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INTRODUCTION 

Knowledge evolves much faster than nature. It is, however, by definition an 
inaccurate abstraction (31). Any attempt to describe the ontogeny of mature 
function is limited by the accuracy of our current abstraction. This review, with 
the exception of the final section, is therefore biased toward ontogenetic 
analyses of those physiological processes that we best understand. Space 
limitations kept many important areas and contributors from being treated. 

Why study the ontogeny of auditory information processing? One reason is 
to understand the development of audition, per se, including such phenomena 
as the endocochlear potential (9) or the ontogeny of the frequency/place 
principle (74, 110). Another reason is to use unique qualities of the auditory 
system to approach more general issues of developmental neurobiology (106). 
Such issues include the demonstration that afferents influence cell death (73) or 
the ontogenetic elimination of supernumerary inputs in the central nervous 
system (60). Development can also be used as a tool to further understand the 
principles underlying adult function. Pujol and his colleagues, for example, 
have used the fact that inner hair cell differentiation precedes that of outer hair 
cells to investigate functional differences between these two cell types (18). 

DEVELOPMENT OF CONDUCTIVE ELEMENTS: 

EXTERNAL EAR AND MIDDLE EAR 

Maturation of the elements that collect, focus, and transmit mechanical motion 
to the cochlea sets physical limits on the capacities of the maturing inner ear and 
central processing network. Recent reviews cover functional development 
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214 RUBEL 

(120), the embryology (81, 144), and the maturational pattern observed in 
humans (2). 

External Ear 
The shape of the pinna and size of the ear canal influence sound reaching the 
tympanic membrane differentially as a function of frequency (123). Therefore, 
as the pinna and ear canal grow, a process which is largely postnatal, we might 
expect to see major changes in the pattern of spectral sensitivity. Saunders et al 
(120) point out that the relatively small ear canal and pinna of the newborn will 
tend to resonate at higher frequencies, where the newborn is relatively less 
sensitive, than that of adults. In addition, the immature ear canal is more 
compliant than that of the adult, so the maximum gain due to resonance will be 
less in the neonate. These factors probably result in an overall loss of sensitivity 
in the upper half of the frequency range due to external ear immaturity. 

Decreased high frequency sensitivity, along with the reduced head size of 
neonates, also has implications for binaural sound localization. Smaller head 
size will mean that the maximum interaural intensity differences (123) will 
occur at higher frequencies in neonates than in adults; as the head approaches 
adult size, progressively lower frequencies produce ,an interaural intensity 
difference (78). Therefore, sound localization l!,sing binaural cues should be 
more difficult for the newborn, especially in the middle frequencies where 
interaural intensity cues can play less of a role. Furthennore, maturation of the 
temporal microstructure of receptor and neural responses, usually thought to be 
important for the processing of interaural time differences, is prolonged. In 
summary, we might expect young animals and humans to show difficulties 
with sound localization. While it has been shown that young animals and 
humans can localize sounds (19,20, 80), neither the extent to which binaural 
cueS are used nor the accuracy of localization ability have been thoroughly 
studied as a function of development. 

Middle Ear 
Middle ear structures, tympanic membrane and ossicular chain, provide a 
35-40 dB pressure gain; their development, therefore, can impose strict bound­
ary conditions on the ontogeny of auditory sensitivity. Saunders and colleagues 
(121) provide a detailed and lucid review of this material; only the most 
important points will be mentioned here. 

Most early studies, using tympanometry to measure developmental changes 
in tympanic membrane immittance, found a precipitous drop in the magnitude 
of compliance 40-80 days after birth in human neonates (11,63,66,67, 133). 
It now appears that when the component quantities of admittance (conductance 
and susceptance) are considered, there is instead a net increase in admittance 
during the first three months after birth (55). The latter results are in accord with 
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ONTOGENY OF AUDITORY SYSTEM 215 

recent developmental studies using hamsters and chicks (98, 121). Using a 

capacitive probe, Relkin & Saunders (97) were able to measure developmental 
changes in displacement of the tympanic membrane at frequencies up to 35 
kHz. Displacement increased up to 75 days of age in the hamster. Below 10 
kHz the developmental change was flat across frequency. Above 10 kHz, 
however, displacement appeared to have a sharper roll-off, with increasing 
frequency in young animals than in the adults. 

