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SUMMARY

Treatment of tuberculosis, a complex granulomatous
disease, requires long-term multidrug therapy to
overcome tolerance, an epigenetic drug resistance
that is widely attributed to nonreplicating bacterial
subpopulations. Here, we deploy Mycobacterium
marinum-infected zebrafish larvae for in vivo charac-
terization of antitubercular drug activity and toler-
ance. We describe the existence of multidrug-
tolerant organisms that arise within days of infection,
are enriched in the replicating intracellular popula-
tion, and are amplified and disseminated by the
tuberculous granuloma. Bacterial efflux pumps
that are required for intracellular growth mediate
this macrophage-induced tolerance. This tolerant
population also develops when Mycobacterium
tuberculosis infects culturedmacrophages, suggest-
ing that it contributes to the burden of drug tolerance
in human tuberculosis. Efflux pump inhibitors like
verapamil reduce this tolerance. Thus, the addition
of this currently approved drug or more specific
efflux pump inhibitors to standard antitubercular
therapy should shorten the duration of curative
treatment.
INTRODUCTION

Despite more than 50 years of effective antitubercular drugs,

tuberculosis (TB) eradication remains elusive (Sacchettini et al.,

2008) due to the complexity of curative treatment regimens

(Connolly et al., 2007; Donald and McIlleron, 2009). Long-term
therapy is required to prevent relapses with genetically drug-

sensitive bacilli that become transiently resistant in the host,

a phenomenon called tolerance. The best-case regimen of six

months was made possible by drug combinations that presum-

ably reduce the tolerant population (Donald andMcIlleron, 2009).

This so-called ‘‘short course therapy’’ represented a major

advance, as prior regimens lasted 12–18 months. However,

adherence to 6months of multidrug treatment is difficult, leading

to relapses that perpetuate the epidemic and fuel the develop-

ment of genetic resistance (Sacchettini et al., 2008). Thus, an

urgent goal of antitubercular drug discovery is to overcome toler-

ance (Connolly et al., 2007; Sacchettini et al., 2008). Several new

drugs are in development (Sacchettini et al., 2008), yet most lack

this key treatment-shortening property. This failure highlights

a poor understanding of TB tolerance mechanisms (Barry

et al., 2009; Connolly et al., 2007; Sacchettini et al., 2008;Warner

and Mizrahi, 2006).

Drug tolerance in TB is best contextualized to the in vivo life-

style of mycobacteria. Mycobacterium tuberculosis (Mtb)

resides within complex immunological structures called granu-

lomas, either within macrophages or extracellularly, in the

necrotic core (caseum) (Figure S1 available online) (Barry et al.,

2009; Connolly et al., 2007). Multiple granuloma types, reflecting

different levels of local disease activity, may coexist in a given

patient (Figure S1) (Barry et al., 2009; Canetti, 1955; Connolly

et al., 2007; Rich, 1946). A longstanding model is that tolerant

bacteria are sequestered in a subset of granulomas wherein their

replication and metabolism are uniformly slowed (Figure S1)

(Barry et al., 2009; Connolly et al., 2007). Newer models posit

that quiescent, drug-tolerant bacteria are present in all lesion

types and may be induced by deterministic mechanisms that

are responsive to stress (e.g., hypoxia) and/or the stochastic

formation of persister cells, some of which may be nonculturable

under standard laboratory conditions (Figure S1) (Barry et al.,

2009; Connolly et al., 2007; Garton et al., 2008; Mukamolova
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Figure 1. The Mm-Larval Zebrafish Infection Model Replicates the Specificity and Activity of Clinically Relevant Antitubercular Drugs

(A–D) Larvae were soaked in the MEC of RIF (388 mM), MOX (62.3 mM), EMB (1442 mM), or INH (290 mM) (Table S1).

(A) Survival of uninfected (UN) larvae versus those infected with 800 Mm and immediately treated with RIF, MOX, EMB, INH, or left untreated (UNT). (Left) In the

presence of 1% DMSO (see Figure S2A). Survival of treated infected larvae was significantly different from UNT larvae for all drugs (Table S2). Results are

representative of at least two independent experiments.

(B–D) Larvae were infected with 155 Mm and left untreated (UNT) or treated with MOX, EMB, or INH for 4 days prior to assessment of bacterial burdens by

fluorescence microscopy (B, representative larvae are shown), FPC (C), or CFU enumeration of the lysed larvae immediately after imaging (D). Arrow, granuloma;

arrowhead, single infectedmacrophage. Scale bar, 500 mm. For (C) and (D), individual larvae (points) andmeans (bars) are shown. Significance testing by oneway

ANOVA with Dunnett’s post test.

(E and F) Larvae infected with 46 Mm were soaked for 3 days in 388 or 776 mM RIF or were left untreated. Representative fluorescence images (E) and bacterial

burdens (F) of survivors are shown. Significance testing by one-way ANOVA with Tukey’s posttest.

(G) Survival of uninfected larvae upon treatment with 0, 388, or 776 mMRIF added 2 days postfertilization (dpf). p = 0.0010 for 0 versus 776; 0 versus 388 mMwas

not significant (NS) by Log-rank test. n = 15 per group.

(H–J) Larvae infected with 1800 Mm were left untreated or immediately soaked in 12, 58, or 290 mM INH. Representative fluorescence images (H) and bacterial

burdens (I) of survivors at 4 dpt are shown. Mean bacterial burdens (bars) compared by one-way ANOVA with Tukey’s posttest resulted in p < 0.001 for all
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et al., 2010; Sacchettini et al., 2008; Warner and Mizrahi, 2006).

However, all tolerance models and consequently drug discovery

efforts are centered on the assumption that slowed growth and/

or metabolic quiescence is the primary mediator of tolerance.

In this study, we demonstrate that growing mycobacteria

developmultidrug tolerance soon after they infect macrophages.

This understanding was gained by a two-pronged approach.

First, we used zebrafish larvae infected with Mycobacterium

marinum (Mm) to spatially and temporally characterize the

responses of individual animals to frontline antitubercular drugs.

Mm infections feature drug tolerance and require long-term

treatment in both humans and fish (Aubry et al., 2002; Decostere

et al., 2004). Using the larval model, we discovered that tolerant

bacteria arise within individual macrophages soon after infection

and are then expanded and disseminated by tuberculous gran-

ulomas. Guided by these findings, we used cultured macro-

phage infection models combined with bacterial efflux pump

mutants and pharmacological inhibitors to identify both a mech-

anism and a therapy for macrophage-induced tolerance in TB.

