurrence models, and tsunami numerical simulation	orts)	X	
Estimation of probabilistic tauriami hazard based on global data	3	X	X
Incorporation of single-acenario uncertainties in the PTHA			X
Probabilistic Tsunami Hazard Assessment along the subduction zone			
Development of Tsunami Inversion methodology		х	X
Development of estimation of uncertainty estimates			X
Inversion methodologies with uncertainty estimates			
Design and benchmarking of modeling strategy for NRT along the Chilean coast	3	X	X
Incorporation of uncertainties in NRT assessments			
NRT methology with uncertainty estimates			
Development of methodologies for multi-hazard assessment including concatenated effects			X
Coupled selamic and burnamigenic hazard assessment for risk analysis in single-scenarios			
Integrated assessment of flood, tauramigenic, and storm surge hazards for the cities of Valparaiso, Viria del Mar, and Charlanal		х	х
Multi-hazard diagnostic for studied offices			
Proposals of hazard-mitigation alternatives for the studied cities			

WP4		Risk and Resilience of Complex Systems and Networks						
	RL	Activity Result						
A4.1	3	Consistent hazard and model for risk quantification of spatially distributed networks and complex systems						
A4.2	3	Risk and resilience evaluation using physics based models of complex systems and distributed networks						
A4.3	3	Risk and resilience evaluation in synthesized graphical models of distributed interdependent physical networks and complex systems						
A4.4	3	Risk and realisince evaluation at urban scale in physics-based distributed interdependent physical networks and complex systems						
A4.5	3	Research outreach and public communication of results						
A4.6	3	Management of WP4 and interconnectivity inter-cluater and intra-work package						
R4.1	3	Complete characterization of natural hazards (e.g., earthquake, tsunami) for network analysis including up-to-date recurrence relationships, IM prediction equations, spatial correlation of IMs, and effective risk and resilience evaluation algorithms						
R4.2	з	Dynamic exposure model for three distributed networks in central Chile treated as independent systems, physics-based simula models for calculation of vulnerability, risk, and resilience, and general physics-based risk models of the (independent) network						
R4.3	3	Graphical models for risk and resilience evaluation of distributed networks and complex systems, including in the analysis the p interdependencies and cascading effects						
R4.4	з	Comprehensive integrated model for risk and resilience evaluation of central Chile including interdependencies and cascading among physical networks and the resulting effects (e.g. debris generation) on other human processes such as evacuation, or e						
R4.5	з	Generation of complex scenarios for central Chile used for risk and resilience research purposes of other research lines and ci well as help improve resilience of people and communities by informing them better, evaluating different mitigation measures, a providing a quantitative framework for disaster planning						

_						
	Risk and Resilience of Urban Settings					
	Activity Result	Т				
	Comprehensive risks models at appropriate urban scales for two large urban settings Valparaiso-Villa and Santiago	Т				
	Risk and reEfficient urban planning and information systems to identify good practices and programs in cooperation with local communities					
	New public policies, planning instruments and implementations plans to achieve a larger natural disaster resilience of urban settings.					
	Real-world data and ground-based knowledge to develop and test improved scenarios for the realience of the built environment.					
	Hazus and Openguake models for the cities of Santiago and Valparaiso-Villa					
	Observatory to exchange good practices in urban planning and programs					
	Criteria to account for risk and resilience in urban design					
	SDI (Spatial Data Infrastructure) 2.0 almed to resilience of the built environment					
	Guidelines for implementation or urban improvements leading to increased resilience to natural hazards in the Santiago and V	/				
	Vite constations	L				
_	Research publications	_				

Natural Systems and Processes Cluster Coastal Processes and Hazards at Multiple Spatio-Temporal Scales

Probabilistic Tsunami Hazard

In reality, Trying to tackle the tsunami from many perspectives

- Physics
 - Resonance, edge waves and tsunami attenuation at large scale
- Early Warning Systems
 - Developed the Chilean Tsunami Warning System now operational
- Tsunami inversions in a Bayesian Framework from tide gages
- Operational NRT approaches
 - Finding the balance between accuracy and computing time for implementing in the ETWS
 - Assimilation methods

- Incorporating uncertainty in single scenario modeling
 - Developed methods for constraining uncertainty to geophysical templates such as ISC or slip deficit
- PTHA
 - Developing catalogs and zoning
 - Estimating b-parameter
 - Estimating recurrence
- How to link recurrence and single scenario variability into a hazard estimate?

- Stochastic inundation as input for damage
- Agent based modeling for evacuation

Natural Systems and Processes Cluster Coastal Processes and Hazards at Multiple Spatio-Temporal Scales

Disciplines

Civil Engineering Engineering Seismology Geology Geophysics Hydraulic Engineering Mathematical Engineering Mechanical Engineering Ocean Engineering Oceanography Architecture (Urban)