From these results there can be little doubt that at the youngest ages middle 
ear function is an important factor limiting hearing sensitivity. In both the chick 
and the hamster, however, it appears that adult thresholds mature prior to final 
maturation of middle ear function, at least for low frequencies (7,46, 68, 96, 
119). In addition, middle ear function in the young animals cannot account for 
ontogenetic changes in sensitivity across frequency (98). Therefore, develop­
mental changes in middle ear contribute to, but do not appear to account for, 
maturation of adult hearing sensitivity. 

In order to understand the development of hearing we must document 
changes in the efficiency and spectral purity of information transfer from the 
acoustic environment to the inner ear. Future studies simultaneously measuring 
input-output functions of the middle ear and the cochlea across age will be 
important. This gap in our knowledge is particularly apparent when we consid­
er differences that must exist between animals which develop hearing prenatal­
ly (humans, most ungulates, and precocial birds) and those which begin 
hearing after birth (such as most rodents and carnivores). In animals that hear 
prenatally , the external and middle ear spaces are fluid-filled. Therefore, the 
role of the tympanic membrane and ossicular chain must be very different. 
Presumably the conduction of sound to the inner ear in an aquatic embryo will 
follow principles similar to bone conduction (136). Empirical studies of the 
transfer function under these conditions, however, are not available. 

DIFFERENTIATION OF THE INNER EAR 

Normal inner ear development has been reviewed from several perspectives 
(106, 143, 145, 158). The tissue interactions important for the determination 
and early differentiation of inner ear tissues are being intensely investigated in 
vivo (40, 56) and in vitro (84, 142). Of the most interest here are the final stages 
of differentiation which immediately precede or overlap with the maturation of 
auditory function. 

Some of the best descriptions of the final stages of inner ear differentiation 
are those of Retzius (99). Over the past century his observations have been 
confrrmed and elaborated using modern methods and on a variety of animals 
(18, 38, 72, 89, 91, 92, 106, 125, 130). While some generalizations are 
possible, such as the differentiation of inner hair cells prior to outer hair cells 
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216 RUBEL 

and the establishment of afferent synapses before efferent connections, the 
major point to emphasize is that no single event triggers the onset of cochlear 
function. As suggested by Wada (147), the events leading up to the onset of 
function include the simultaneous and synchronous maturation of many 
mechanical and neural properties, including thinning of the basilar membrane, 
formation of the inner spiral sulcus, maturation of the pilar cells, freeing of the 
inferior margin of the tectorial membrane, development of tissue spaces in the 
organ of Corti, differentiation of the hair cells, establishment of mature cilia 
structure, and the maturation of synapses. 

The final stages of maturation do not occur simultaneously throughout the 
length of the cochlea. Retzius (99) showed a clear gradient of differentiation 
extending from the basal tum. This gradient may not be present in the early 
stages of differentiation (27, 112), but substantial evidence supports its exist­
ence during the final stages of maturation (e.g. 1, 3, 10,26,37, 57, 93, 95, 99, 
147). In species ranging from chicken to man, differentiation occurs first in the 
mid-basal region and spreads in both directions, with the apex maturing last. A 
corresponding pattern of differentiation has been described at more central 
locations, including myelination of kitten spiral ganglion cells (104), axon 
growth into the hamster dorsal cochlear nucleus (134), and a variety of 
morphological and physiological events in the chick brain stem auditory nuclei 
(59, 108, 128). Functional implications of this developmental gradient are 
discussed in the next section. It is important to note that essentially nothing is 
known about how this gradient arises, what factors regulate it, or why it occurs. 
Studies aimed at these questions are needed. 

The pattern of synaptic development at the base of inner and outer hair cells 
has been studied in detail by Pujol and his colleagues (72, 90, 91, 95, 124). 
Synapse formation on inner hair cells occurs early and undergoes only minor 
modifications. Outer hair cells are initially surrounded by afferent terminals, 
which are gradually replaced by numerous efferents. Then the large calyciform 
efferent terminal, typical of the mature cochlea, forms. Pujol speculates that 
the development of efferent terminals and the concurrent reduction of afferent 
terminals on the outer hair cells is responsible for changes in frequency 
selectivity. 