RESULTS

A Zebrafish Larval Model for In Vivo Characterization of
Antitubercular Drug Activity
To assess antitubercular drug activity in the model, we infected

larvae intravenously with GFP-expressing Mm and maintained

them in the presence of antitubercular drugs. Concentrations

that represented multiples of the in vitro minimum inhibitory

concentration (MIC) for Mm were used, and the drug-supple-

mented water was changed daily (Table S1, Figures S2A–S2E,

and Experimental Procedures). We established minimal isoni-

azid (INH), rifampicin (RIF), ethambutol (EMB), and moxifloxacin

(MOX) concentrations that were nontoxic and normalized host

survival when administered within 1 day postinfection (dpi),

which we term the minimum effective concentration (MEC) (Fig-

ure 1A, Figures S2B–S2E, Table S1, and Table S2). Bacterial

burdens of infected larvae can be assessed visually by fluores-

cence microscopy or quantitatively by larval lysis and enumera-

tion of bacterial colony-forming units (CFU). To facilitate rapid,

serial quantification of bacterial burden, we developed software

that enumerates fluorescent pixels in images of infected larvae,

or fluorescent pixel count (FPC), and showed it to be an accurate

predictor of bacterial burden (Figure S3 and Experimental Proce-

dures). Increased survival was associated with lower bacterial

burdens at 4 days posttreatment (dpt), as judged by fluores-

cence microscopy, and was confirmed quantitatively by FPC

and CFU analyses (Figures 1A–1F, Figure S3, and Table S2).

Findings that were consistent with human TB data were also ob-

tained with streptomycin (STM, Figures S2C–S2E), which has

resurged as a cornerstone of treatment for extremely drug-resis-
comparisons, with the exception of 12 versus 58 mM INH,whichwas not significan

trend comparing all curves; p = 0.0010 for comparison of UNT versus 58 mM or

(K) Functional domains of KatG. Mtb KatG is 740 aa, and Mm KatG is 743 aa. Box

and point mutations (in bold) that confer INH resistance in Mtb (Sandgren et al., 20

Mm strain corresponds to the E261 position of Mtb KatG.

(L) Bacterial burdens of 3 dpt larvae infected with 300 WT or INH-resistant (INH.R

beginning 1 dpi. Median log10FPC (bars) compared using Kruskal-Wallis test wit

*p < 0.05; **p < 0.01; ***p < 0.001. NS, not significant.
tant (XDR) TB (Donald and McIlleron, 2009). In summary, clini-

cally relevant antitubercular drugs were efficacious in the zebra-

fish infection model, with the expected exception of

pyrazinamide, to which Mm is innately resistant (Figures S2F

and S2G).

To further probe the model’s relevance to human TB, we used

theMECs as starting points fromwhich to examine drug potency

and dose-dependent activity. In human pulmonary TB studies,

the early bactericidal activity (EBA) of antitubercular drugs,

defined as their ability to reduce sputum bacterial counts in

pulmonary TB patients over the first several days, has been

useful to guide drug dosing (Donald and Diacon, 2008; Jindani

et al., 2003). Each drug has distinctive EBA characteristics. For

RIF, doses greater than the currently used therapeutic dose

increase the EBA, raising the question of whether higher doses

would have greater efficacy (Donald and Diacon, 2008). In the

larvae, treatment with the RIF MEC caused a 1.2 log10 reduction

in bacterial burden, whereas treatment with twice the MEC

caused an additional 1.2 log10 reduction despite increased

toxicity (Figures 1E–1G). We similarly observed dose-dependent

activity for MOX: stepwise increases in concentration produced

greater diminutions in bacterial burdens (Figure S2H). In contrast

to RIF, INH EBA does not increasewhen the conventional dose is

doubled. We also observed no further reduction in bacterial

counts at double the INH MEC (data not shown). Further, step-

wise 2-fold reductions from the conventional dose continue to

show activity in human TB, with a graded EBA decrease down

to 1/16th the therapeutic dose (Donald and Diacon, 2008). Simi-

larly, we found a graded concentration-dependent bactericidal

activity down to 1/24th the MEC (Figures 1H and 1I) and a thera-

peutic benefit at 1/5th the MEC (Figure 1J).

Finally, because drug-resistant TB is an increasing problem

(Sacchettini et al., 2008), we asked whether the model could

differentiate Mm strains with altered drug susceptibility. INH

resistance is usually the first to occur in human TB and often

the first step in the progression to XDR TB (Donald andMcIlleron,

2009). INH is a prodrug activated by the bacterial catalase KatG,

and the vast majority of INH-resistant clinical Mtb isolates have

katG mutations (Sandgren et al., 2009). We identified a sponta-

neous INH-resistant Mm katG mutant with an in vitro INH MIC

of 464 mM, 8-fold higher than for wild-type (Figure 1K and

Extended Experimental Procedures). The relative resistance of

the Mm katG mutant was detectable in vivo: in larvae infected

with wild-type Mm, maximal bacterial killing was observed at

290 mM, whereas an 8-fold higher concentration was ineffective

against the katGmutant (Figure 1L). INH resistance was specific:

EMB, which has a distinct target (Belanger et al., 1996), showed

similar efficacy against both strains (Figure 1L). In summary, the

zebrafish larval model reliably replicates the activity of antituber-

cular compounds and their dosing characteristics in humans.
t (p > 0.05). (J) Survival curve, n = 6 larvae per group. p = 0.0018, log-rank test for

UNT versus 290 mM.

ed inset of Mtb catalytic domain shows regions of identity with Mm (underlined)

09). *Position of the single amino acid substitution (E265V) in the INH-resistant

) Mm and soaked in 290 (LO) or 2320 mM (HI) INH, 1442 mM EMB, or left UNT

h Dunn’s posttest.
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Drug Tolerance Occurs Prior to Granuloma Formation
Our observation that residual cultivatable bacteria persisted 4

dpt, despite initiating treatment within a day of infection when

the bacteria were in individual macrophages (Figures 1B–1D),

suggested the early presence of drug-tolerant bacteria, prior to

granuloma formation. We pursued this observation in detail for

INH because its tolerance in human TB has been studied exten-

sively (Donald and Diacon, 2008; Donald and McIlleron, 2009;

Jindani et al., 2003). We confirmed that the residual bacteria

were tolerant, rather than genetically resistant, to INH: the INH

susceptibility of individual bacilli recovered from six treated

larvae (10.3 ± 1.2 CFU per larva) was unchanged from the

parental strain.

INH tolerance is seen in human EBA studies in which mono-

therapy produces biphasic killing. The majority of the bacteria

are killed with 2 days of treatment, after which the rate of killing

drops, leaving a population of drug-tolerant bacteria 14 dpt (Fig-

ure 2A) (Donald and Diacon, 2008; Jindani et al., 2003). We con-

ducted an EBA-like study in the larvae, starting treatment after

granulomas had formed, at 3 dpi. Serial quantitative tracking of

infection by fluorescence microscopy revealed that INH killing

kinetics mirror those observed in human EBA studies (Figures

2A–2C).

