Microreview

Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis

David M. Tobin1* and Lalita Ramakrishnan1,2,3
Departments of 1Microbiology, 2Immunology and 3Medicine, University of Washington, Seattle, WA, USA.

Summary
A thorough understanding of Mycobacterium tuberculosis pathogenesis in humans has been elusive in part because of imperfect surrogate laboratory hosts, each with its own idiosyncrasies. Mycobacterium marinum is the closest genetic relative of the M. tuberculosis complex and is a natural pathogen of ectotherms. In this review, we present evidence that the similar genetic programmes of M. marinum and M. tuberculosis and the corresponding host immune responses reveal a conserved skeleton of Mycobacterium host–pathogen interactions. While both species have made niche-specific refinements, an essential framework has persisted. We highlight genetic comparisons of the two organisms and studies of M. marinum in the developing zebrafish. By pairing M. marinum with the simplified immune system of zebrafish embryos, many of the defining mechanisms of mycobacterial pathogenesis can be distilled and investigated in a tractable host/pathogen pair.

Introduction
Like Mycobacterium tuberculosis, Mycobacterium marinum is a macrophage pathogen and causes a chronic, systemic tuberculosis-like disease in ectotherms. It grows optimally at 25–35°C but poorly at 37°C and usually causes only localized disease on the cooler surfaces of humans (Linell and Norden, 1954; Clark and Shepard, 1963). It is easily manipulated on the laboratory benchtop under BSL-2 safeguards and has a 4 h generation time during logarithmic growth compared with the > 20 h generation time of M. tuberculosis. M. marinum infection of fish has long been referred to as fish tuberculosis and like human tuberculosis (referred to in the past as consumption) is often recognized by the emaciation it induces (Parisot, 1958; Post, 1987). In contrast to M. tuberculosis, which, in humans, is transmitted almost exclusively from lung to lung, M. marinum inhabits additional marine and freshwater reservoirs that may include protists (Cirillo et al., 1997; Solomon et al., 2003). M. marinum’s expanded niches are reflected in the genomic differences between M. marinum and M. tuberculosis, which we will detail. However, what is both striking and experimentally useful is the conservation of genetic programmes between the two pathogens and between their respective natural hosts that translates into shared determinants of virulence and protection respectively. These determinants, in turn, form the core of reciprocal host and pathogen evolutionary strategies to contain or expand mycobacterial infection. In this review we compare the pathology, pathogenesis, genomes, genetics and host and pathogen gene expression patterns of M. marinum and M. tuberculosis infection and disease. Finally, we present insights about mycobacterial pathogenesis made possible by examining M. marinum infection in a zebrafish model.

General features of human tuberculosis
Tuberculosis results from a complex choreography between host and bacterium. Infecting bacteria are phagocytosed by host macrophages but can replicate therein by subverting host endocytic trafficking and resisting the immune response (Flynn and Chan, 2001). Infected macrophages migrate into tissues and aggregate into highly organized complex immunological structures called granulomas, the hallmark structures of tuberculosis (Adams, 1976; Dannenberg, 1993). Granulomas are comprised of highly differentiated macrophages that interdigitate and undergo a process known as epithelioid transformation (Adams, 1976). Other immune cells are recruited to tuberculous granulomas and they are adorned by a characteristic lymphocyte cuff (Dannenberg, 1993). Tuberculous granulomas also typically develop an acellular necrotic core called caseum in which mycobacteria can be found to reside extracellularly. While the
pathogenesis of caseum remains enigmatic, it is responsible for both morbidity and contagion. The rupture of caseating foci into the bronchial tubes has been postulated to be an important prerequisite to mycobacterial transmission in pulmonary tuberculosis (Dannenberg, 1994). Although tuberculous granulomas have historically been considered to be impermeable, host-protective structures, they are at best only partially efficacious as they can harbour bacteria for long time periods (Adams, 1976; Janeway et al., 2001).

Experimental models of *M. marinum* and *M. tuberculosis* pathogenesis

The ability to grow within host macrophages is an essential virulence attribute of the pathogenic mycobacteria (Cosma et al., 2003). Elegant studies using cultured cells and cell lines have furthered understanding of the intracellular lifestyle of mycobacteria and their interactions with host pathways (Koul et al., 2004); the similarities and differences between *M. marinum* and *M. tuberculosis* in cultured cells will be discussed in later sections. However, animal models are a requisite to fully understand the cross-talk between pathogen and the multitude of host cells involved in granuloma formation and maintenance. Tuberculosis researchers have used mice, guinea pigs, rabbits and macaques to model human tuberculosis. Rabbits, guinea pigs and macaques form caseating granulomas, but mice, the most commonly used model organism, form poorly organized macrophage and lymphocyte aggregates that do not caseate (Flynn, 2006). Therefore, mechanisms of caseation necrosis have remained enigmatic. Of the mammalian models developed to date, experimental infection of macaques most closely resembles human infection in terms of both disease states (latent and active) and granuloma pathology (Capuano et al., 2003). However, due to ethical and cost considerations, use of this model has been limited.