The relationships of stereocilia structure to the tuning properties of the 
mature cochlea are only beginning to be appreciated (137, 138, 139). At 
present there is little information on the development of these structures. In the 
chick, stereocilia first arise near the apex and their orientation specificity 
emerges gradually at about the time function begins (27). The stereocilia, 
kinocilium, and an associated bulbous structure have been described in five­
and seven-month-old human fetuses (39). In view of recent findings, indicating 
that the tuning properties of the cochlea may shift during ontogeny (see below), 
it is of obvious importance to rigorously examine the developmental rela­
tionship between cilia structure and frequency selectivity. 
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ONTOGENY OF AUDITORY SYSTEM 217 

DEVELOPMENT OF THE PLACE PRINCIPLE 

The most fundamental principle of auditory science is the place principle (4). 
Simply stated, there is a progression of positions along the basilar membrane 
that are most sensitive to (i.e. "tuned to") successively higher frequencies. 
Apical positions (distal in birds) are most sensitive to low frequencies; progres­
sively more basal regions (proximal in birds) are selectively responsive to 
successively higher frequencies. This relationship is thought to be due to the 
mechanical properties of basilar membrane motion and the characteristics of 
the stereocilia (see reviews by Rhode and T. Weiss, this volume). Most animals 
do not simultaneously begin hearing all frequencies that are included in their 
adult dynamic range. Behavioral and physiological responses are ftrst elicited 
by low or mid-low frequencies, and responsiveness to the highest frequencies 
develops last (44, 105, 106). Other measures of auditory system function show 
a corresponding developmental pattern, e.g. attainment of adult thresholds 
(79), phase locking by neurons in the cochlear nucleus (13), and most sensitive 
frequency (35, 96). While there may be exceptions (155), the pattern is 
remarkably universal across both avian and mammalian species. 

Since responsiveness to relatively low frequencies develops early, and high 
frequency responsiveness matures last, the place principle predicts that apical 
or mid-apical regions of the cochlea are the first to mature and that basal regions 
mature last. As noted above, just the opposite result is consistently found: 
cochlear differentiation occurs ftrst in the basal or mid-basal region, and the 
last part of the cochlea to undergo differentiation is the apex. 

Developmental changes in the external and middle ear cannot account for 
this paradox (97). An alternative explanation, that the values of the place code 
along the cochlea are changing during development 006, 108), has recently 
been tested (74, 110). Its implications are shown in Figure 1. The upper 
diagram in each part schematically shows the cochlea, from base to apex, and 
the relative positions of the traveling waves produced by several different pure 
tones. In the bottom section of this diagram the orderly, "tonotopic" representa­
tion of input to the central nervous system is shown. The eNS neurons are 
selectively tuned to the frequencies indicated (in kHz). Our hypothesis, shown 
in the left and middle diagrams, was that during the early stages of hearing the 
base or mid-basal region of the cochlea and the basal representation areas of the 
central nervous system are the first to respond to sound. But these areas are 
initially most sensitive to relatively low frequencies. With maturation of both 
mechanical and neural properties, the values of the place code gradually shift 
toward the apex until the mature organization is achieved. 

Two testable predictions emerged from this hypothesis. The fITst (upper part 
of Figure 1) was that there would be a systematic ontogenetic shift in the 
position of hair cell damage produced by pure tone high intensity sound 
exposure. Low or midrange frequencies should produce maximum damage at 
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218 RUBEL 

BASILAR MEMBRANE:TRAVELING WAVE 

CENTRAL AUDITORY PATHWAY:TONOTOPIC ORGANIZATION 

EMBRYO """""""""""""" .. 1 ADULT 
DEVELOPMENT 

Figure J Model of inner ear functional development. The sequence of development is shown 
from left to right. The basilar membrane, from base to apex, is depicted at the top of each section; 

the positions of the traveling waves produced by pure tones of several frequencies (in kHz) are 

indicated. A region of the central auditory pathways that is tonotopically organized is shown 
connected to each basilar membrane. The numbers indicate the "best frequency" (in kHz) of 

neurons at each location. At the beginning of auditory function (left diagrams) the basal half of the 
cochlea is responsive to relatively low frequencies and the central nervous system areas receiving 
projections from the base respond to low frequencies. With maturation, middle and right sections, 

the apex of the cochlea begins responding to low frequencies and the base becomes more and more 
sensitive to high frequencies. The resulting shift in neuronal best frequencies is indicated at the 
bottom of each diagram. 

progressively more apical locations as the animals mature. When tested by 
Rubel & Ryals (110) using three different frequencies on three age groups of 
young chickens, the position of maximum damage shifted systematically as 
predicted. This experiment was carried out during the very late stages of 
hearing development, after nearly all thresholds had already reached adult 
values, probably corresponding to the perinatal or immediate postnatal period 
in humans. 