By tracking individual animals, we determined the location of

the persistent bacteria (Figure 2B). Several infected macro-

phages had very little diminution in fluorescence, suggesting

that they contained tolerant bacteria, and their varying positions

on consecutive days suggested their continued movement

during treatment. There were also residual infected macro-

phages (Figure 2B, arrowhead) from granulomas that had dis-

solved with treatment (Figure 2B, arrow). Thus, tolerant bacteria

were present both in individual macrophages and in granuloma

macrophages.

In human TB, the addition of RIF to INH-containing regimens

has shortened time to sterilization and thus treatment length.

This is reflected in EBA studies in which RIF is not rapidly bacte-

ricidal on its own and the additional activity of the INH-RIF

combination is seen only in the slower phase of killing, when

INH-tolerant bacteria are implicated (Figure 2A) (Donald and

Diacon, 2008; Jindani et al., 2003). Therefore, RIF’s treatment-

shortening effect is attributed to its capacity to reduce

INH-tolerant bacteria (Donald and McIlleron, 2009). Reminiscent

of the human data, RIF in the larvae was not rapidly bactericidal

on its own (Figure 2D), yet it increased INH efficacy in the slow

phase of its EBA curve (Figure 2E). Residual bacteria persisted

after combination therapy, albeit fewer than with INH monother-

apy (Figure 2F). In sum, the model demonstrates drug tolerance

akin to that seen in human TB and the well-known synergistic

effect of RIF in reducing tolerance. Furthermore, it reveals

tolerant bacteria within individual macrophages at the earliest

stages of infection.

Drug-Tolerant Bacteria AreExpanded andDisseminated
by Granuloma Formation
All models of TB tolerance invoke metabolically quiescent

bacteria (Barry et al., 2009; Connolly et al., 2007; Sacchettini

et al., 2008; Warner and Mizrahi, 2006). Yet during human TB

treatment, individual lesions can expand, or new ones appear
4 Cell 145, 1–15, April 1, 2011 ª2011 Elsevier Inc.
at distant sites, despite overall clinical improvement and reduc-

tion in lesion size and number (Akira et al., 2000; Barry et al.,

2009; Bobrowitz, 1980; Canetti, 1955). Importantly, bacteria

from new lesions are drug sensitive, and the patients are ulti-

mately cured with no change in therapy (reviewed in Akira

et al., 2000). These observations are consistent with an uneven

distribution of drug-tolerant bacteria that expand locally or after

dissemination. Indeed, even before the advent of effective TB

therapy, it was appreciated that, within a given patient, some

lesions resolve while others worsen, suggesting distinct local

host responses in the course of natural infection (Canetti,

1955; Rich, 1946).

We wondered whether the drug-tolerant bacteria that we had

observed within scattered macrophages are the ones that are

then amplified and disseminated by mechanisms of granuloma

formation (Davis and Ramakrishnan, 2009). However, we first

had to determine whether our model recapitulated the differen-

tial progression of natural infection. We found that, in the first

week of infection, some granulomas progressed while others

resolved (Figure 3A). Lesions in the head region (containing the

organs) were more likely to progress, whereas those in the tail

region (primarily muscle) were more likely to resolve (Figures

3B and 3C). The effect was even more striking at later develop-

mental stages (days 7 to 11), when organogenesis is more

advanced (Figure 3C). By 1 month, granulomas were exclusively

within organs (Figure 3D and 3E), reminiscent of the observation

that human TB seldom involves muscle (Rich, 1946).

Next, to study the effect of drug treatment on individual

lesions, we infected larvae with a range of inocula to achieve

varying infection burdens (Figure 3F) and then began INH treat-

ment for half of the larvae. We quantified and spatially localized

infection in each animal at the start of treatment and 3 days later

by fluorescence microscopy. As expected, untreated larvae

demonstrated an increase in bacterial burden (+0.2176 log10
FPC, p = 0.0008, Student’s t test), whereas treatment reduced

the bacterial burden (�1.001 log10 FPC).

Spatial monitoring of the untreated larvae confirmed the ex-

pected differential progression of lesions. Ten of the 12 treated

larvae had a reduction in bacterial burdens ranging from

32.3% to 99.7% (Figures 3F and 3G). We found local ‘‘nonres-

ponsiveness’’ among the responding larvae, analogous to that

observed in humans (Figures 3G–3I). For example, fish 11

(Figures 3G and 3H) had an overall 32.3% reduction in bacterial

burden, yet two individual infected macrophages expanded into

two infected cells and a granuloma and multiple new foci ap-

peared. New foci developed even in animals with an overall

>90% reduction in bacterial burdens (e.g., fish 5, Figures 3G

and 3I).

Finally, we determined whether new infection foci resulted

from the egress of macrophages (containing tolerant bacteria)

from existing granulomas, a phenomenon that we have docu-

mented during untreated infection (Davis and Ramakrishnan,

2009). We infected larvae with bacteria expressing the fluores-

cent reporter Kaede that changes from green to red upon photo-

activation (Davis and Ramakrishnan, 2009). We selectively pho-

toactivated the largest granuloma and immediately began INH

treatment (Figure 3J, left). We then assessed whether macro-

phages harboring the photoactivated bacteria left granulomas
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Figure 2. INH Treatment of Mm-Infected Larvae Results in a Biphasic EBA with Persistence of Tolerant Organisms

(A) Authors’ rendition of human clinical EBA data (see Figure 1 of Jindani et al., 2003) showing the rate of clearance of Mtb from sputum in patients with previously

untreated, smear-positive pulmonary tuberculosis upon treatment with INH and/or RIF.

(B and C) Twenty larvae were infected with 300 Mm and treated with 290 mM INH beginning 3 dpi. Each larva was imaged daily for 8 dpt, and bacterial burdens

were quantified by FPC.

(B) Representative larva imaged at the beginning of treatment (0 dpt) and again at 5 and 7 dpt. Arrow, granuloma; arrowhead, a macrophage that contains

persistent bacteria.

(C) EBA curve for INH-treated larvae showing the mean log10 FPC change from day 0, calculated as described in the Experimental Procedures. Error bars

represent SEM. D/d is the decrease in bacterial burden per day, expressed as log10, over the specified time period.

(D–F) Ten larvae per group were infected with 300 Mm and were serially imaged for enumeration of bacterial burden by FPC.

(D) Larvae were treated with 388 mM RIF or left untreated, beginning 1 dpi. Mean FPC and SEM are shown.

(E) Larvae were treated with 290 mM INH, 388 mMRIF, or a combination of both drugs beginning at 3 dpi. Data analyzed as in (C). Error bars represent SEM. D/d is

the decrease in bacterial burden per day, expressed as log10, over the specified time period.