Notably, *M. marinum*-induced granulomas in humans are often pathologically indistinguishable from *M. tuberculosis* dermal granulomas, with epithelioid cells surrounded by a lymphocytic cuff, often with a central necrotic core (Travis et al., 1985; MacGregor, 1995). In ectotherms, *M. marinum* produces a systemic granulomatous tuberculosis-like disease. Many of these naturally susceptible hosts such as fish and frogs can be readily studied in the laboratory (Cosma et al., 2006a). Leopard frogs develop lifelong asymptomatic infection (as do the majority of infected humans) and are found to have highly organized non-caseating granulomas (Ramakrishnan et al., 1997a; Bouley et al., 2001). In contrast, zebrafish, medaka and goldfish develop a symptomatic wasting disease, with zebrafish and goldfish developing caseating granulomas that are reminiscent of active caseating human tuberculosis (Talaat et al., 1998; van der Sar et al., 2004; Swaim et al., 2006; Broussard and Ennis, 2007) (Fig. 1F and G). Mouse models of *M. marinum* infection have existed for over 40 years and are still in sporadic use (Clark and Shepard, 1963; Robinson et al., 2007). In these infections, bacterial numbers decrease with time, contrary to what is seen in most natural hosts and probably because of temperature incompatibilities. Nonetheless, limited non-caseating epithelioid granulomas do form in organs such as liver and spleen after intravenous infection (Robinson et al., 2007), and it is notable that *M. marinum* immunization results in protection from *M. tuberculosis* challenge (Collins et al., 1975).

In contrast to *M. tuberculosis*- and *M. marinum*-induced granulomas in mammals, *M. marinum*-induced fish and frog granulomas have very few lymphocytes (Bouley et al., 2001; Swaim et al., 2006). Nevertheless, fish lymphocytes are functionally important in restricting bacterial growth; adult rag1-deficient zebrafish, which lack B and T cells, are hypersusceptible to *M. marinum* infection similar to *M. tuberculosis*-infected rag1-deficient mice (Saunders et al., 2004; Swaim et al., 2006). In summary, the patterns of caseation necrosis and lymphocytic infiltration suggest that the histopathology of mature granulomas differs more substantially across surrogate hosts than between *M. marinum* and *M. tuberculosis*.

Other model hosts have emerged for the study of the early events of *M. marinum* pathogenesis prior to granuloma formation: *Drosophila*, which employ bactericidal phagocytes in host defence but do not form granulomas, and *Dictyostelium*, which has been used to dissect the host and bacterial components of intracellular bacterial replication and localization (Dionne et al., 2003; 2006; Solomon et al., 2003; Hagedorn and Soldati, 2007).

Intracellular localization of *Mycobacterium* in cultured cells

Like most pathogenic *Mycobacterium* species, *M. marinum* survives within host macrophages at least in part by arresting phagosome maturation prior to phagolysosome fusion (Barker et al., 1997; Rohde et al., 2007). In both mammalian macrophages and fish monocytes, live but not heat-killed *M. marinum* localize to non-acidified phagosomes that exclude the vacuolar proton ATPase (Barker et al., 1997; El-Etr et al., 2001). This seclusion has been suggested to protect pathogenic mycobacteria from phagolysosome-mediated killing and possibly to modulate the host adaptive immune response by altering antigen presentation (Russell et al., 2002). The majority of *M. tuberculosis* mutants defective for phagosome maturation arrest are compromised for intracellular growth, but an interesting class of mutants grows as well or better in cultured macrophages despite trafficking to...
acidified phagolysosomes, suggesting that phagosome maturation arrest is not an absolute requirement for *M. tuberculosis* survival, at least in naïve cultured macrophages (Pethe et al., 2004; Stewart et al., 2005; MacGurn and Cox, 2007). Similarly, *M. tuberculosis* that enters cultured macrophages through Fc receptors reaches phagolysosomes but is not impaired for survival or growth (Armstrong and Hart, 1975).

A range of recent observations in cultured cells has suggested that the cell biology of mycobacterial infection may include unexplored complexities. In cultured macrophages a minor population of *M. marinum* can escape from the phagosome into the cytosol and develop actin-based motility (Stamm et al., 2003). These findings were especially thought-provoking because older electron microscopy studies had suggested some level of phagosome escape of *M. tuberculosis* (Myrvik et al., 1984; McDonough et al., 1993). A subsequent study reported that *M. tuberculosis* was capable of escape to the cytosol in cultured dendritic cells as assessed by electron microscopy of cryosections (van der Wel et al., 2007). However, the *M. tuberculosis* data remain controversial and the view that intracellular *M. tuberculosis* remains ensconced in the phagosome is still predominant (Rohde et al., 2007; Jordao et al., 2008).

