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Abstract

Leptospirosis is an extremely widespread zoonotic infection with outcomes ranging from subclinical infection to fatal Weil’s
syndrome. Despite the global impact of the disease, key aspects of its pathogenesis remain unclear. To examine in detail the
earliest steps in the host response to leptospires, we used fluorescently labelled Leptospira interrogans serovar Copenhageni
to infect 30 hour post fertilization zebrafish embryos by either the caudal vein or hindbrain ventricle. These embryos have
functional innate immunity but have not yet developed an adaptive immune system. Furthermore, they are optically
transparent, allowing direct visualization of host–pathogen interactions from the moment of infection. We observed rapid
uptake of leptospires by phagocytes, followed by persistent, intracellular infection over the first 48 hours. Phagocytosis of
leptospires occasionally resulted in formation of large cellular vesicles consistent with apoptotic bodies. By 24 hours,
clusters of infected phagocytes were accumulating lateral to the dorsal artery, presumably in early hematopoietic tissue. Our
observations suggest that phagocytosis may be a key defense mechanism in the early stages of leptospirosis, and that
phagocytic cells play roles in immunopathogenesis and likely in the dissemination of leptospires to specific target tissues.
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Introduction

Though traditionally thought of as a tropical disease, leptospi-

rosis is endemic worldwide due to widespread infection of urban

and sylvatic rodents and other animal reservoir hosts. In areas of

the world with high levels of rodent exposure, human infection is

common and frequently progresses to serious disease or death

[1,2]. Although much has been learned about the biology and

transmission of Leptospira species, the mechanisms of their

pathogenesis and host colonization remain largely unknown.

Leptospires colonize the renal tubules of reservoir hosts, from

where they are shed in the urine and infect new hosts via mucosal

surfaces and abraded skin. In the reservoir host, there is transient

low-level hematogenous dissemination, followed by chronic

infection limited to the kidney [1,3,4]. In contrast, susceptible

hosts experience a heavy burden of infection in the bloodstream

and multiple organs. The eventual antibody response precipitates

an intense inflammatory reaction associated with hepatorenal

failure. A key difference between reservoir and susceptible hosts is

the ability of the TLR4 innate immune receptor to recognize

leptospiral lipopolysaccharide (LPS) [5,6]. Murine peritoneal

macrophages are strongly stimulated by purified leptospiral LPS,

while human macrophages are unable to respond to leptospiral

LPS via the TLR4 pathway [5]. Taken together, these studies

suggest that early containment of infection via innate mechanisms,

including recognition of leptospiral antigens and phagocytosis by

macrophages, is essential for effective immune defense [7].

Previous in vitro studies have demonstrated that macrophages

are capable of phagocytosing leptospires [8,9].

A variety of animal models of leptospirosis have been

established, each with unique advantages and drawbacks. Guinea

pigs [10] and hamsters [11,12] are the primary models of hosts

susceptible to acute disease, while several animals including mice

[4], rats [3], monkeys [13], dogs [14] and skunks [15] can be

experimentally infected and seem variously plausible as models of

reservoir hosts. It is not certain to what degree these various model

hosts retain features of natural infection and colonization.

The zebrafish is increasingly used as a model organism for

bacterial pathogenesis, with published studies of adult infection

with pathogens including mycobacteria [16], streptococci [17],

and Edwarsiella [18]. The ability to conduct forward genetic

screens, along with the economy of infecting large numbers of

animals are key advantages to this model [19,20]. Beyond these,

the zebrafish embryo allows unparalleled in vivo microscopy and

tracking of host-pathogen interactions involving fluorescently

labeled bacteria. Minute details of the early steps of bacterial

pathogenesis have been published using zebrafish embryos

infected with Mycobacterium marinum [21,22,23], Salmonella enterica

[22,24] and Pseudomonas aeruginosa [25]. By 32 hours post

fertilization a zebrafish embryo has a circulatory system and a
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fully functional innate immune system, along with a variety of

distinct tissue types (Figure 1A), making it a self-contained

‘laboratory’ for the study of bacterial infection.