(F) Representative INH-RIF treated larvae annotated as in (B).
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after initiating treatment. Within 24 hr, three infected macro-

phages had left the granuloma and dispersed far from the initial

site (Figure 3J, right). Importantly, the original granuloma had

shrunk substantially, showing its overall response to therapy,

consistent with the human data (Bobrowitz, 1980). The bacteria

within the departed macrophages were both red and green fluo-

rescent, suggesting that they were synthesizing new Kaede

protein and thus metabolically active, again consistent with the

human data in which the new foci had viable bacteria that were

then able to expand.

In summary, as is the case in human TB, individual lesions in

Mm-infected zebrafish larvae respond variably to treatment,

and dissemination occurs during effective therapy. The detailed

temporal monitoring possible in this model suggests a mecha-

nism for these longstanding observations in humans: drug treat-

ment selects for tolerant bacteria residing within individual

macrophages, which can expand into granulomas by recruiting

new macrophages and/or migrate to disseminate infection.

Macrophage Residence Induces Drug Tolerance in Mm
and Mtb
The drug-tolerant bacteria observed within larval macrophages

can be explained by three nonmutually exclusive mechanisms:

(1) pre-existing drug-tolerant persisters, (2) induction of toler-

ance upon exposure to the macrophage environment, and (3)

induction of tolerance upon exposure to drug. Subtherapeutic

concentrations of multiple drugs produce tolerance in actively

growing Mtb cultures (de Steenwinkel et al., 2010; Morris et al.,

2005; Viveiros et al., 2002), and we found this to also be the

case for Mm (Figure S4A). To probe the mechanism(s) of toler-

ance in the context of host infection, we examined the develop-

ment of INH tolerance in larvae depleted of macrophages by

antisense knockdown of the PU.1 myeloid transcription factor;

in the absence of macrophages, the Mm grow extracellularly

(Clay et al., 2007). Wild-type and macrophage-depleted (PU.1)

larvaewere infected at 1 day postfertilization (dpf), and INH treat-

ment was begun the following day. By 2 dpt, when INH tolerance

is first apparent (Figure 2C), wild-type larvae had 10.4% ± 2.9%

of the bacteria in the untreated controls, whereas PU.1-depleted

larvae had 3.4% ± 0.7%, a 3.1-fold reduction (Figure 4A). The

improved relative efficacy of INH in the PU.1-deficient larvae

was even greater at 4 dpt, with a 5.7-fold relative reduction

(1.9% ± 0.4% residual bacteria in wild-type versus

0.3% ± 0.07%) (Figure 4A). These data suggested that the
(C) Enumeration of expanding and contracting granulomas over time. Differen

changes occurring between days 7 and 11 (p = 0.0022), but not for changes occ

(D and E) Hematoxylin and eosin staining showing Mm in caseating granulomas

granulomas in pronephros and liver, respectively. gl, gill; sb, swim bladder; sm, so

(D) is shown on bottom-right of (E). Scale bar, 50 mm.

(F–I) Larvae infected with varying Mm inocula for 4 days were then treated with 290

7 dpi (0 and 3 dpt).

(F) Pre- and posttreatment log10 FPC values for individual larvae are plotted with

(G) Raw FPC values before and after treatment, percent change, and the presence

(H and I) Fluorescence images of fish 11 (H) and fish 5 (I), as reported in (F) and (G),

new foci. Scale bars, 500 mm.

(J) A single larva was infected with 500 Mm constitutively expressing the Kaede ph

immediately after photoactivation of a granuloma (left) and 24 hr later (right). Arrow

fluorescent bacteria. Scale bar, 250 mm.
tolerant bacterial population was enriched by macrophage

residence.

To determine the mechanism of this macrophage-dependent

tolerance, we turned to a cell culture infection model using

J774A.1 mouse or THP-1 human macrophage cell lines (Volk-

man et al., 2004). Cells infected with Mm for either 2 or 96 hr

were treated with 174 mM INH (3-fold the in vitroMIC) for an addi-

tional 48 hr and then lysed to obtain intracellular bacterial counts.

After 2 hr of macrophage infection, 7.6% ± 0.8% Mm survived

the subsequent 48 hr of INH treatment, whereas after a 96 hr

infection period, 49.5% ± 8.1% survived treatment, representing

a 6.5-fold increase in persisting bacteria (Figures 4B and 4C).

There was no additional killing with 10-fold increased INH

(1740 mM) (Figure 4C). The INH MIC for the bacteria recovered

at 96 hr was unchanged from the parental strain, confirming

that they had not acquired genetic resistance.

Our findings suggested that intramacrophage residence

induces drug tolerance. Alternatively, drug activity could be

limited intracellularly due to the residence of a bacterial subpop-

ulation inaprotectednicheor todrugmodificationby thehostcell.

To differentiate between these possibilities, bacteria were grown

in macrophages for 2 or 96 hr, released from the infected macro-

phages, and then incubated in bacterial growth mediumwith and

without drugs for an additional 48 hr prior to plating. Even with

direct exposure to 174 mM INH, the proportion of tolerant bacteria

was > 200-fold higher at 96 hr postinfection (hpi) than after 2 hpi

(Figure 4D and Table S3). Macrophage-conditioned Mm also

developed tolerance to RIF with a 20.6-fold increase in survival

and to MOX with a 4.8-fold increase in survival (Figure 4D and

Table S3). Dilution of the macrophage lysates prior to exposure

to antibiotics did not affect the proportion of tolerant organisms

(Figure S4B), excluding the possibility that tolerance was simply

due to increased bacterial density at 96 hr (Figure 4B). Finally,

we found that Mtb also develops macrophage-induced drug

tolerance: 96 hr versus 2 hr infection yielded > 2.3-fold increase

in INH survival and > 2.8-fold increase in RIF survival (Figure 4E

and Table S3). Thus, macrophage residence rapidly induces

Mm and Mtb to become tolerant to multiple drug classes.

Drug Tolerance Is Associated with a Replicating
Intracellular Population
Current models invoke host-induced bacteriostasis as a mecha-

nism for drug tolerance during infection. Indeed, both Mtb and

Mm exhibit drug tolerance under conditions of slowed growth
tial region-specific outcomes of granulomas were statistically significant for

urring between days 4 and 7 (p = 0.2360, Fisher’s exact test).

in a 33-day-old fish that was infected at 1 dpf. Red and black arrows indicate

mite. Scale bar, 300 mm. Higher magnification of granulomas in boxed inset of

mM INH or left untreated for an additional 3 days. Larvae were imaged at 4 and

data points from the same individual connected.

of expanding and new foci are reported for representative fish indicated in (F).

shown before and after treatment. Arrows, enlarging granulomas; arrowheads,

otoactivatable GFP for 4 days. Composite red and green fluorescence images

s, photoactivated granuloma; arrowheads, single macrophages containing red
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Figure 4. Antibiotic Tolerance Is Induced by Macrophage Residence
(A) Wild-type and PU.1-morphant larvae were infected with 300 Mm. One dpi larvae were treated with 290 mM INH or left untreated. Larvae were imaged at 2 and

4 dpt, and bacterial burdens were determined by FPC. For each time point, FPC of each treated larva was normalized to the mean FPC of the untreated control

group. n = 20 wild-type or 12 PU.1 morphant larvae per group. p values determined using Student’s t test.