A defining feature of pathogenesis for several intracellular pathogens (e.g. *Listeria monocytogenes*, *Shigella flexneri* and *Rickettsia rickettsii*) that are localized to the cytoplasm is their acquisition of actin-based motility (Gouin et al., 2005). Such actin-based motility has not been reported even in the few studies that have observed phagosomal escape of *M. tuberculosis*. In contrast, elegant work from the Brown laboratory has shown that about 20% of the *M. marinum* bacteria become motile through the WASP family-dependent induction of actin polymerization, in a mechanism most akin to that employed by *Shigella* (Stamm et al., 2003; 2005). Mutations in the *M. marinum* ESX-1 secretion system (discussed below) abrogate phagosomal escape, the resulting cytosolic actin polymerization and cell–cell spread (Stamm and Brown, 2004; and L.Y. Gao, pers. comm.). Intriguingly, the laboratories that do observe *M. tuberculosis* phagosomal escape also note dependence on ESX-1 (McDonough et al., 1993; van der Wel et al., 2007). How do these observations extend to *in vivo* biology? In extensive electron microscopy studies of

Fig. 1. Mycobacterium marinum pathogenesis in the zebrafish.
A. Approximately one hundred bacteria are injected into the caudal vein (arrow) of zebrafish embryos at 30 h post fertilization. Within 1 h, macrophages can be imaged phagocytosing the bacteria in the yolk circulation valley (purple box).
B. Macrophage (black arrow) ingesting *M. marinum* (white arrow) approximately 1 h post infection. Round neighbouring cells are erythrocytes, which are nucleated in teleosts.
C. Same macrophage as in (B) (black arrow), now with intracellular *M. marinum* (white arrow). By 4 days post infection, recognizable primitive granulomas have formed.
D. Green fluorescent bacteria induce the formation of aggregates by infected macrophages in the trunk.
E. DIC image with fluorescent overlay of the granuloma shown in (D) that has formed in zebrafish muscle tissue in the trunk. Note the presence of both infected (black arrow) and uninfected (white arrow) macrophages.
F and G. (F) Acid fast and (G) haematoxylin and eosin staining of mature zebrafish granulomas (arrows), 6 weeks post infection. The leftmost granuloma is non-caseating, while the rightmost granuloma lacks nuclei at its core and is caseating. This heterogeneous mixture of caseating and non-caseating granulomas is also apparent at early time points in infections of macaques with *M. tuberculosis* (Lin et al., 2006).
M. marinum in chronic granulomas of frogs, cytoplasmic **M. marinum** has not been observed (Bouley et al., 2001). Consistent with all these data, Stamm and Brown have proposed that actin-based motility may be used by **M. marinum** not during the process of granuloma formation, but in the initial stages of infection, to cross epithelial surfaces after host ingestion or for transmission from an environmental protist to a vertebrate host – both modes of transmission that diverge from those of **M. tuberculosis** (Stamm and Brown, 2004). Perhaps actin-based motility is deployed by **M. marinum** under certain circumstances and represents the expanded repertoire of **M. marinum** transmission strategies within and between niches that have no **M. tuberculosis** counterpart. It will be interesting to address the prevalence and consequences of phagosome escape and actin-based motility in *in vivo* models.

Development of a zebrafish embryo model for mycobacterial pathogenesis

Embryonic and larval zebrafish are optically transparent, presenting the opportunity to witness and manipulate the steps of mycobacterial pathogenesis in real time. The zebrafish has long been a choice vertebrate genetic model, and forward genetic screening and positional cloning approaches are well established. Reverse genetics are possible in embryos and larvae by the introduction of morpholinos, modified antisense oligonucleotides that can be designed to inhibit mRNA translation or splicing (Nasevicius and Ekker, 2000; Draper et al., 2001). Alternatively, retroviral insertion and TILLING approaches can also be used to identify germline mutations in specific genes (Golling et al., 2002; Wienholds et al., 2003; Draper et al., 2004).

Zebrafish contain both innate and adaptive branches of the immune system with conserved orthologues of key human and mouse immune molecules (Traver et al., 2003). As in mammalian models, zebrafish adaptive immunity develops later than innate immunity. T cells can first be detected in the thymus at 3 days post fertilization. However, functional T cells are not thought to exit the thymus until at least 3 weeks post fertilization (Langenau et al., 2004). By infecting zebrafish embryos in the first few days of life, analysis can be limited to the simplified context of the innate immune system, in an optically transparent organism. Thus, whole animal real-time visualization of mycobacterial pathogenesis in a functioning innate immune system is possible.

The ability to dissect innate and adaptive protective mechanisms is useful because although an adaptive immune response is required for ultimate control of infection in both fish and mammals, innate mechanisms of resistance are being increasingly recognized to modulate the inflammatory and bactericidal response to mycobacterial infection (van Crevel et al., 2003). In mice, the *sst1/lpr1* susceptibility locus modulates innate resistance to intracellular pathogens including **M. tuberculosis** and *L. monocytogenes* (Pan et al., 2005). In human macrophages, the induction of a vitamin D-mediated innate antimicrobial response appears to be a critical defence (Liu et al., 2006). Hints that innate mechanisms may play important roles in mycobacterial immunity have been present since populations of inbred rabbits with altered susceptibilities to **M. tuberculosis** infection displayed early differences in bacterial loads before the development of an adaptive immune response (Dannenberg, 1994).

The zebrafish innate immune system

Macrophages that are competent to phagocytose and kill non-pathogenic bacteria populate zebrafish embryos and larvae by 24 h post fertilization (Herbomel et al., 1999) with successive waves of haematopoiesis occurring thereafter (Murayama et al., 2006; Bertrand et al., 2007). Early macrophages and neutrophils respond to a variety of inflammatory stimuli, including wounding (Mathias et al., 2006; Redd et al., 2006; Renshaw et al., 2006). A broad range of TLRs is expressed in zebrafish larvae, some of which are induced during adult **M. marinum** infection, and MyD88 inhibition by morpholino results in increased susceptibility to *Salmonella* infection (Jault et al., 2004; Meijer et al., 2004; van der Sar et al., 2006). Zebrafish also express two classes of genes that are structurally related to Ig-type and C-type lectin mammalian NK receptors, which may contribute to innate immune defences (Yoder, 2004).