In this work we have investigated the earliest events in

leptospirosis by inoculating the developing zebrafish with L.

interrogans sv. Copenhageni. During the first 36 hours of infection,

L. interrogans produces persistent infection in the zebrafish embryo,

with phagocytes playing a central role in the initial host response

to infection and possibly in the localization of leptospires to target

tissues.

Materials and Methods

Animal care and strains
Wild-type AB zebrafish embryos were maintained and infected

by injection into the caudal vein or hindbrain ventricle as

described previously [22,23,26] at 24–30 hours post fertilization

unless otherwise noted [22,23,26]. All animals were handled in

strict accordance with good animal practice as defined by the

relevant national and/or local animal welfare bodies, and all

animal work was approved by the University of Washington

Institutional Animal Care and Use Committee.

Bacterial strains
Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130

was isolated from a patient in Salvador, Brazil [27]. Virulent

leptospires isolated from infected Golden Syrian hamsters were

grown in EMJH medium supplemented with 1% rabbit serum and

100 ug/mL 5-fluorouracil at 30uC [28]. Staining was performed

in a 1:1000 dilution of SYTO-83 (Invitrogen) for 30 minutes,

followed by rinsing with PBS to remove unbound dye. Inoculum

was estimated based on fluorescence microscopy after injection.

Microscopy
Widefield microscopy was performed on a Nikon E600

compound microscope equipped with DIC optics and 100 W

Mercury lamp for epifluorescence. Objectives used included 106
Plan Fluor, 0.3 NA, 206 Plan Fluor, 0.5 NA, and 606 Water

Fluor, 1.0 NA. Widefield fluorescence and DIC images were

captured on a CoolSnap CF CCD camera (Photometrics) using

MetaMorph 7.1 (Molecular Devices).

Image processing
Dataset analysis and visualization was performed using

MetaMorph 7.1 (Molecular Devices). Movies were produced from

stacks compiled in MetaMorph. Additional movie compilation and

formatting was performed in Adobe Premiere 6.0 and QuickTi-

Figure 1. Cellular details of early phagocyte-leptospire interactions. A. Schematic view of 36hpf zebrafish embryo, with injection and
observation sites indicted. Scale bar, 300 mm. B. Phagocyte containing leptrospires within two hours of intravenous infection. Left, DIC overlay; right,
SYTO 83 fluorescence. C. Single leptospire visible by DIC microscopy shortly after injection. See also Video S1. D. Phagocytes containing large
numbers of leptospires four hours after injection into hindbrain ventricle. Left, DIC overlay; right, SYTO 83 fluorescence. E. Phagocytes (arrows)
containing leptospires also acquired numerous small cytoplasmic vesicles (arrowheads). See Video S2. All scale bars 20 mm unless noted otherwise.
doi:10.1371/journal.pntd.0000463.g001

Author Summary

Leptospirosis is a common bacterial infection in many
tropical regions of the world that causes serious and often
fatal disease in humans. The infection is transmitted by
carrier animals, especially rats and other rodents, that
release the leptospire bacteria from their kidneys into their
urine. Humans are infected through exposure of broken
skin or mucous membranes to contaminated water. Little
is known about how or why the bacteria traffic from these
sites specifically to the kidneys. The zebrafish embryo is a
popular model organism for studying embryonic develop-
ment, in part because of the ease with which living cells
within the transparent embryos can be studied under the
microscope. In this study, we use leptospire-infected
zebrafish embryos to examine early leptospirosis by
microscopy. In the first days of infection, the embryos
appear normal. We find that leptospires are readily
ingested (but not killed) by white blood cells called
phagocytes. Later, infected cells are found specifically in a
tissue near the dorsal aorta. This site may be a tissue that
produces new blood cells and may represent a conduit for
subsequent tissue targeting of the organisms. Our findings
suggest that the zebrafish model may be useful for
studying the pathogenesis of leptospirosis.

Leptospirosis in Zebrafish Embryos
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mePro 7.4 (Apple). Figure processing and assembly were

performed in Adobe Photoshop CS2.