(B and C) J774A.1 macrophages were infected with Mm and were left untreated or were treated with INH prior to lysis and enumeration of CFU.

(B) Growth of Mm in the untreated control wells.

(C) Survival of intracellular Mm upon exposure to 174 or 1740 mM INH during the time periods indicated (2–48 hr or 96–144 hr) prior to macrophage lysis and

enumeration of CFU. Percent survival was compared using one-way ANOVA with Dunnett’s posttest.

(D) Mmwere used to infect THP-1macrophages for 2 or 96 hr prior to being released bymacrophage lysis. CFUwere enumerated at the time of release and again

following 48 hr exposure to 174 mM INH, 1.21 mM RIF, 7.48 mM MOX, or left untreated. For the purpose of display, values below the limit of detection (0.08%,

dashed line) were arbitrarily set to 0.074%. p values were determined using Student’s t test (RIF and MOX) or the Mann-Whitney rank test (INH).

(E) Mtb strain H37Rv was used to infect J774A.1 macrophages that were grown and treated as described for (D) except that the concentration of INHwas 4.4 mM,

reflecting the greater inherent susceptibility of this organism to INH. For the purpose of display, values below the limit of detection (0.6%, dashed line) were

arbitrarily set to 0.57%. p values were determined using the Mann-Whitney rank test.

In all panels, error bars represent SEM.
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in vitro (Figure S4C) (Paramasivan et al., 2005). Moreover, the net

growth of Mm in macrophages appeared to decline slightly

between 48 and 96 hr (Figure 4B), raising the possibility that

tolerancemight result frommacrophage-induced bacteriostasis.

However, both our zebrafish studies and prior human clinical

data showed that bacteria expand and disseminate in vivo in

the face of drug treatment. Thus, even if tolerance is initially

associated with nongrowing persisters, they must somehow

then retain the tolerance phenotype upon resuming growth.

To probe the replicative state of the tolerant bacteria, we

manipulated intracellular growth by treating infected macro-

phages with dexamethasone (DEX), a broad-spectrum anti-

inflammatory agent that increases net intracellular bacteria

(Rook et al., 1987). DEX treatment resulted in a 2.1-fold increase

in intracellular Mm at 96 hr that was accompanied by a 1.4-fold

and 2.1-fold increase in the proportion of bacteria tolerant to INH

and RIF, respectively (Figures 5A and 5B and Table S4). These

experiments revealed that tolerance is not diminished by

increased bacterial growth and suggested, rather, that it is

enhanced in growing intracellular bacteria.
8 Cell 145, 1–15, April 1, 2011 ª2011 Elsevier Inc.
We then directly compared the numbers of drug-tolerant

bacteria in nongrowing and growing intracellular populations.

We transformed Mm with the unstable plasmid pBP10 that is

lost at a constant rate from dividing, but not nondividing, myco-

bacteria (Figure S5) (Gill et al., 2009). Using Mm/pBP10, we

showed the rate of plasmid loss per generation to be unchanged

under different growth conditions (Figure S5 and Supplemental

Experimental Procedures). We next usedMm/pBP10 to examine

bacterial growth in macrophages. The generation time of the

intracellular population was not decreased over the 96 hr assay

period (Figure 5C and Figure S5). Furthermore, the apparent

slowing of growth between 48 and 96 hr (Figure 4B) was, in

fact, due to a large increase in bacterial death, which overshad-

owed a more modest increase in growth rate in this time period

(Figure S5E).

We then compared the proportion of drug-tolerant bacteria in

the population that had retained the plasmid (KanR; i.e., bacteria

that had not yet replicated and daughter cells that had retained

the plasmid upon replication) to that in the population that had

lost the plasmid (KanS; i.e., completed at least one round of
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Figure 5. Growing Bacteria Are Enriched for Antibiotic Tolerance

(A and B) J774A.1 macrophages were infected with Mm and were treated with 100 nM dexamethasone at t = 0. Macrophages were lysed at 96 hpi to release

bacteria.

(A) Total CFU at time of release.

(B) Percent survival of released bacteria upon 48 hr exposure to 174 mM INH, 1.21 mM RIF, or left untreated.

(C) J774A.1 macrophages were infected with Mm/pBP10 and total and KanR CFU enumerated at 48 and 96 hpi. The cumulative bacterial burden (CBB) was

calculated as described in the Extended Experimental Procedures.

(D)Mm/pBP10 grown intracellularly for 96 hr (described in C) were released bymacrophage lysis and then treated for an additional 48 hr with 174 mM INH, 1.21 mM

RIF, 7.48 mM MOX, or left untreated prior to enumeration of total and KanR CFU. KanS CFU were calculated as the total CFU minus the mean KanR CFU.

In all panels, error bars represent SEM. p values were determined using Student’s t test.
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replication). Drug-tolerant bacteria were enriched in the KanS

population: 3.5-fold for INH, 7.6-fold for RIF, and 7.6-fold for

MOX (Figure 5D and Table S4). Together, these results sug-

gested that drug tolerance was not associated with macro-

phage-induced bacteriostasis but, rather, that it was enhanced

in the growing intracellular population.

Macrophage-Induced Bacterial Efflux Pumps Mediate
Drug Tolerance
One explanation for the multiclass drug tolerance that we

observed is a reduction in steady-state intrabacterial drug

concentration, which could be achieved by decreased drug

entry and/or increased efflux. The induction of efflux pumps

causes single or multidrug resistance in many bacteria, including

Mtb (De Rossi et al., 2006; Li and Nikaido, 2009; Louw et al.,

2009), so we investigated their potential role in macrophage-

induced tolerance. Mtb andMm encode numerous efflux pumps

that can mediate resistance to antitubercular drugs when over-

expressed (Li and Nikaido, 2009). Efflux pump activity has

been invoked to explain multiple aspects of drug resistance in

mycobacteria: (1) intrinsic resistance, (2) acquired multidrug

resistance, and (3) tolerance induced by antimicrobial exposure
(De Rossi et al., 2006; Gupta et al., 2010; Louw et al., 2009;

Morris et al., 2005; Viveiros et al., 2002). Moreover, several

mycobacterial efflux pumps and their regulators are induced

during macrophage infection (Fontán et al., 2008; Morris et al.,

2005; Nguyen and Thompson, 2006; Ramón-Garcı́a et al.,

2009; Rohde et al., 2007; Schnappinger et al., 2003; Zähner

et al., 2010). Finally, efflux pump inhibitors enhance the activity

of certain drugs on drug-resistant Mtb; these include the

currently approved pump inhibitors verapamil (VER), reserpine

(RES), and thioridazine (Li and Nikaido, 2009).