As the zebrafish genome project nears completion, a comprehensive *in silico* analysis of innate immune genes in the zebrafish and two related pufferfish species revealed recognizable orthologues for most of the canonical innate immune signalling molecules seen in mammals (Stein et al., 2007). However, some divergence and significant species-specific expansions are present, particularly within the class II cytokines and their receptors and the NOD-like receptors (NLRs). The functional significance of these similarities and differences remains to be determined, but an innate immune framework conserved with that of mammals is present.

M. marinum interactions with the innate immune system

Transparent zebrafish embryos provide a unique platform to examine microbial pathogenesis *in vivo*. Zebrafish embryo infection models have been developed for **M. marinum** and *Salmonella arizonae* as we discuss here (Davis et al., 2002), as well as for *Vibrio anguillarum* (O’Toole et al., 2004), snakehead rhabdovirus (Phelan et al., 2004).
et al., 2005), Edwardsiella tarda (Pressley et al., 2005), Salmonella enterica (Li et al., 2007) and Salmonella typhi-
imurium (van der Sar et al., 2003). By intravenous micro-
injection of fluorescently labelled bacteria into 30-h-old zebrafish embryos, the key early steps in mycobacterial pathogenesis are evident. Within 1 h of injection of M. marinum into the caudal vein, zebrafish embryonic macrophages phagocytose the bacteria, but are unable to eradicate them (Fig. 1A–D). Infection results in induction of the pro-inflammatory cytokines TNF and IL-1, which eradicate them (Fig. 1A–D). Infection results in induction of the pro-inflammatory cytokines TNF and IL-1β within the first 24 h (Clay et al., 2007). Infected macrophages also express inducible nitric oxide synthase (iNOS), which is known to be important for control of M. tuberculosis infection in the mouse (MacMicking et al., 1997; H. Clay and L. Ramakrishnan, submitted).

After extravasation of macrophages into tissue, infected macrophages aggregate within 4 days to form structures that bear pathological hallmarks of granulomas (Fig. 1E and F). These early granulomas have interdigitated macrophages indicative of epithelioid transformation and induce the activation of bacterial genes that are associated with granuloma formation in adult frogs (Ramakrishnan et al., 2000; Davis et al., 2002). The ability of granulomas to form prior to the development of adaptive immunity revealed that innate immune determinants are sufficient to drive M. marinum granuloma formation. Similarly, this model has served to dissect the role of macrophages in the sole context of innate immunity, where they play a role both in host protection and in pathogen dissemination (Clay et al., 2007).

Probing initial pathogen/host interactions through host genetics

Various genetically tractable hosts are being used to probe initial host factors that determine infection outcomes. In Dictyostelium, mutation of a flotillin homologue results in resistance to infection, as bacteria are unable to prevent accumulation of the vacuolar proton ATPase (Hagedorn and Soldati, 2007). Mutation of the small GTPase RacH results in increased bacterial proliferation due to reduced acidification of the phagolysosome, but reduced cell-to-cell spread (Hagedorn and Soldati, 2007). Forward genetic screens in Drosophila have yielded novel host determinants of susceptibility to M. marinum infection. M. marinum infection in flies induces changes in insulin signalling and a wasting phenotype, and mutations in Drosophila foxO result in less wasting and increased survival without altering bacterial replication (Dionne et al., 2006). A large-scale RNAi screen in Drosophila S2 cells identified a Drosophila orthologue of a β-hexosaminidase subunit as important in the control of M. marinum infection (Koo et al., 2008). This finding was validated in mouse macrophages deficient for the orthologous hexB gene, and a mechanism was pos-
posed in which β-hexosaminidase is secreted in response to M. marinum infection and kills bacteria extracellularly (Koo et al., 2008). It will be interesting to investigate whether these findings also extend to M. tuberculosis. Finally, in an ongoing forward genetic screen in our laboratory, we have isolated zebrafish host mutants that show increased susceptibility or resistance to mycobacterial infection prior to the onset of adaptive immunity (D.M. Tobin, R. Lesley, C.B. Moens and L. Ramakrishnan, unpubl. results).

Comparison of the M. marinum and M. tuberculosis genomes

Sequencing and assembly of the M. marinum genome are complete. Its 6.6 Mb genome is about 1.5 times the size of the M. tuberculosis genome, reflecting its expanded host and environmental range relative to M. tuberculosis. The M. marinum genome is 85% identical to orthologous regions of the M. tuberculosis genome, and coding sequence amino acid identity averages 85% between orthologues (Stinear et al., 2008). An analysis of 16S rRNA among 80 mycobacterial species both confirmed the intimate evolutionary relationship between M. marinum and M. tuberculosis and suggested that the two species derived from a common ancestor with the capacity for both host and environmental niches (Tonjum et al., 1998; Gey van Pittius et al., 2006). Based on the shared genetic programmes for intracellular growth and host survival detailed below, we believe that colonization of vertebrates with at least a primitive adaptive immune system preceded M. marinum/M. tuberculosis divergence.