Results

To determine the effect of Leptospira interrogans infection on

developing zebrafish, we injected doses of roughly 10 to 100

organisms into 30 hour post fertilization zebrafish by either the

caudal vein or hindbrain ventricle (Figure 1A). Inoculation by

either route resulted in no lethality or gross pathology over 48-

hours although organisms were detectable by DIC microscopy as

long as 24 hours post-infection. Extracellular organisms were

observed immediately after injection (Figure 1B) and video

microscopy revealed that they exhibited the flexing, bending and

spinning motility characteristic of these organisms in vitro (Video

S1). These organisms appeared to be phagocytosed rapidly; within

the first two hours post intravenous infection we found many

macrophages in the blood contained leptospira. To ascertain that

we were observing intracellular Leptospira by DIC microscopy, we

stained L. interrogans cultures with SYTO 83 to render them red

fluorescent before injection, and visualized infection with both

DIC and fluorescence microscopy. Again by four hpi we were

unable to detect extracellular bacteria at any location in the

zebrafish embryos and all organisms were visualized within

phagocytes, presumably macrophages based upon their morphol-

ogy (Figure 1C). While the SYTO 83 stain confirmed the rapid

intracellular localization of the organisms, we found that it

diminished motility of stained bacteria in vitro. reducing motility

from 100% immediately after staining to 10% at six hours post

staining. Therefore, we performed all subsequent experiments

using both stained and unstained bacteria to ensure that the

observed infection phenotypes were not simply an artifact of

bacterial compromise due to staining.

To examine the capacity of leptospires to attract macrophages,

we injected similar doses of L. interrogans into the hindbrain

ventricle at 30 hours post infection, a time in development when

very few if any macrophages reside in this compartment [29].

Macrophages were rapidly recruited to the ventricle and took up

the bacteria within the first four hours (Figure 1D). This result

showed that the uptake of leptospires by macrophages did not

require blood flow to bring the two together, and that

macrophages actively migrated to the site of infection.

After encountering and taking up leptospires in the bloodstream

or the hindbrain ventricle, the macrophages that contained

organisms took on a distinct morphology. Although the bacteria

appeared to be contained within compartments separate from the

cytoplasm (Figure 1B, D), the macrophages generated numerous

small vesicles which moved rapidly about the cytoplasm (Figure 1E

and Video S2). Occasional membrane blebbing was also visible

(Video S3). Again we note that both stained and unstained

leptospira produced similarly unaffected embryos with the same

characteristic-looking phagocytes during the first day of infection.

By 24 hours post infection, there was no gross pathology

although bacteria were still plentiful. In experiments where

fluorescent bacteria were used, all fluorescence correlated with

intracellular clusters, always found in cells of a similar phenotype

as the day before—many subcellular vesicles were present, often

moving throughout the cytoplasm (Figure 2A, Video S4). Cells of

similar morphology were found in embryos infected with

unstained leptospires. The affected cells found in the brain also

contained several larger vesicles consistent with apoptotic bodies

(Figure 2B). Such cells were common in embryos infected via

hindbrain, found occasionally in embryos infected intravenously,

but not in uninfected controls (data not shown).

The most striking feature of embryos 24 hours after intravenous

infection was the localization of fluorescent bacteria. While some

fluorescent clusters were present in the caudal vein (Figure 2C,

arrowheads), the majority were dorsolateral to the dorsal aorta in

the trunk (Figure 2D–E, Video S5), a location which has been

shown to play a part in early hematopoiesis [30]. Because of the

location deep within the tissues, it was not possible to verify that

the same localization occurred after infection with unstained

bacteria. Previous experimental infections of zebrafish embryos

with other organisms have not demonstrated such localization,

suggesting that this accumulation is specific to infection with L.