To determine whether bacterial efflux pumps mediated

macrophage-induced drug tolerance, we added subinhibitory

VER and RES in conjunction with antibiotics to macrophage-

released Mm and found that tolerance was reduced (Figures

6A and 6B and Table S5). VER produced a 15.6-fold reduction

in INH survival and a 9.2-fold reduction in RIF survival; RES

produced a 4.8-fold reduction in INH survival and a 7.9-fold

reduction in RIF survival. These effects were specific to macro-

phage-induced tolerance: VER did not reduce stationary

phase-induced tolerance to INH or RIF (Figure S6A).

InMtb, VER reduced tolerance to RIF, but not to INH (Figure 6C

and Table S5). RIF survival was reduced by 1.4-fold and 1.9-fold,
Cell 145, 1–15, April 1, 2011 ª2011 Elsevier Inc. 9
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Figure 6. Bacterial Efflux Pumps Confer Tolerance within Macrophages

(A and B) THP-1macrophageswere infected withMmand lysed at 2 or 96 hpi. The released bacteria were treated for an additional 48 hr with 174 mM INH, 1.21 mM

RIF, or left untreated in the presence or absence of 81.4 mM verapamil (A) or 65.7 mM reserpine (B) prior to enumeration of CFU.

(C) THP-1macrophages were infectedwithMtb strain CDC1551 and lysed at 2, 96, or 144 hpi. The released bacteria were then treated with antibiotics for 48 hr as

described in (A) except that the concentration of INH was 4.4 mM, as described for Figure 4E.

(D and E) THP-1 macrophages were infected with Mtb strains JHU1258c-715 (‘‘M1’’), JHU1258c-833 (‘‘M2’’), and the isogenic wild-type control, CDC 1551, for 2

or 96 hr prior to lysis and enumeration of CFU. (D) Released bacteria were treated as described in (C).

(F) THP-1 cells were infected with Mm for 48 hr prior to addition of 0 (UNT), 40.7, or 81.4 mM VER for an additional 48 hr. p < 0.001 using one-way ANOVA with

Dunnett’s posttest comparing each treatment group to the untreated control after 48 hr of VER treatment.

(G) THP-1 cells infected with Mm for 2 or 96 hr were incubated for an additional 48 hr with 174 mM INH, 1.21 mM RIF, or both and in the presence or absence of

40.7 mM VER. Cells were lysed and CFU were enumerated at the end of the 48 hr treatment. Percent survival was calculated relative to the mean intracellular

counts present at the start of antibiotic exposure.

For all panels, error bars represent SEM. Significance testing was performed using one-way ANOVA with Dunnett’s (A, B, D, and E) or Bonferroni (C and D)

posttests.
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respectively, in bacteria grown intracellularly for 96 and 144 hr

prior to challenge. This result suggests that Mtb possesses

VER-resistant pumps that are distinct from those used by Mm.

Consistent with this idea, INH exposure induces transcription of

more efflux pumps than does RIF in MDR-TB (Gupta et al.,

2010). Moreover, drug-induced INH tolerance in Mtb is sensitive

toRES,but not toVER (Colangeli et al., 2005;Viveiros et al., 2002).
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Our data suggested that distinct efflux pumps mediate INH

and RIF tolerance in Mtb. The Mtb Rv1258c efflux pump is tran-

scriptionally induced upon: (1) macrophage infection (Morris

et al., 2005; Schnappinger et al., 2003) and (2) exposure to subin-

hibitory concentrations of RIF, but not INH, in an Mtb isolate that

is resistant to both drugs (Siddiqi et al., 2004). Hypothesizing that

Rv1258c mediates macrophage-induced RIF tolerance, we
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tested two Mtb strains with distinct transposon insertions in

Rv1258c. After 96 hr of macrophage residence, both mutants re-

tained INH, but lost RIF, tolerance (Figure 6D and Table S5).

Indeed, they became hypersusceptible to RIF: whereas the

wild-type had a 3.0-fold increase in tolerance, the mutants had

2.5- and 2.0-fold reductions in tolerance. Moreover, the mutants

were compromised for intramacrophage growth (Figure 6E),

suggesting that this efflux pump is required for both intracellular

growth and RIF tolerance.

To confirm that the loss of tolerance in the Rv1258c mutants

was not simply a function of intracellular growth attenuation,

we tested two additional mutants with macrophage growth

defects: Mm mutants lacking the RD1/ESX-1 secretion system

or the cell surface/secreted Erp protein retained macrophage-

inducible antibiotic tolerance (Figures S6B and S6C). The Erp

mutant developed RIF tolerance despite being RIF hypersuscep-

tible at baseline (Cosma et al., 2006b). This would suggest that

efflux pump induction due to intracellular residence allowed

the bacteria to extrude sufficient RIF to become more resistant

than at baseline, despite growth attenuation. In contrast, the

Rv1258c-deficient bacteria become hypersusceptible to RIF

because their intracellular damage is coupled to an inability to

expel RIF.

Finally, we showed that the Mtb Rv1258c mutants retained

stationaryphase-inducedRIF tolerance,againshowingspecificity

of this efflux pump in mediating macrophage-induced tolerance

(Figure S6D). In sum, these results suggest that bacterial efflux

pumps that are induced upon macrophage infection to promote

intracellular bacterial growthalso serve tomediatedrug tolerance.

This mechanistic understanding explains the enrichment of

tolerant bacteria in the growing intracellular population.

VER Reduces Intracellular Mm Growth and Tolerance
If VER reduces tolerance by inhibiting bacterial efflux pumps

induced upon intracellular residence, it should reduce tolerance

when administered directly to infected macrophages. It should

also inhibit intracellular growth, as suggested by the Rv1258c

mutants. Indeed, efflux pump and potassium transport inhibitors

have been found to promote intracellular killing of multidrug-

resistant Mtb (Amaral et al., 2007). We similarly found that incu-

bation of Mm-infected macrophages with VER reduced intracel-

lular bacterial growth at concentrations that did not impact

bacteria in axenic culture (Figure 6F and Figure S6A). Incubation

of infected macrophages with VER also inhibited tolerance (Fig-

ure 6G). The 96 hr Mm-infected macrophages were treated with

INH alone or INH and VER for an additional 48 hr before lysis and

bacterial enumeration; the addition of VER reduced tolerance by

2.0-fold (Figure 6G and Table S5). Finally, when added to a syner-

gistic combination of INH and RIF, VER further reduced toler-

ance by 2.2-fold (Figure 6G and Table S5), suggesting the poten-

tial of VER to increase the efficacy of existing treatment

regimens. Taken together, the finding that mutations in

Rv1258c and treatment with the efflux pump inhibitor VER lead

to the same two phenotypes (growth attenuation and loss of

tolerance) indicates that efflux pumps are required for both

processes. Moreover, the observation that VER treatment phe-

nocopies the Rv1258c mutation argues that it is the loss of

Rv1258c function in the mutants, rather than polar effects on
downstream genes, that is responsible for the observed

phenotypes.