The second prediction was that in each tonotopically organized auditory 
region of the brain stem, the position at which neurons are responsive to a 
particular frequency will shift during development. Stated differently, the 
neurons at any given location within an auditory area of the central nervous 
system should respond to successively higher frequencies during development. 
In collaboration with William Lippe, electrophysiological "mapping" was used 
to determine the relationship between the location of neurons and the frequency 
to which they were most sensitive (75). In each area of the brain stem 
investigated, embryonic neurons were most sensitive to tones 1-1.5 octaves 
below the frequencies that activate the same neurons a few weeks after 
hatching. 

Taken together, these two experiments strongly support the model of a 
shifting place code during development. In all likelihood, the underlying 
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ONTOGENY OF AUDITORY SYSTEM 219 

mechanisms in this process include both mechanical and neural changes. An 
exciting possibility is that the changing tuning properties are also reflected by 
changes in the structure of stereocilia (139). 

The generality of this process across species is also supported by data 
available on mammals: (a) As noted above, the paradoxical relationship be­

tween cochlea development and functional ontogeny is nearly universal across 
species; (b) Ryan & Woolf (113) have shown an ontogenetic shift in the 
position of neurons in the gerbil dorsal cochlear nucleus that increases glucose 
uptake in response to a 3 kHz tone; (c) Pujol & Marty (94) noted that only 
relatively low frequency tones produced recognizable evoked potentials in the 
cerebral cortex of very young kittens, but the potentials were found in the "high 
frequency" region (157); and (d) Harris & Dallos (53) have recently reported a 
systematic developmental increase in the cut-off frequency of cochlear micro­
phonic potentials recorded from the basal tum of the gerbil cochlea. 

The functional implications of this model are that at some point during 
development each part of the cochlea, and thereby each tonotopic region of the 
central nervous system, will be maximally responsive to relatively low frequen­
cy tones. With maturation, each area will be responsive to successively higher 
frequencies until adult values are reached. It is perhaps not coincidental that 
low frequencies are present in the environment of young organisms, whether in 
a burrow, in an egg, or in utero (5,48, 146). If the development of normal 

function is dependent on external stimulation, then the developmental pattern 
we have proposed will provide a mechanism to insure that each neuronal region 
receives adequate stimulation from the environment. 

DEVELOPMENT OF NEURAL RESPONSE PROPERTIES 

Over the past ten years many investigators have examined the ontogeny of 
responses to sound by neurons at several levels of the auditory pathways. There 
are two purposes of such studies. 

First, we would like to understand the ontogeny of auditory "coding." 
Certain acoustic parameters are represented in the pattern of neuronal activity. 
This information allows the organism to "perceive" sound and to differentially 
act as a function of its temporal and spectral properties. By studying the 
development of neuronal responses, investigators hope to understand the neural 
events underlying the ontogeny of sensation and perception. The implicit 
assumption is that the neural response parameters that we have chosen to study 
in adult organisms, and therefore developmentally, are the ones that code 
relevant acoustic dimensions. To the extent that this assumption is correct, 

current studies will be useful for understanding the development of perception. 
It is important to note that as our understanding of the coding of acoustic 
information by the mature auditory system evolves (see Sachs, this volume), 
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220 RUBEL 

the methods and approaches for studying developmental information proces­
sing must also change. 

The second reason for studying the coding properties of developing neurons 
is to assess structure-function relationships. Thus, development can be used to 
assess the structural properties necessary for a particular pattern of responsive­
ness to sound or to assess the relative maturity of more peripheral parts of the 
auditory system. The implicit assumptions are: (a) that the same structural 
features underlie a particular pattern of activity in young and adult organism; 
and (b) that causal relationships can eventually be experimentally detected 
among the myriad of temporal correlations. 

We;Jrnow remarkably little about the ontogeny of auditory perception. 
ThreShold changes during development have been examined in a few species 
(e.g. 33, 35, 46, 106, 122), but psychophysical studies attempting to evaluate 
the spectral, temporal, or spatial resolving power of the developing auditory 
system are rare (34, 44a, 46, 68, 83). In order to relate the development of 
neurophysiological response properties to the ontogeny of perception, a great 
deal more emphasis must be placed on evaluating the ontogeny of behavioral 
abilities. 