In terms of sheer bulk, the greatest difference in genome composition is the extra 2.2 Mb that M. marinum carries relative to M. tuberculosis. It has been hypothesized that much of this sequence resulted from the genome loss as its ancestral species relinquished an environmental niche and specialized to survive exclusively within a host. For example, the light-induced production of beta-carotene protects M. marinum from photoxidation damage (Matthews, 1963). Thus, genes specifically required for pigment production like crtB — a gene encoding a phytoene synthase — have disappeared from M. tuberculosis (Ramakrishnan et al., 1997b). Other genes with dual roles in pigment synthesis and protection from host singlet oxygen species are present in both species (Gao et al., 2003a). Finally, M. marinum has continued to acquire new loci; there is evidence of lateral gene transfer and gene duplication to expand the M. marinum genome after the divergence from M. tuberculosis (Stinear et al., 2008).

The evolutionary history of M. tuberculosis, though predominantly marked by genome reduction, also includes 600 kb that is not shared with M. marinum. Many of these
M. tuberculosis-specific regions were acquired by lateral gene transfer and preserved, perhaps as part of the evolutionary exigencies of niche specialization. Altogether, 14% of the **M. tuberculosis** genome has no counterpart in **M. marinum**, and 8% of the **M. tuberculosis** genome is thought to have arisen by lateral gene transfer (Stinear et al., 2008). However, mutational analyses of these **M. tuberculosis**-specific genes have yielded very few *in vivo* virulence phenotypes (see below for details). Thus, we speculate that loci associated with the **M. tuberculosis**-specific components of the genome are most relevant to differences in host transmission and organ (e.g. lung) specificity rather than to central mechanisms of pathogenesis.

Macrophage and granuloma-activated genes in **M. marinum**

For both **M. tuberculosis** and **M. marinum**, entry into macrophages and granulomas induces specific patterns of gene expression. In an early analysis based on promoter traps of the **M. marinum** genome, subsets of macrophage-activated and granuloma-activated bacterial promoters (*maps* and *gaps*) were identified (Ramakrishnan et al., 2000). Most of these genes share orthologues with **M. tuberculosis**, but perhaps surprisingly, most of the **M. tuberculosis** orthologues analysed were constitutively expressed rather than induced *in vivo* (Banaiee et al., 2006). Although this may reflect differences in pathogenesis between the two organisms, this result is also consistent with the divergent niches of **M. marinum** and **M. tuberculosis**. **M. marinum**'s transitions between host and environmental residence likely require switching between gene expression programmes specific to a marine reservoir and those that are important to survival within vertebrate hosts. As **M. tuberculosis** lives exclusively within the host, there is no pressure to regulate many of these genes. Thus, the better comparison of the roles of specific genes during pathogenesis is likely to be mutant analysis during *in vivo* infection.

Mycobacterium virulence determinants

Transposon-based mutagenesis screens in **M. marinum** have included an *in vivo* goldfish infection model; here signature tagged mutagenesis isolated 40 mutants, 85% of which had orthologues in **M. tuberculosis** (Ruley et al., 2004). A transposon screen for **M. marinum** mutants affecting macrophage interactions identified 19 **M. marinum** mutants that affected macrophage interactions, 70% of which were in genes orthologous to **M. tuberculosis** (Mehta et al., 2006). The minority of divergent genes could be due either to the cell culture assay system used, to additional evolutionary constraints on **M. marinum** not present in **M. tuberculosis** (differences in the biology of infection), or to the presence of a functional equivalent if not a true orthologue. More detailed analyses of individual mutants, described below, reveal that **M. marinum** and **M. tuberculosis** share orthologous virulence determinants, to the extent tested. Moreover **M. tuberculosis** orthologues generally complement virulence determinants discovered in **M. marinum**, demonstrating conserved function (Table 1).

What of the fairly sizeable **M. tuberculosis**-specific genome? Thus far, few fundamental virulence determinants in tuberculosis models have mapped to these regions. A multigene locus in **M. tuberculosis** that is not present in **M. marinum** is responsible for the production of cell surface sulfated lipids such as Sulfolipid-1 that have been proposed to modify virulence (Bhatt et al., 2007; Kumar et al., 2007). However, these particular lipids are not integral to mycobacterial pathogenesis. Accumulation of the sulfolipid intermediate SL1278 in *mmpL8* **M. tuberculosis** mutants results in attenuation of virulence in mice, but bacteria with upstream blocks of sulfolipid synthesis are indistinguishable from wild-type bacteria in mouse or guinea pig infections (Converse et al., 2003; Rousseau et al., 2003; Kumar et al., 2007). Accumulation of the SL1278 intermediate may primarily function through modulation of the host immune system (Domenech et al., 2004). Rv0987-9, another putative virulence locus specific to **M. tuberculosis** and acquired through horizontal gene transfer, was shown to affect macrophage interactions *in vitro*, but *in vivo* infection was unaffected (Rosas-Magallanes et al., 2007). To date the one divergent **M. tuberculosis**-specific gene with an *in vivo* phenotype is the virS locus; mutation reduces bacterial loads in the spleen by 800-fold in a guinea pig infection model, although the number of bacteria in the lung is unaffected at the same time point of 20 weeks (Singh et al., 2005). In a more comprehensive analysis using transposon site hybridization (TRASH), the Rubin laboratory identified 126 genes in **M. tuberculosis** that were required for the survival of bacteria in macrophages (Rengarajan et al., 2005) and 194 genes that were required for *in vivo* growth (Sassetti and Rubin, 2003). Of these, only 3% were in **M. tuberculosis**-specific regions acquired by lateral gene transfer. While there has been clear divergent evolution of both pathogens and their respective hosts, mutant analysis suggests that the host–pathogen interactions mediated by **M. tuberculosis**-specific genes are most likely to define refinements within a common programme of pathogenesis rather than fundamental differences.