Macrophage-Induced Tolerance Persists after Bacteria
Are Rendered Extracellular
Both the zebrafish larval model and the human EBA studies

reveal the existence of tolerant bacteria. However, in contrast

to the intracellular bacteria present in the larvae, the tolerant

bacteria assessed in the human studies are thought to be

predominantly extracellular, residing within the necrotic cores

of open cavitary lesions (Figure S1). Necrosis results from death

of the granuloma’s macrophage core and is sustained by

continued influx and lysis of infected and uninfected macro-

phages (Cosma et al., 2004; Dannenberg, 2003). Thus, for

macrophage-induced tolerance to play a significant role in

human cavitary TB, it must persist after the bacteria are rendered

extracellular by macrophage lysis. To test this model, we lysed

Mm out of macrophages and monitored the proportion of

tolerant organisms over time. Mm retained tolerance for at least

120 hr after macrophage release despite continued replication in

the lysate (Figure S7A and S7B). Whether tolerance is retained

due to slow turnover of the efflux pump or persistence of the orig-

inal macrophage stimulus in the lysates remains to be deter-

mined. Regardless of the mechanism, these findings argue

that extracellular bacteria in cavitary TB may be rendered

tolerant by prior growth in macrophages.

DISCUSSION

Drug tolerance presents a significant challenge to the eradica-

tion of TB. Here, we exploit complementary infection models to

demonstrate that macrophages and granulomas both play

a role in the induction and expansion of drug-tolerant bacteria.

The zebrafish larval model has enabled reassessment of

fundamental dogmas about the role of macrophages and granu-

lomas in TB pathogenesis (Davis and Ramakrishnan, 2009;

Tobin and Ramakrishnan, 2008; Tobin et al., 2010; Volkman

et al., 2010). These studies found that, rather than serving as

strictly host-protective structures, granulomas are co-opted by

mycobacteria for their expansion and dissemination. We now

show that tolerant bacteria arising within individual macro-

phages similarly exploit granulomas for their amplification and

dissemination during the course of drug treatment. This finding

helps to explain decades-old observations that human TB

lesions can expand, and new ones appear, in the face of overall

clinical and radiological response (Akira et al., 2000; Bobrowitz,

1980; Canetti, 1955).

The core finding of this study is that drug-tolerant bacteria

originate in macrophages dependent on the activity of bacterial

efflux pumps (Figure 7). Within a few days of macrophage infec-

tion, a bacterial subpopulation arises that manifests tolerance to

multiple drugs independent of drug exposure. The association

between intramacrophage growth and drug tolerance suggests

that a common mechanism promotes both. This is borne out

by our finding that Rv1258c is required for both macrophage

growth and intracellular RIF tolerance in Mtb. The activation of

bacterial efflux pumps in response to membrane and oxidative

stress and antimicrobial peptides in vitro (Morris et al., 2005;
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Figure 7. Model for the Mechanism of Antibiotic Tolerance in TB and Its Treatment

Nontolerant bacteria are phagocytosed by macrophages soon after infection wherein they induce efflux pumps to counter macrophage defenses. These efflux

pumps render bacteria tolerant to multiple antitubercular drugs. The tolerant bacteria are associated with the growing population because of their enhanced

ability to counter macrophage defenses. Antitubercular drug treatment spares tolerant bacteria, and the addition of efflux pump inhibitors reduces their numbers.

Please cite this article in press as: Adams et al., Drug Tolerance in Replicating Mycobacteria Mediated by a Macrophage-Induced Efflux
Mechanism, Cell (2011), doi:10.1016/j.cell.2011.02.022
Nguyen and Thompson, 2006; Ramón-Garcı́a et al., 2009; Zäh-

ner et al., 2010) suggests that their induction during intracellular

residence may protect the bacteria from these same conditions

in vivo. For example, efflux pumpsmediate intrinsic resistance of

Neisseria meningitidis to human antimicrobial peptides (Tzeng

et al., 2005). The finding that DEX-treated macrophages induce

tolerance may shed some light on the intracellular stimuli

involved. DEX treatment suppresses macrophage oxidative

bursts while preserving antimicrobial peptide expression (Duits

et al., 2001; Ehrchen et al., 2007). Antimicrobial peptides, which

are induced in Mtb-infected human macrophages and are

required for macrophage antimycobacterial activity (Liu et al.,

2007; Rivas-Santiago et al., 2008), may mediate the induction

of bacterial efflux pumps and thereby tolerance.

Our in vivo results show that tolerant bacteria arise within

a subset of infected macrophages during treatment. This may

be due to macrophage heterogeneity, again underscoring the

complexity of the macrophage-Mycobacterium interface. Indi-

vidual macrophages may cause distinct and/or differential

induction of bacterial efflux pumps and, thus, variable tolerance

within the bacterial population. Additionally, antibiotics have

long been thought to act in co-operation with cellular host

defenses, an idea further supported by the increasing recogni-

tion of the complex, multidimensional mechanisms of antibiotic

activity (Kohanski et al., 2010).

How do our findings relate to human clinical studies? Among

the readily cultivable bacilli in the sputum of humans with active

cavitary TB, two distinct populations have been described: drug

susceptible and drug tolerant (Jindani et al., 2003). The meta-

bolic status of the tolerant population has been the source of
12 Cell 145, 1–15, April 1, 2011 ª2011 Elsevier Inc.
much debate. Spurred by our discovery of early tolerance in

zebrafish larvae, we revisited human EBA and radiological

studies and realized that growing, tolerant populations must

mediate the progression and expansion of tubercular lesions

that occur in the face of treatment (Bobrowitz, 1980; Jindani

et al., 2003). The association between tolerance and intracellular

growth in the zebrafish larval and macrophage models provides

a mechanism for the earlier human studies. Further strength-

ening this link is our finding that tolerance persists for days after

the bacteria are released frommacrophages, suggesting that the

bacteria present in the necrotic core of macrophage-lined cavi-

ties may utilize similar tolerance mechanisms.