The. common strategy of applying the same techniques to neurophysiological 
studies of young animals as to adults can lead to invalid conclusions. Young 
animals respond differently to anesthetics, blood loss, changes in body temper­
ature, and the host of other physiological conditions that influence auditory 
responsivity. In addition, differences in responsivity along "standardized" 
dimensions (e.g. repetition rate) (58, 76, 107) may be influencing responses to 
the dimensions under investigation (e.g. thresholds or tuning). 

There have now been a large number of neurophysiological studies examin­
ing developmental changes in thresholds and tuning properties of neurons in the 
mammalian auditory system. Reviews of this work are available (12, 103, 106, 
152). At the level of the eighth nerve, cochlear nucleus, and inferior coIIiculus, 
thresholds improve and tuning curves of individual neurons become sharper 
(e.g. 14, 79, 101, 153). The recent methodological advance of using tone-on­
tone masking paradigms for physiological studies of frequency selectivity (29, 
30, 51, 52) in developing animals (16, 120, 125) has also demonstrated 
ontogenetic "sharpening" of frequency selectivity. Although use of the evoked 
potential tuning curve method makes some assumptions that have yet to be 
verified in developing animals, its application to developmental questions can 
be of great value. For example, using these techniques it will be relatively easy 
to simultaneously record from several regions of the auditory system, to 
quantitatively assess their relative developmental rates. In addition, chronic 
preparations are feasible. 

PHJsiological response latencies decrease as a function of both peripheral 
and central changes (12, 106). The dyna�ic range of neurons increases, 
probably primarily due to changes in threshola and in the ability qfjsynapses to 
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ONTOGENY OF AUDITORY SYSTEM 221 

follow high rates of activation (13,59, 77). In general, the response changes 
that have been examined in the human fetus or neonate follow parallel develop­
mental trends (c.f. 115, 116, 132). 

Recent emphasis on the temporal microstructure of neuronal responses (see 
Sachs, this volume) makes developmental analysis particularly interesting. The 
lone published study (13) indicates that the development of phase-locking, 
particularly to high frequencies, is quite prolonged. This is especially interest­
ing because maximum firing rates mature early. 

Other properties of the spike train responses, peculiar to certain subsets of 
eNS neurons, are also receiving increasing attention by developmental 
neurophysiologists (e.g. 15, 77, 102, 126, 154). At present, most investigators 
are content with cataloging the developmental history of these properties and 
correlating their time-course to the myriad of morphological events that are 
occurring over the same time period (64, 75, 100, 114, 128, 134). 

EXTRINSIC INFLUENCES ON 

AUDITORY SYSTEM ONTOGENY 

Hypersensitive Period 
Saunders & Bock (118) summarized the literature on age-dependent differen­
tial susceptibility to aminoglycosides and noise exposure. Exposure of young 
rodents to drugs or noise at levels that do not produce damage in adults can 
cause severe hearing loss and histological damage to the cochlea (6, 17, 70, 71, 
88). Pujol and coworkers have proposed that the period of hypersensitivity 
corresponds to the final stages of anatomical and functional development of the 
cochlea. They hypothesized that the development of efferent endings is in­
volved. However, the biological mechanisms underlying differential suscepta­
bility of young animals is not known. When and if hypersensitivity occurs in 
human infants, and if it occurs during other periods of life (e. g. aging) (54), are 
also still undetermined. A fruitful approach toward understanding hypersensi­
tivity may be provided by examining age-related differences in temporary 
threshold shift (7). 

Afferent Influences on Central Auditory Pathways 
Another class of "extrinisic influences" are afferents from the inner ear to the 
central nervous system. In a series of studies since 1975, we have been 
examining how the integrity of the basilar papilla influences the development 
of neurons in the chick brain stem auditory system. After 11 days of incubation, 
when function normally begins and the second-order neurons are innervated, 
the presence of an intact receptor exerts a profound influence on the postsynap­
tic neurons (8, 32, 62, 73, 85, 111). In embryos, newly hatched chicks, or 
6-week-old chickens receptor removal resulted in the loss of 25-40% of the 
cells in n. magnocellularis and a marked reduction in the size of the remaining 
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222 RUBEL 

cells. In the postnatal animals, cell loss and cell atrophy were evident by two 
days and metabolic changes in the neurons were evident within six hours. 
Strikingly different results were found in 66-week-old chickens: cell loss was 
less than 10%, and the reduction in cell size was negligible. Yet, the auditory 

system of the chick is quite mature at hatching and aduItlike in every way we've 
observed even before one month posthatch (45, 46, 61, 109, 110, 119, 128). 
The period of susceptibility, therefore, may be detennined by general matu­
rational factors (e.g. pituitary