Cording and cell wall mutants

Two major classes of virulence determinants serve to illustrate these commonalities in **M. marinum** and
M. tuberculosis virulence mechanisms and the mechanistic insights that have been made possible by the use of M. marinum. The cording morphology of virulent mycobacteria during extracellular growth was originally noted by Koch more than a century ago (Koch, 1882). Non-pathogenic mycobacteria species lack this cording, as do a number of M. tuberculosis mutants compromised for in vivo growth because of changes to cell wall composition. The generation of mutants in M. marinum revealed that the correlation between cording and virulence holds true for M. marinum as well. Identified in a transposon screen for mutants with defects in macrophage growth, M. marinum kasB mutants produce mycolic acids that are two to four carbons shorter than those produced by wild-type M. marinum, have reduced levels of keto-mycolates and display cording defects (Gao et al., 2003b). kasB mutants are attenuated for in vivo growth and virulence in zebrafish and likely have altered permeability that makes them more susceptible to a variety of lipophilic compounds and host defence molecules (Gao et al., 2003b; Cosma et al., 2006b). The corresponding M. tuberculosis deletion results in a loss of acid-fast staining due to similar alterations in cell wall composition and dramatic attenuation in a mouse model (Rao et al., 2005).

The erp locus, the first mycobacterial virulence determinant to be characterized by targeted deletion, encodes a secreted cell surface protein (Berthet et al., 1998). Mutation of this gene in M. tuberculosis and M. marinum results in attenuation in both cultured macrophages and animal models of infection as well as hypersusceptibility to lipophilic antibiotics (Berthet et al., 1998; Cosma et al., 2006b). Studies in the zebrafish embryo model revealed that the erp mutant is phagocytosed by macrophages normally, but fails to survive within (Cosma et al., 2006b). Moreover, depletion of macrophages rescues the attenuation phenotype of erp- deficient bacteria, showing that this virulence determinant exerts its effects specifically with macrophage defences (Clay et al., 2007).

The M. marinum locus ipaA also affects susceptibility to antibiotics and cell permeability by altering cell wall structure (Gao et al., 2006). M. marinum ipaA and ipb are orthologues of M. tuberculosis Rv1477 and Rv1478, respectively, and both contain highly conserved NLPC_p60 domains that are thought to mediate peptidoglycanase activity. Mutants in ipA fail to cord and have defects in invasion and intracellular survival. Infection of adult zebrafish with high numbers of ipA mutant bacteria revealed an attenuated phenotype. Complementation by

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Presence</th>
<th>Mutant phenotype</th>
<th>Presence</th>
<th>Mutant phenotype</th>
<th>Cross-species complementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell wall lipids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kasB (mycolic acid structure)</td>
<td>+</td>
<td>Attenuated, Rifampicin hypersusceptibility</td>
<td>+</td>
<td>Attenuated, Rifampicin hypersusceptibility</td>
<td>+</td>
</tr>
<tr>
<td>PDIM</td>
<td>Altered stereochemistry, Biosynthetic pathway, transporters present</td>
<td>ND</td>
<td>+</td>
<td>Attenuated</td>
<td>ND</td>
</tr>
<tr>
<td>TDM</td>
<td>Biosynthetic pathway present</td>
<td>ND</td>
<td>+</td>
<td>Attenuated</td>
<td>ND</td>
</tr>
<tr>
<td>PGL</td>
<td>Biosynthetic pathway present</td>
<td>ND</td>
<td>Some strains (e.g. W-Beijing)</td>
<td>Presence of PGL correlates with hypervirulence</td>
<td>ND</td>
</tr>
<tr>
<td>SL1</td>
<td>–</td>
<td>NA</td>
<td>+</td>
<td>None reported</td>
<td>NA</td>
</tr>
<tr>
<td>Carotenoids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CrtB</td>
<td>+</td>
<td>Attenuated</td>
<td>–</td>
<td>–</td>
<td>NA</td>
</tr>
<tr>
<td>CrtP</td>
<td>+</td>
<td>Attenuated</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>Erp</td>
<td>+</td>
<td>Attenuated, Rifampicin hypersusceptibility</td>
<td>+</td>
<td>Attenuated, detergent sensitivity</td>
<td>ND</td>
</tr>
<tr>
<td>ESX secretion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESX-1</td>
<td>+</td>
<td>Attenuated, phagolysosome fusion, granuloma formation, haemolysis</td>
<td>+</td>
<td>Attenuated, altered cytokine profile, phagolysosome fusion and others</td>
<td>+</td>
</tr>
<tr>
<td>ESAT-6</td>
<td>+</td>
<td>Attenuated</td>
<td>+</td>
<td>Attenuated</td>
<td>ND</td>
</tr>
<tr>
<td>CFP-10</td>
<td>+</td>
<td>Attenuated</td>
<td>+</td>
<td>Attenuated</td>
<td>ND</td>
</tr>
<tr>
<td>EspA</td>
<td>Probable, but orthologue unclear</td>
<td>ND</td>
<td>+</td>
<td>Attenuated</td>
<td>ND</td>
</tr>
<tr>
<td>EspB</td>
<td>+</td>
<td>Attenuated</td>
<td>+</td>
<td>ND</td>
<td>+</td>
</tr>
<tr>
<td>ESX-5</td>
<td>+</td>
<td>Attenuated</td>
<td>+</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 1. Comparison of selected virulence determinants of M. marinum and M. tuberculosis.
the *M. tuberculosis* orthologue suggests that the genes may have conserved functions across the two species, although data from a TRASH screen suggests that the *M. tuberculosis* orthologue is essential (Sassetti et al., 2001; Gao et al., 2006).