Slowly growing bacteria that are not cultivable under standard

conditions have also been observed in human sputum (Garton

et al., 2008; Mukamolova et al., 2010). These too appear to be

drug tolerant, but their relative impact on treatment duration

and clinical relapse is unclear (Mukamolova et al., 2010). Impor-

tantly, tolerance models centered on nonreplicating bacteria do

not account for the recent finding that diarylquinolones, which

are equally bactericidal for exponentially growing and dormant

bacteria in culture (Koul et al., 2008), only shorten the time to

cure from 6 months to 4 in the mouse model of TB, which

features slowed bacterial growth (Ibrahim et al., 2009; Muñoz-

Elı́as et al., 2005). Although this shortening may be extremely

important clinically, it does not support the notion that tolerance,

and thus the long duration required for therapy, is mediated

solely by dormant bacterial populations. One possibility is that

the growing, tolerant bacteria revealed in this work are respon-

sible for the substantial residual tolerance observed after diary-

lquinolone-containing therapies.
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In summary, we have identified a population of drug-tolerant

bacteria that are likely to be substantially present in TB patients

as they are induced by macrophages, which host dynamic

mycobacterial populations throughout infection. Current drug

discovery efforts, with their emphasis on quiescent tolerant

bacteria, fail to take into account the role of this population in

tolerance. Our identification of pharmacological measures to

reduce the numbers of growing tolerant bacteria suggests an

approach to further shorten TB chemotherapy. Our finding that

the same pump mediates both growth and tolerance suggests

that the identification of more potent specific inhibitors with

a dual bacterial killing mechanism is possible. Indeed, some

are already being tested against Rv1258c (Sharma et al.,

2010). Ultimately, the best assessment of whether targeting

these newly discovered tolerant bacteria is the key to truly

short-course chemotherapy will come from clinical trials using

efflux pump inhibitors like VER.

Finally, the tolerance mechanisms and counter strategies that

we describe for mycobacteria may be relevant to other intracel-

lular pathogens. Indeed, macrophage-induced tolerance to

multiple drug classes is described for Legionella pneumophila,

an agent of pneumonia (Barker et al., 1995). Thus, our findings

may have relevance for Legionella as well as other recalcitrant

intracellular pathogens that produce serious and often relapsing

infections in which tolerance is a barrier to therapy.
EXPERIMENTAL PROCEDURES

Bacterial Strains and Methods

M. marinum strain M (ATCC BAA-535) and its fluorescent derivatives have

been described (Cosma et al., 2006a; Davis and Ramakrishnan, 2009). A spon-

taneous INH-resistant mutant identified in our laboratory (KA1) was found to

have increased resistance to INH (MIC 64 mg/ml), and the katG locus was

subsequently sequenced. Plasmid pBP10 (gift of D. Sherman, Seattle Biomed)

was transformed into strain M to yield strain KA2, referred to in the text as

Mm/pBP10. Mm were grown in standard media (see Extended Experimental

Procedures) and prepared for experimental manipulations by growth tomidlog

phase, followed by passage through a sterile 5 mM filter to yield a single cell

suspension. INH susceptibility of bacteria isolated from INH-treated larvae

was verified by patching all outgrown colonies onto 7H10 agar containing

10, 20, and 40 mg/ml INH and comparing growth to that of the parental strain.

The INH MIC of three colonies was confirmed to be identical to strain M.

Mtb strain H37Rv was from D. Sherman (Seattle Biomed). Mtb strains

JHU1258c-715 and JHU1258c-833 (harboring transposon insertions at posi-

tions 715 and 833, respectively, in the Rv1258c ORF) and the wild-type parent

strain CDC1551 were from W.R. Bishai and G. Lamichhane (Johns Hopkins

University) (Lamichhane et al., 2003). Mtb were grown to midlog phase in stan-

dard medium prior to infection.
Zebrafish Infections

Wild-type AB zebrafish were from our laboratory stock, and PU.1 morphant

embryos have been described (Clay et al., 2007). Larvae were infected via

caudal vein injections at 36–48 hr postfertilization (Cosma et al., 2006a) and

maintained as described for individual experiments with feeding instituted at

day 14 dpf (Davis and Ramakrishnan, 2009).
Microscopy

Wide-field fluorescence microscopy was performed using a Nikon E600

equipped with a Nikon D-FL-E fluorescence unit with a 100 W Mercury

lamp. Wide-field fluorescence images were captured using a CoolSnap HQ

CCD camera (Photometrics) with MetaMorph 7.1 (Molecular Devices).
Fluorescent Pixel Count

Quantification of infection with fluorescent Mm using images of individual

embryos was performed using custom-made MATLAB software developed

in house. In brief, in each image, the number of pixels with a fluorescence

intensity greater than the brightest pixel observed in images of control unin-

fected embryos is counted. This count represents the total fluorescent area

(in pixels) for each infected larva.

Calculation of Early Bactericidal Activity

FPC countswere log10 transformed, and for each larva, the difference between

each day’s measurement and the initial burden was calculated. EBAs over

defined intervals were calculated by taking the mean and SD of the D log10
FPC values calculated for individual larvae.

Macrophage Growth and Infection

J774A.1 and THP-1 macrophages were grown in DMEM and RPMI, respec-

tively, supplemented with 10% FBS and 1% L-glutamine. THP-1 cells were

differentiated with phorbol 12-myristate 13-acetate for 48 hr prior to infection.

13 105 J774A.1 or 53 105 THP-1macrophageswere infected at anMOI of 1.5

for 2–3 hr at 33�C (for Mm) or anMOI of 1 for 2–3 hr at 37�C (forMtb). Cells were

washedwith medium and then 20 (for Mm) or 6 (for Mtb) mg/ml STMwas added

(t = 0) for the duration of the intracellular growth. Medium was changed daily.

Macrophages were lysed with 0.1% Triton X-100 for intracellular growth quan-

tization. To lyse macrophages and release bacteria for subsequent tolerance

assessment, each well was first washed once with 1 3 PBS and once with

diH2O, with the latter wash being removed immediately. Then, 200 ml of

diH20 was added and the cells incubated for 15 min to lyse macrophages.

Finally, 800 ml of 1.253 concentrated 7H9 medium (see Extended Experi-

mental Procedures) was added and the wells scraped gently with a pipette

tip to release all macrophages. CFU were enumerated from triplicate wells

on supplemented 7H10 agar. For determination of antibiotic killing, the percent

survival was calculated by dividing the CFU for each well by the mean CFU

present prior to treatment.

Statistics

Statistical analyses were performed using Prism 5.01 (GraphPad). For data

sets requiring log10 transformation prior to ANOVA, embryos with no detect-

able fluorescence above background, or with no detectable CFU were as-

signed a value of 0.9, with 1 being the limit of detection, prior to log10 transfor-

mation. A Mann Whitney rank test was used when values in one group were

all below the limit of detection. Posttest p values are as follows: *p < 0.05;

**p < 0.01; ***p < 0.001.

SUPPLEMENTAL INFORMATION
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