MATERNAL THYROID DYSFUNCTION, LIKELY GENE DISRUPTING MUTATIONS AND THE IMPACT ON ASD SEVERITY

Lauren Koko Hall, Jen Gerds, PhD
University of Washington, Seattle, WA, 98105

AUTISM SPECTRUM DISORDER (ASD) IS A NEURODEVELOPMENTAL DISORDER CLASSIFIED BY DEFICITS IN SOCIAL COMMUNICATION AND RESTRICTED, REPETITIVE BEHAVIOR. SYMPTOMS MUST BE PRESENT IN EARLY DEVELOPMENT.1

BACKGROUND

• Genetic contributions to ASD: Structural and functional abnormalities to the genome contributing to ASD have been found.2

• Likely Gene Disrupting Mutations (LGD): LGD Mutations cause a single allele change that hinders function (figure 1).3 Disruptions to these genes are key in early pathways in development.4

• Thyroid Dysfunction: Thyroid hormones influence fetal brain development by stimulating neuronal synapses and impacting the formation of neurotransmitters.5 Both hypothyroidism and hyperthyroidism have an impact on brain development and cognitive impairments.6,5 Family history of autoimmune disease was associated with a greater risk for having a child with ASD, including associations in familial hypothyroidism.7

• Gene by environment model: Recent findings suggest a “two-hit model” where one variable elicits an initial risk for ASD, which is then compounded by a second variable, thus increasing severity symptoms.8,9

HYPOTHESIS

> An interaction between the presence of an LGD Mutation and maternal thyroid dysfunction alone may indicate more severe behavioral phenotypes than either the presence of an LGD Mutation or maternal thyroid dysfunction alone.

METHODS

• 188 participants who have been clinically diagnosed with ASD between ages 3-24 (M: 11, SD: 4).

• We tested the presence of regression via the ADI-R, social impairments via the SRS-2, cognitive abilities/ IQ via the DAS-II.

• Whole exome sequencing or targeted sequencing was completed to identify any ASD-associated de novo disruptive LGD Mutations.

• Additionally, those with a presence of either maternal hyperthyroidism, hypothyroidism, or Hashimoto’s thyroiditis were grouped together due to the influence of thyroid hormones on fetal brain development during pregnancy.

• 2x2 ANOVAs (LGD Mutation Status x Maternal Thyroid Dysfunction) were conducted in SPSS Version 19.

• Interaction effects: F(1, 184): <.0001, p=.986

• LGD main effects: F(1, 184): .273, p=.602

• Maternal thyroid main effects: F(1, 184): 1.732, p=.190

• Interaction effects: F(1, 180): .102, p=.750

• LGD main effects: F(1, 180): .46, p=.831

• Maternal thyroid main effects: F(1, 180): <.0001, p=.983

• Interaction effects: F(1, 172): 1.814, p=.180

SYMPTOM SEVERITY RESULTS

FIGURE 1

Impact on Regression

IQ RESULTS

Impact on Nonverbal IQ

Impact on Verbal IQ

DISCUSSION

• Our results found a main effect with gene group and verbal and nonverbal IQ, but no interaction effects. This indicates that this specific gene by environment model was not able to pinpoint the varying phenotypes within ASD.

• Strengths: We included a large sample of participants with a known genetic event. This study is also the first to investigate the interaction between LGD Mutations and thyroid dysfunction.

• Limitations: Some of our measures relied on self report, and a portion of our participants were involved remotely, thus full data was not able to be completed. Additionally, when analyzing our data set, we grouped together all types of thyroid dysfunction, as well as grouped all types of gene events, rather then analyzing them individually. Our third limitation is our small sample size.

• Future implications: This study allows us to get a closer step to exploring mechanisms of ASD. This warrants further investigation on gene events and different maternal immune activation on ASD severity.

REFERENCES