In *M. tuberculosis*, specific cell wall lipids such as phthiocerol dimycocerosate (PDM), trehalose dimycolate (TDM) and a polyketide synthase-derived phenolic glycolipid (PGL) are important determinants of virulence (Cox et al., 1999; Glickman et al., 2000; Reed et al., 2004). Injection of purified cyclopropane-modified TDM (also known as cord factor) is sufficient to induce pulmonary granulomas and to confer a hypoinflammatory phenotype in cultured macrophages, while purified PGL applied to macrophages likewise inhibited release of pro-inflammatory cytokines (Reed et al., 2004; Rao et al., 2005). These results suggest that at least a subset of the mycobacterial cell wall lipids that are altered in cording mutants are capable of direct interactions with the host immune response. The canonical *M. tuberculosis* cell wall virulence lipids are all predicted to be present in *M. marinum* – though the *M. marinum* PDM equivalent has altered stereochemistry (Onwueme et al., 2005) – based on genomic analysis of the biosynthetic pathways and transporters required for their production and export. There has not yet been a functional analysis of these genes or a comprehensive biochemical analysis of the *M. marinum* cell wall.

ESX secretion systems and their substrates

The ESX secretion systems are specialized secretion systems present across a wide variety of Gram-positive bacteria (Abdallah et al., 2007). They have been the subject of intensive investigation in both *M. tuberculosis* and *M. marinum* due to the central role one of them, ESX-1, plays in mycobacterial pathogenesis. *M. tuberculosis*, *M. bovis* and *M. marinum* mutants lacking the ESX-1 secretion system or its substrates are attenuated in both cultured macrophages and animal models of infection. Both *M. marinum* and *M. tuberculosis* containing a large deletion (named RD1) spanning much of the ESX-1 locus exhibit defects in cell-to-cell spread, altered cytokine profiles and failure to inhibit phagolysosome fusion in cultured cells (Hsu et al., 2003; Stanley et al., 2003; 2007; Gao et al., 2004; Guinn et al., 2004; Volkman et al., 2004; Tan et al., 2006). As noted earlier, *esx-1* may play a role in phagosome escape for *M. marinum* and *M. bovis* in cell culture (Gao et al., 2004; van der Wel et al., 2007).

The ESX-1 locus contains two canonical secreted proteins ESAT-6 and CFP-10 that are co-dependent for secretion. In addition, in *M. tuberculosis*, a third ESX-1-secreted protein EspA lies outside of the ESX-1 locus, but exhibits co-dependent secretion with ESAT-6 and CFP-10 (Fortune et al., 2005; MacGurn et al., 2005). In *M. marinum*, the role of EspA has not been addressed, but an additional ESX-1 substrate EspB accounts for part of the attenuation of deleting the entire *esx-1* locus and may contribute to defective phagosome maturation arrest (McLaughlin et al., 2007; Xu et al., 2007). It is interesting to note that in both *M. tuberculosis* and *M. marinum*, components of the ESX-1 secretion system are required for phagosome maturation arrest, yet the *M. bovis* BCG strain which lacks the ESX-1 locus is capable of arresting phagosome maturation (MacGurn and Cox, 2007). In *M. marinum*, EspB, ESAT-6 and CFP-10 are all co-dependent for secretion (Xu et al., 2007), while in *M. tuberculosis* EspB is secreted in the absence of CFP-10 (McLaughlin et al., 2007). The *M. tuberculosis* orthologue of espB, Rv3381c, restores growth in macrophages to the *M. marinum* mutant, suggesting conserved function of this gene in *M. tuberculosis* (McLaughlin et al., 2007).

Examination of infection with an *esx-1*-deficient strain of *M. marinum* (∆RD1) in the zebrafish embryo allowed an in vivo analysis of the mechanisms of attenuation (Volkman et al., 2004). When injected intravenously, *esx-1* mutant bacteria recruited and were phagocytosed normally by macrophages and were able to replicate intracellularly therein. Although *esx-1*-infected macrophages are unable to seed granuloma formation, they are capable of responding to signals from macrophages infected with wild-type bacteria. If a wild-type superinfection is superimposed on an established *esx-1*-infection, *esx-1*-infected macrophages rapidly (within hours) join wild type-containing aggregates, suggesting that the granuloma formation defect results from an inability to transmit rather than to receive cues for granuloma formation.