interrogans. To confirm this suggestion, we compared leptospiral

infection to infection with fluorescent Pseudomonas aeruginosa over

the same time course. Infection with P. aeruginosa produces either

overwhelming infection or clearance over the first 36 hours of

infection, depending upon dosage [25]. At 24 hours post infection

with a non-lethal dose of P. aeruginosa, we found that the remaining

bacteria were similar in number to L. interrogans remaining at

24 hours. Despite the fact that both bacterial types were

apparently contained within phagocytes at this time, there was

no accumulation of P. aeruginosa-infected cells in the region

dorsolateral to the dorsal aorta (Figure 2F). While this phenom-

enon could represent a general mechanism whereby dead or

compromised organisms are transported to this location, we note

that we have not seen such a localization with heat-killed

fluorescent M. marinum. Therefore, we suspect that this localization

is the result of specific host-bacterial interaction.

Discussion

We undertook the study of leptospiral infection of zebrafish

embryos to assess the usefulness of zebrafish as a general model

host for infection, as well as to examine the details of early

pathogenesis directly in vivo. While Borrelia burgdorferi, another

spirochete, has been observed in vivo during early pathogenesis

[31,32], this is the first in vivo visualization of leptospirosis of

which we are aware. At least in embryos, infection of zebrafish

with L. interrogans appears to be asymptomatic for the first

48 hours. It is not clear if this trend is inherent to the host-

pathogen interaction or perhaps due to the lack of a functional

adaptive immune system at this point in zebrafish development

[33]. Also, it is possible that more damaging effects of infection

require more than 48 hours to develop. At any rate, the immediate

response of zebrafish embryos to L. interrogans infection is as

follows. In contrast to B. burgdorferi in mice, which directly migrate

out of the vasculature [31], Leptospires are taken up by phagocytes

within a few hours of injection. The lack of antibody of any kind at

this early stage in development demonstrates that it is not required

for phagocytosis, as has been suggested [9,34,35]. The zebrafish

complement system appears to be quite functional by this time

[36], so it may be that complement-based opsonization is all that is

required. Phagocytosis does not appear to rely upon accidental

encounters with phagocytes, but may instead involve chemotactic

mechanisms, as injection into the hindbrain, which normally

contains very few if any phagocytes [29], results in active

migration of macrophages to the site of infection. Proposed

models for leptospiral pathogenesis mostly describe extended

periods of leptospiremia, with extracellular bacteria finding their

way into target tissues [4,37,38]. Defense against extracellular

organisms, particularly in the early phases of infection, is likely to

involve the innate defense mechanism of complement-based

opsonophagocytosis. Supporting the relevance of the observations

we report here, intracellular leptospires have been observed within

splenic phagocytes by immunohistochemistry in the hamster

Leptospirosis in Zebrafish Embryos
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model of leptospirosis [39]. It is possible that the infecting dose

used in our experiments was too low to simulate a pathogenic

infection. Barring this, however, our results suggest that leptospires

are intracellular from very early in infection.