'
or adrenal function) not specific to the auditory 

system. 
The results of peripheral destruction appear to be similar in mammals. Trune 

(140, 141) recently reported marked changes in cell number, cell size, and 
dendritic size in the mouse cochlear nucleus following neonatal cochlear 
destruction. In newborn gerbils, cochlear removal results in similar changes 
accompanied by alterations of the projections of the intact cochlear nucelus to 
the inferior colliculus (82). Cell loss following adult cochlear removal has not 
been reported in mammals (65, 87, 150). Studies on other sensory systems 
have also reported that deafferentation in young animals results in profound cell 
loss or atrophy, whereas similar manipulations in adults have much less effect 
(28, 41, 49, 86, 156). 

Monaural or binaural occlusion also influences neuronal structure or func­

tion in the brain stem auditory nuclei of birds and mammals, a number of 

studies have shown. Webster & Webster first reported that ear occlusion and 
quiet rearing result in significant reductions of perikaryon area in many areas of 
the cochlear nucleus and superior olivary complex (149, 151); conductive 
hearing deficits in adult mice did not produce reliable differences. Anatomical 

changes produced by presumed conductive hearing losses during development 
have also been shown in the rat and chick (23, 24, 25, 36, 47, 129). One serious 
shortcoming of all these studies is that the nonnalcy of inner ear function has 
not been verified. Clinically, the existance of normal bone conduction 
thresholds is required to rule out combined conductive and sensorineural 
deficits. These same criteria should be applied to experimental investigations. 

What do these studies tell us about the relationship between the acoustic 
environment, neuronal activity, and development of neurons in the auditory 
system? Laying aside the caveat mentioned above, they imply that cellular 
morphology can be altered by chronically abnonnal activity. Little more can be 
concluded at this time. Only a few studies have sought to determine whether the 
abnonnal condition was disrupting a nonnal developmental trend or producing 
an abnonnal condition following nonnal ontogeny (43, 131). In some cases 

abnonnal development has been found (47) or implicated (36); in others it 
appears thal the effects of altered hearing are superimposed on normal develop­
ment (24, 148). Moreover, it is by no means certain that a conductive hearing 
loss will cause a simple proportional reduction in ongoing activity in the eighth 
nerve� much less in the cochlear nuclei or other auditory nuclei in the brain. For 
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example, a flat 40-decibel hearing loss can produce different effects in different 
frequency regions that may be due to alterations in bone conduction and/or 
internally generated activity superimposed on the conductive loss (129). Final­
ly, we don't even know at which stage of development activity from the ear can 
begin to influence the central nervous system. Webster & Webster (148) and 
Brugge & O'Connor (15) indicate that the ontogeny of major anatomical and 
physiological processes are independent of "environmental events." However, 
it is important to consider activity along eighth nerve fibers, whether or not 
influenced by sound in the external environment, as part of the "environment" 
of the cells in the cochlear nuclei. Thus, in order to understand how activity 
from the ear influences development of central auditory system structures we 
need to know when a functional synaptic network is established, the ontogenet­
ic activity pattern in the eighth nerve, and how sound influences that activity 
pattern throughout ontogeny. 

Behavioral studies on animals subjected to altered acoustic environments 
(42, 68, 135), examinations of language development in children suffering 
chronic conductive hearing loss (50), and observations of clinicians all concur 
that normal function can be disrupted by an abnormal acoustic environment. 
Yet, to date there are only scattered results indicating altered physiological 
function following deprivation or altered stimulation (21; 22, 117, 127). Over 
the next few years it is certain that considerable effort will be expended in this 
area and a "battery" of changes will be demonstrated. Of paramount impor­
tance is a theoretical structure by which to interpret such changes in relation to 
the environment of the developing organism, activity in the neuronal network, 
and behavioral abilities. 
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