Other ESX secretion systems are non-redundant, and their substrates may also be important to mycobacterial pathogenesis. The *M. marinum* esx-5 locus, which has a close orthologue in *M. tuberculosis*, was implicated in secretion of PPE41, one of a large gene family of mycobacteria-specific genes that include the PE and PPE gene families (Abdallah et al., 2006). These gene families comprise up to 10% of the genome of pathogenic mycobacteria, and their gene products are cell wall associated, but their function is not well understood. Mutants in the *M. marinum* esx-5 locus are compromised in cell-to-cell spread, although it is unclear if PPE-41 is relevant to this phenotype (Abdallah et al., 2006). Nevertheless, the idea that these specialized secretion systems are responsible for export of at least some PE and PPE genes is an important one. One PE-PGRS gene, mag-24, identified as macrophage-activated in the screen for *in vivo* activated *M. marinum* promoters, also displayed an *in vivo* defect in both frog and zebrafish models, although it is unclear
whether or not the protein is exported through an ESX secretion system (Ramakrishnan et al., 2000). Intriguingly, expansion of PE and PPE gene clusters in mycobacteria appears to be linked to duplication of nearby esx loci (Gey van Pittius et al., 2006). It will be interesting to determine the export requirements and involvement in pathogenesis of other members of these large protein families in both M. marinum and M. tuberculosis.

Role of granulomas in promoting and restricting infection: insight from the zebrafish

esx-1-deficient bacteria are attenuated for virulence, yet these mutants are defective in the generation of what has traditionally been viewed as a host-beneficial response – granuloma formation. The view of granulomas as host protective structures that are impermeable fortresses of mycobacterial containment has long been a tenet of medical and immunology textbooks (Janeway et al., 2001). However, studies using the M. marinum/zebrafish model provide evidence that the granuloma may play a dual role in first promoting and later restricting mycobacterial growth (Volkman et al., 2004; Swaim et al., 2006). M. marinum appears initially to employ the esx-1-dependent early macrophage aggregates to promote spread and growth (Volkman et al., 2004). Real-time imaging of early granulomas and uninfected macrophages in the zebrafish embryo has revealed spread from infected to uninfected macrophages occurring predominantly in nascent innate granulomas (J.M. Davis and L.R., unpubl. results). Additionally, during real-time monitoring of bacterial growth during infection, the beginning of granuloma formation correlates tightly with an expansion of bacterial numbers (Volkman et al., 2004).

Moreover, even mature, established granulomas are surprisingly porous. Adult frogs and fish with established M. marinum infections were superinfected with differentially fluorescent mycobacteria. While pre-infection conferred some immunity to the subsequent infection, superinfecting mycobacteria trafficked to established granulomas in both fish and frogs within 3 days, and mixed granulomas were still found months after the super-infection (Cosma et al., 2004). Thus, even at the epicentre of a mature, established adaptive immune response, newly infecting mycobacteria can infiltrate and persist within. Mature granulomas clearly limit the extent of infection, but there is emerging consensus that pathogenic mycobacteria themselves have evolved to orchestrate granuloma formation in a way that promotes their survival and transmission (Russell, 2007).

Conclusion

In the study of infectious diseases, surrogate pathogens have proved an important tool. The use of Salmonella typhimurium in its mouse host has contributed greatly to the understanding of human typhoid fever caused by its genetic relative Salmonella typhi. In the case of tuberculosis, M. tuberculosis has been studied in cell culture systems and in a variety of mammalian hosts. The widely used mouse model of tuberculosis has provided remarkable insight into the genetics and immunology of M. tuberculosis infection. The last 15 years have seen the use of M. marinum as a surrogate organism to understand the many aspects of pathogenesis that it shares with its genetic cousin M. tuberculosis. Owing to its lower temperature growth requirement, M. marinum can be studied in the genetically tractable model hosts Dictyostelium, Drosophila and zebrafish. Dictyostelium can provide rapid insight into the cell biology of mycobacterial infection and Drosophila provides powerful forward genetics and cell culture-based RNAi screens. Likewise, zebrafish have provided a genetically tractable natural host in which the complex interactions leading to tuberculous granuloma formation can be easily visualized. An eclectic approach that draws on the strengths of each surrogate host/pathogen pair should provide the opportunity to understand human tuberculosis more fully.

Acknowledgements

We thank Laura Swaim for adult zebrafish sections and images, Muse Davis for Fig. 1B and C, Eric Brown, Hilary Clay, Lynn Connolly, Christine Cosma and Robin Lesley for valuable discussions and comments on the manuscript. This work was supported by National Institutes of Health Grants RO1 AI036396 and RO1 AI154503 and a Burroughs Wellcome award to L.R. D.M.T. was supported by Postdoctoral Fellowship Grant PF-04-107-01-DDC from the American Cancer Society and a National Institutes of Health Bacterial Pathogenesis Training Grant AI055396.

References

Journal compilation © 2008 Blackwell Publishing Ltd, Cellular Microbiology