Observations of zebrafish embryonic macrophages that have

ingested leptospires suggest that this phagocytosis may result in

adverse cellular events. The appearance of small to medium sized

vesicles moving about the cytoplasm takes place within one or two

hours of the encounter, and infected cells with this characteristic

morphology are still visible 24 hours later. It is not certain if this

represents the persistence of the same affected cells, gradually

gaining more vesicles, or the death of the initial macrophage

followed by re-uptake of bacteria by another cell. Indeed, there has

been evidence of apoptotic effects on infected host cells

[40,41,42,43], and we report here the blebbing appearance of

affected cells after hindbrain infection. In our observations this

Figure 2. Leptospirosis of the zebrafish embryo at 24 hours post infection. A. Two affected cells in the caudal vein containing cytoplamsic
vesicles, now larger. This embryo was infected intavenously. Scale bar, 10 mm. B. Affected cells in the brain, apparently containing clusters of
undigested apoptotic bodies. This embryo was infected via hindbrain ventricle. Scale bar, 10 mm. C. Fluorescent image of whole embryo infected
intravenously with SYTO 83-stained leptospira. While some fluorescent leptospires appear around the ventral tail (arrowheads), the majority have
localized near the dorsal aorta (bracket). Scale bar, 300 mm. D. Higher magnification of the area bracketed in E, showing numerous distinct clusters of
stained leptospires lateral to the dorsal aorta, just ventral to the notochord. Scale bar, 100 mm. E. Higher magnification of the area bracketed in D,
with SYTO 83 fluorescence to the left and DIC overlay to the right. See Video S5. Dotted lines indicate the outlines of infected cells. Scale bar 20 mm. F.
Fluorescence image of embryo 24 hours after infection with green fluorescent P. aeruginosa. Infected cells (arrowheads) appear in various places
throughout the circulation. Scale bar 300 mm.
doi:10.1371/journal.pntd.0000463.g002
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blebbing was relatively rare, and so further observations are

required to learn how relevant it is to pathogenesis.

It has been shown that some of the macrophages within the yolk

circulation valley at the advent of circulation actually migrate into

the brain, change their gene expression profiles, and become

microglia [29]. These cells then collect and dispose of apoptotic

bodies of neurons [29,44], although they are also capable of

fighting infection [22]. By 24 hours after injection of L. interrogans

into the hindbrain ventricle, these cells are often seen to contain

clusters of multiple apoptotic bodies, strikingly similar to microglia

made incapable of digesting their cargo by knockdown of v0-

ATPase a1 [44]. To our knowledge, functional impairment of

macrophages after leptospiral infection has never been reported.

When combined with the experimental approaches for detection

and perturbation of phagolysosome fusion of Peri et al [44], the

zebrafish model provides an ideal opportunity to explore the

mechanisms of leptospiral effects on macrophages.

At 24 hours post infection, leptospira were conspicuously

located dorsolateral to the dorsal aorta. This location corresponds

to that of early hematopoietic cells populating a tissue analogous to

the ‘aorta-gonad-mesonephros’ (AGM) hematopoietic tissues in

developing mammals [30]. Blood cell precursors migrate from this

area to the caudal hematopoietic tissue (CHT) in the ventral tail,

starting around 24 hours post fertilization. While some infected

cells were indeed found in the CHT (Figure 2C), there were

consistently more at or near the AGM. It should be noted that due

to technical limits of DIC microscopy, this localization was noted

only when injecting leptospires stained with SYTO 83, which

impairs bacterial motility. Since all earlier features of the infection

appear to be unaffected by the stain, however, we consider it likely

that this localization is not an artifact of staining but this will need

to be verified with intrinsically fluorescent strains. The develop-

mental timing of our observation of infected cells here corresponds

with the later times of AGM to CHT migration (which ends

around 72 hours post fertilization) [30], so the trunk tissue could

still be acting as a hematopoietic site. The fate of this tissue, after

its period as a hematopoietic zone, is unknown, and from our

studies it is not clear whether the infection is within cells destined

to depart or within other more permanent cells. The strikingly

specific delivery of leptospires to this tissue by phagocytes provides

insights into pathogenesis by suggesting a novel mechanism for

targeting of organs during leptospiral dissemination.

Supporting Information

Video S1 A single leptospire in the hindbrain ventricle shortly

after injection.

Found at: doi:10.1371/journal.pntd.0000463.s001 (1.69 MB

MOV)

Video S2 Phagocytes with intracellular vesicles, shortly after

intravenous infection.

Found at: doi:10.1371/journal.pntd.0000463.s002 (1.97 MB

MOV)

Video S3 Infected cells in the hindbrain ventricle. The

lowermost cell undergoes blebbing similar to that seen during

apoptosis.

Found at: doi:10.1371/journal.pntd.0000463.s003 (1.49 MB

MOV)

Video S4 Phagocytes in the blood flow with large cytoplasmic

vesicles at 24 hours post infection.

Found at: doi:10.1371/journal.pntd.0000463.s004 (1.80 MB

MOV)

Video S5 Cells containing leptospires at 24 hours post infection,

dorsolateral to the dorsal aorta.

Found at: doi:10.1371/journal.pntd.0000463.s005 (1.73 MB

MOV)
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